
Automatic Unrestricted Independent
And-Parallelism in Declarative

Multiparadigm Languages

by

Amadeo Casas

B.S., Computer Science, University of Valladolid, 2003

M.S., Computer Engineering, University of New Mexico, 2005

M.B.A., Robert O. Anderson School of Management, 2008

Advisors: Manuel V. Hermenegildo

Manuel Carro

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2008



c©2008, Amadeo Casas

iii



To my family, por su apoyo in�nito y comprensión.

iv



Acknowledgments

The making of this thesis would not have been possible without the help and support
of many people and I would like to take this opportunity to express my gratitude to
all of them.

First, I would like to thank my advisor, Manuel V. Hermenegildo, for introducing
me to the truly rewarding world of research and for his stimulating and invaluable
help with this thesis. He has my sincere admiration for his knowledge in the field,
which has been and is a great inspiration to me. I am deeply grateful for his patience
with me and all the encouragement I received during the process of the becoming of
this thesis. Secondly, I want to thank Manuel Carro, for taking effort in providing
me with valuable comments and suggestions during the writing of my thesis. His
untiring help and guidance throughout my research has had great importance for the
final outcome.

I would also like to thank Mario Méndez-Lojo and Jorge Navas for those inter-
esting scientific discussions and, additionally, for our absorbing conversations on all
serious things in life. Furthermore, I have greatly appreciated them for being a source
of good humour in moments of frustration.

Furthermore, I am thankful to Iberdrola for funding my research through the
Prince of Asturias Chair in Information Science and Technology at UNM.

I also wish to show gratitude to the professors in the Electrical and Computer
Engineering Department at the University of New Mexico for teaching me so many
important things, which I have brought into use during my research. In particular, I
would like to warmly thank Gregory L. Heileman and Thomas P. Caudell for being
part of the committee and showing interest in my work. Furthermore, I owe thanks
to Deepak Kapur and his research group for their motivating and inspiring Logic
Group meetings and classes. In this context, I would like to thank my officemate
Stephan Falke for creating a friendly work atmosphere.

Moreover, I am grateful to all members of the CLIP research group from Madrid
who provided me with already existing tools which proved to be highly useful in my
research. In particular, I would like to thank Daniel Cabeza for his implementation
and work in the functional syntax of Ciao.

v



Finally, the completion of this thesis would not have been possible without the
support of my family and friends. I will be eternally thankful to my parents for the
great values of responsibility and hard work that they have taught me throughout my
life. Thank you to Sine, for her love, inexhaustible patience with my grumpy moods
and her success in cheering me on. Also, a very heartfelt thank you to all my friends
back home for still being there when needed and to all my friends in Albuquerque
for being able to put a warm smile on my face!

As a coda, there are people who have influenced my work which I cannot herein
mention. I apologize and guarantee that your help has not gone by unappreciated.

Amadeo Casas
September 2008

vi



Automatic Unrestricted Independent
And-Parallelism in Declarative

Multiparadigm Languages

by

Amadeo Casas

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2008



Automatic Unrestricted Independent
And-Parallelism in Declarative

Multiparadigm Languages

by

Amadeo Casas

B.S., Computer Science, University of Valladolid, 2003

M.S., Computer Engineering, University of New Mexico, 2005

M.B.A., Robert O. Anderson School of Management, 2008

Ph.D., Engineering, University of New Mexico, 2008

Abstract

Parallelism capabilities are becoming ubiquitous thanks to the widespread use

of multi-core processors. This has renewed the interest in language-related designs

and tools which can simplify the task of producing parallel programs. The use of

declarative languages is considered to be an interesting and promising approach for

increasing performance through the execution of parallel programs. In particular,

nondeterminism and partially instantiated data structures give logic programming

expressive power beyond that of functional programming. However, functional pro-

gramming often provides convenient syntactic features, such as having a designated
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implicit output argument, which allow function call nesting and sometimes results

in more compact code, as well as sometimes a more direct encoding of lazy evalu-

ation, with its ability to deal with infinite data structures. The high-level nature

of these languages, in addition to their relatively simple semantics and the use of

logic variables, preserves more of the original parallelism to be uncovered by an au-

tomatic parallelization. Different alternatives for performing automatic goal-level,

unrestricted independent and-parallelization of logic programs through source-to-

source transformations are studied in this work, which uses as targets new parallel

execution primitives which are simpler and more flexible than the well-known fork-

join parallel operator, in order to generate better parallel expressions by exposing

more potential parallelism among the literals of a particular program. An alterna-

tive approach for implementing and-parallel logic programming languages has also

been explored, which tames the complexity of the low-level machinery required by

most of the previous implementations by raising core parts to the source language

level. A significant portion of the implementation mechanisms of parallel execution

is handled directly at the Prolog level with the help of a comparatively small number

of concurrency-related primitives that take care of simpler low-level tasks such as

locking, and thread and stack set management. Moreover, in order to extend this

work to different paradigms, a syntactic functional extension to ISO-standard Prolog

systems has been developed, which covers function application, predefined evaluable

functors, functional definitions, quoting, and lazy evaluation, and is composable with

higher-order and other extensions to ISO-Prolog, such as constraints.
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Chapter 1

Introduction

This chapter introduces a general overview and the main motivations that encouraged

me to perform the work presented in this thesis. In addition, the objectives and the

actual contributions made during its development are listed. Finally, the organization

of the thesis will be outlined.

1.1 Overview and Motivation

New multicore technology is challenging developers to create applications that take

full advantage of the power provided by these processors. The path of single-core

microprocessors following Moore’s Law has reached a point where very high levels of

power and, as a result, heat dissipation are required to raise clock speeds. Multicore

systems seem to be the main architectural solution path taken by manufacturers

for offering potential increases in performance without running into these problems.

Nowadays, most laptops on the market contain two cores, capable of running up to

four threads simultaneously, and single-chip, 8-core servers are now in widespread
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Chapter 1. Introduction

use. Furthermore, the trend is that the number of on-chip cores will double with

each processor generation.

This wide availability of multicore processors is finally making parallelism main-

stream. In this context, being able to exploit such parallel execution capabilities in

programs as easily as possible becomes more and more of a necessity, since applica-

tions that are not parallelized will show little or no improvement in performance as

new generations with more processors are developed. In fact, it is well-known [KB88]

that parallelizing programs is a hard challenge. One of the main issues that make

the widespread use of parallelism difficult is that few applications are written to ex-

ploit parallelism. Thus, there is renewed research interest in the development and

design of languages and tools to simplify the task of writing parallel programs. This

includes the design of languages that provide a better support for the exploitation

of parallelism, libraries that offer support for parallel execution, and parallelizing

compilers capable of helping in the parallelization process.

The focus of this thesis is on the issue of automatic parallelization. Parallelizing

compilers can dramatically reduce the burden on the programmer when paralleliz-

ing programs. However, although there is hope that parallelizing compilers may

eliminate the need of manual parallelization, significant challenges still remain to be

solved in this area, as, for instance, dealing appropriately with irregular computa-

tions, handling speculation, dealing with complex data structures and pointers, and

developing new parallelization techniques for higher-level programming languages.

Due to the particular features of the programming paradigms, the amount of

progress made within the topics related to automatic parallelization differs. How-

ever, despite the inherent differences between imperative, object-oriented and declar-

ative languages, the issues to be tackled are quite similar, and thus the results and

solutions obtained in the study of automatic parallelization of a particular program-

3



Chapter 1. Introduction

ming paradigm can speed up the development process of more efficient parallelizing

compilers for all programming paradigms.

In particular, declarative languages have been traditionally considered an inter-

esting approach for obtaining increased performance through parallel execution on

multicore architectures, including multicore embedded systems. Among them, logic

programming (LP) offers a number of features, such as nondeterminism and partially

instantiated data structures, which give it expressive power beyond that of functional

programming. However, certain aspects of functional programming (FP) provide in

turn syntactic convenience. This includes, for instance, having a syntactically des-

ignated output argument, which allows the usual form of function call nesting and

sometimes results in more compact code. Also, lazy evaluation, which brings the

ability to deal with infinite non-recursive data structures [Nar90, Ant91], while sub-

sumed operationally by logic programming features such as delay declarations, enjoys

a more direct encoding in functional programming [Her00].

This thesis presents a different alternative for exploiting parallelism in logic pro-

grams, which is based on breaking down the concept of the traditional fork-join

parallelization into simpler alternatives that are able to provide more flexibility in

the parallel annotation of the original code, which in addition results in better per-

formance results. Also, this thesis proposes a high-level implementation of the ex-

ecution model for independent and-parallel programs, which relies on a minimal

set of concurrency-related primitives and provides flexible solutions for some of the

main problems found in previous and-parallel implementations, while avoiding most

of the low-level machinery required by other previous proposals. Finally, in order

to study and expand the obtained performance results to some other paradigms,

and be able to support parallel execution in both logic and functional languages, a

syntactic functional extension to the system has been developed. Bringing this syn-

4



Chapter 1. Introduction

tactic convenience to logic programming actually results in a more compact program

representation.

1.2 Thesis

My thesis is that flexible, extensible and maintainable high-performance high-level so-

lutions can be developed for unrestricted independent and-parallelism in declarative

multiparadigm languages. In order to support my thesis I have designed, developed,

implemented and evaluated solutions for automatic parallelization in these languages

based on a logic programming kernel, and aimed at recovering a significant part of

the efficiency lost with the high-level execution model.

1.3 Goals and Contributions

This section presents the main objectives of this thesis and the contributions made

during its development. In addition, the collaborations with other researchers, and

the publications resulting from them, are mentioned.

The objectives and contributions of this thesis can be structured in three main

topics, as follows:

Functional Syntactic Layer for Logic Programming: In order to support both

logic and functional programming, this thesis presents a design for an exten-

sive functional syntactic layer for logic programing, with Prolog systems in

mind, as well as its implementation in the Ciao system [BCC+06]. While the

idea of adding functional features to logic programming systems is clearly not

new, and there are currently a good number of systems [NM88, CKW93, Han,

5
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MNRA89, SHC96, BdlBM+06, HF00] which integrate functions and higher-

order programming into some form of logic programming, the proposal of this

thesis offers a combination of features which make it interesting in itself. The

approach is completely syntactic, functions can be limited or retain the power

of predicates, any predicate can be called through functional syntax, lazy eval-

uation is supported both for functions and predicates, functional syntax can

be combined with other extensions and thus inherit all other possible syntac-

tic and semantic extensions, such as higher-order, assertions, records or con-

straints. Also, because of the syntactic nature of the extensions they can be

the target of analysis, optimization, static debugging, verification, etc., as per-

formed by, e.g., the Ciao preprocessor [HPBLG05], without any modification

to the compiler or abstract machine.

This approach was motivated by some of the language extension capabilities of

the Ciao system [BCC+06]: Ciao offers a complete ISO-Prolog system, but one

of its most remarkable features is that, through a novel modular design [CH00],

all ISO-Prolog features are library-based extensions to a simple declarative ker-

nel. This allows on one hand the possibility to avoid loading any (for instance,

impure) features from ISO-Prolog when not needed, and on the other hand

adding many additional features at the source (Prolog) level, without modi-

fying the compiler or the low-level machinery. The facilities that allow this,

grouped under the Ciao packages concept [CH00], are the same ones used for

implementing the functional extensions proposed herein, and are also the mech-

anism by which other syntactic and semantic extensions are supported in the

system. The latter includes constraints, objects, feature terms/records, per-

sistence, several control rules, etc., resulting in Ciao being a publicly licensed,

next generation multi-paradigm programming environment.

However, while the Ciao extension mechanisms make implementation smoother

6
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and more orthogonal, a fundamental design objective and feature of the func-

tional extensions is that they are to a very large extent directly applicable to,

and also relatively straightforward to implement in, any modern ISO-Prolog

system [DEDC96]. Therefore, the corresponding contributions made in this

thesis can be adopted in such systems.

This work has been done in collaboration with Prof. Daniel Cabeza (Technical

University of Madrid), who implemented the functional syntax package in Ciao.

This work has been published in the following international conference and

workshop:

• [CCH06], written together with D. Cabeza and M. Hermenegildo. Pre-

sented at the Eighth International Symposium on Functional and Logic

Programming (FLOPS’06). April 2006.

• [CCH05], written together with D. Cabeza and M. Hermenegildo. Pre-

sented at the Colloquium on Implementation of Constraint and LOgic

Programming Systems (CICLOPS’05, ICLP associated workshop). Octo-

ber 2005.

Annotators for Unrestricted Independent And-parallelism: One particular-

ly successful approach to automatically parallelizing a logic program uses three

different stages. The first one detects the dependencies between pairs of pro-

cedure calls in the original program. The second stage performs global anal-

ysis [BdlBH99] over the program in order to gather static information on its

procedure calls. Finally, the third stage transforms the original program into

a parallel version by annotating it with parallel execution operators. This an-

notation should respect the dependencies found in the original program while,

at the same time, exploit as much parallelism as possible.

This annotation process is the focus of the contribution of this thesis in the

7



Chapter 1. Introduction

area of automatic parallelization. Transformation algorithms used in previ-

ous approaches in the context of logic programming have used nested fork-join

style parallelization, which has the drawback that they sometimes have to give

up parallelizing some goals due to the somewhat rigid structure imposed on

the final program. This limitation guided the development of new annotation

algorithms which target and-parallelism primitives that can express richer de-

pendency graphs than those which can be encoded with the nested fork-join

approaches.

Limitations of the fork-join annotations have been previously studied for im-

perative languages [Sar90], in which reordering of instructions was studied to

expose the maximum amount of parallelism, however the non-deterministic na-

ture of logic programs was not covered. The work presented in this thesis shows

that, since the transformed programs will contain in some cases more paral-

lelism, it will be possible to obtain better speedups than the fork-join variants

for such cases.

This work has resulted in an accepted publication in the following international

conference:

• [CCH07a], written together with M. Carro and M. Hermenegildo. Pre-

sented at the 17th International Symposium on Logic-Based Program Syn-

thesis and Transformation (LOPSTR’07). August 2007.

An extended version of this paper is currently submitted for publication in an

international journal.

High-Level Model for Unrestricted Independent And-parallelism: Most of

the previously developed run-time parallel systems, aimed at exploiting and-

parallelism [Her86, HG91, BLOO86, Kal87b, She96, GHPSC94, Jan94, SCWY91,

8
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San93] are based on an extension of the original WAM architecture and set of

instructions, and were originally implemented, as most of the other systems

mentioned, on shared-memory multiprocessors. While these models and their

implementations have been shown very effective at exploiting parallelism ef-

ficiently and obtaining significant speedups [HG91, PG98], most of them are

based on quite complex, low-level machinery which included an extension of

the WAM instructions, and new data structures and stack frames in the stack

set of each agent, which makes the implementation and maintenance, and also

the extensibility of these systems inherently hard.

This fact motivated the design of an alternative approach which is aimed at

taming that complexity by raising core parts of the implementation to the

source language level, and relying only on a comparatively small number of

concurrency-related primitives which take care of lower-level tasks. This thesis

will present an implementation model for independent and-parallelism which

fully supports non-determinism through backtracking and provides flexible so-

lutions for some of the main problems found in previous and-parallel imple-

mentations. In addition, this solution is able to optimize the execution for

the case of non-failing deterministic programs and to exploit unrestricted and-

parallelism, which allows exposing more parallelism among clause literals than

fork-join-based proposals.

A performance hit could be of course expected due to the high-level nature

of the implementation. However, several performance results presented in this

thesis will show that this approach does not necessarily incur insurmountable

efficiency loses. Moreover, that division of concerns will make it possible to

more easily explore variations on the execution schemes.

The contributions made within this work have been accepted for publication

in the following international conferences and workshops:
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• [CCH08a], written jointly with M. Carro and M. Hermenegildo. To be

presented at the 24th International Conference on Logic Programming

(ICLP’08). December 2008.

• [CCH08b], written jointly with M. Carro and M. Hermenegildo. Presented

at the 10th International Symposium on Practical Aspects of Declarative

Languages (PADL’08). January 2008.

• [CCH07c], written jointly with M. Carro and M. Hermenegildo. Presented

at the Colloquium on Implementation of Constraint and LOgic Program-

ming Systems (CICLOPS’07, ICLP associated workshop). September

2007.

• [CCH07b], written jointly with M. Carro and M. Hermenegildo. Presented

at Parallel Symbolic Computation (PASCO’07). July 2007.

1.4 Organization

This thesis is organized as follows. Chapter 1 has introduced the main motivations of

this work and a summary of the main goals and contributions. Chapter 2 presents the

main technical background which is necessary for a good understanding of the rest of

the chapters in this thesis. Chapter 3 explains the design of the syntactic approach

to the functional notation and lazy evaluation, and provides several examples of

how to combine them with other syntactic and semantic extensions of the language.

Chapter 4 presents several annotation algorithms which are able to exploit more

of the intrinsic parallelism in a program, proves their correctness and shows their

performance with a comparison with some of the previous annotation algorithms

used. Chapter 5 describes the high-level implementation of the execution model

for unrestricted independent and-parallelism. Finally, Chapter 6 summarizes the
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conclusions obtained with this work and highlights some of the possible directions

for future research.
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Chapter 2

Background

This chapter presents the main technical background necessary to understand the

following chapters of this thesis.

2.1 Parallelization in LP

Declarative languages, and among them logic programming languages, and also the

new multiparadigm languages based on logic programming kernel languages, offer a

particularly interesting case study for the area of automatic parallelization [GPA+01].

The comparatively higher level of abstraction of declarative languages allows

writing programs which are closer to the specification of the solution. Besides, there

is often more freedom in the implementation of different operational semantics which

respect the declarative semantics. In particular, the notion of control in declarative

languages frequently is separated from the actual specification, which allows for more

flexibility to arrange the evaluation order of some operations, including executing

them in parallel if convenient, without affecting the semantics of the original program.
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Additionally, the cleaner semantics that declarative programs enjoy and the use

of logic variables, which can be assigned only one value, makes it possible to au-

tomatically detect more accurately any lack of dependencies among operations and

hence to exploit opportunities for parallelism more easily than in other programming

paradigms, in comparison with imperative languages. For instance, it is not neces-

sary to check for some types of flow dependencies or to perform single statement

assignment (SSA) transformations. At the same time, the presence of dynamic data

structures with “declarative pointers” (logical variables), irregular computations, and

complex control makes the parallelization of logic programs a particularly interesting

case, since it allows tackling the more complex challenges faced in the paralleliza-

tion of other programming paradigms (including imperative programming) but in a

somewhat simpler and semantically well-understood context [Her00].

Finally, the parallelization of logic programs also brings unique challenges re-

lated to backtracking and the fact that multiple solutions may be produced for each

procedure call.

2.2 Types of Parallelism in LP

Because of this potential, quite significant progress has been made in the area of

parallelization of logic programs [GPA+01], where two main forms of parallelism

have been studied, presented in the following sections.

2.2.1 Or-Parallelism

Or-parallelism [LH85, War87b, Lus88, Kal87a, Sze89, War87a, AK90a, CH83, Hau90]

is exploited when the alternatives created by non-deterministic goals are explored
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simultaneously by different processors, in order to reduce the time taken to traverse

their (possibly large) search space. The exploitation of this type of parallelism is

interesting in applications that involve extensive seach, since the choices that are

represented by alternative clauses usually involve a large number of steps before a

failure or a success in the search occurs. Some of the most relevant or-parallelism

systems are Aurora [Lus90] and MUSE [AK90b].

Example 1 The following program solves the 8-queens problem:

queens(Queens) :-

solve_queens([8, 7, 6, 5, 4, 3, 2, 1], [], Queens).

solve_queens([], Qs, Qs).

solve_queens(Unplaced, Placed, Qs) :-

select_queen(Q, Unplaced, NewUnplaced),

no_attack(Q, Placed),

solve_queens(NewUnplaced, [Q|Placed], Qs).

select_queen(X, [X|Ys], Ys).

select_queen(X, [Y|Ys], [Y|Zs]) :-

select_queen(X, Ys, Zs).

no_attack(Q, Safe) :- no_attack_acc(Safe, Q, 1).

no_attack_acc([], _, _).

no_attack_acc([Y|Ys], Queen, Nb) :-

Queen =\= Y + Nb,

Queen =\= Y - Nb,

Nb1 is Nb + 1,

no_attack_acc(Ys, Queen, Nb1).
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The predicate select queens/3 will create alternatives to the execution of the al-

gorithm in each of the recursive calls to the predicate solve queens/3. In or-

parallelism, these alternatives may be executed in parallel by different agents.

This type of parallelism in logic programming is practically solved, since it is

conceptually simpler than and-parallelism.

2.2.2 And-Parallelism

An alternative strategy that is used to parallelize logic programs is referred to as and-

parallelism [DeG84, Kal87a, BSY88, CDD85, Her86, Lin88, WR87, WW88, BR86,

Con83, Fag87, Hua85, LK88, PK88], which aims at executing simultaneously con-

junctive goals in clauses or in the resolvent, in a similar fashion as traditional paral-

lelism. While or-parallelism can only obtain speedups when there is search involved,

and-parallelism can be used in more algorithmic schemes, with loop parallelization,

and divide-and-conquer and map-style algorithms being classic representatives. Ex-

amples of systems that have exploited and-parallelism are &-Prolog [Her86, HG91],

ROPM [Kal87b], AO-WAM [BLOO86] and DDAS [She96]. Additionally, some sys-

tems such as ACE [GHPSC94], AKL [Jan94], and Andorra-I [SCWY91, San93] ex-

ploit certain combinations of both and- and or-parallelism.

Example 2 The following program presents an and-parallel version of the quicksort

algorithm:

qsort([], []).

qsort([X|L], R) :-

partition(L, X, L1, L2),

qsort(L2, R2) &
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qsort(L1, R1),

append(R1, [X|R2], R).

partition([], _B, [], []) :- !.

partition([E|R], C, [E|Left1], Right) :-

E < C,

!,

partition(R, C, Left1, Right).

partition([E|R], C, Left, [E|Right1]) :-

E >= C,

partition(R, C, Left, Right1).

The only difference with the sequential version of this algorithm is the substitution of

the sequential operator (,/2) by the &/2 operator in order to schedule both recursive

calls to qsort/2 to be executed in parallel.

The &/2 operator in the example above represents the traditional fork-join nested

parallelism. This type of parallelization is referred to as restricted and-parallelism

(RAP). This operator has been adopted from the &-Prolog model [HG91], in which

conjunctions which are to be executed in parallel are often marked by replacing the

sequential comma (,/2) with a parallelism operator (&/2).

Since and-parallelism corresponds to the classical parallelism found in other pro-

gramming paradigms, the work presented in this thesis will concentrate on the issue

of automatic and-parallelization. From now on in this thesis, the term parallelism

will be referring to and-parallelism.
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2.3 Classical Approaches to And-Parallelism

The main objective of a parallelizing compiler is to uncover as much parallelism

as possible, but typically preserving some conditions to guarantee that the set of

solutions obtained is the same one as in the sequential execution and that there is

not a decrease in the performance of the execution, i.e., that the parallel execution is

never slower than the sequential execution. Thus, a correct parallelization has been

traditionally defined as one that preserves during and-parallel execution some key

properties, which are typically: [HR95]

Correctness: the set of solutions returned by the parallel execution of a particular

program is the same as its sequential execution.

No-slowdown: the execution time of the parallel execution is less than, or equal to,

the execution time of the sequential execution, assuming there is not overhead

in the parallel execution.

Not only errors but also significant inefficiency can arise from the simultaneous

execution of computations which depend on each other since, for example, this may

trigger more backtracking than in the sequential case. Thus, the preservation of

these properties is ensured by executing in parallel goals which meet some non-

unique notion of independence, meaning that the goals to be executed in parallel do

not interfere with each other in some particular sense. This can include, for instance,

absence of competition for binding variables among goals to be run in parallel plus

other considerations such as, e.g., absence of side effects. For simplicity, it is assumed

that the programs to be parallelized are free of side-effects. Note however that this

does not affect the generality of the presentation, as dependencies are analyzed in a

generic way.
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Therefore, goals are said to be independent if their parallel execution will not

perform additional search and will not produce incorrect results, i.e., if they preserve

the correctness and no-slowdown properties. Very general notions of independence

have been developed, based on constraint theory [dlBHM00]. However, for simplicity,

only those based on variable sharing will be discussed.

There are two main models in and-parallelism:

Dependent and-parallelism (DAP): goals are executed in parallel even if they

share variables, and the competition to bind them has to be dynamically dealt

with using notions such as sequencing bindings from producers to consumers.

It is a very interesting model, but unfortunately it usually implies substantial

execution overhead.

Independent and-parallelism(IAP): One of the best understood sufficient con-

ditions for ensuring that goals meet the efficiency and correctness criteria

for parallelization is called strict independent and-parallelism (SIAP) [DeG84,

HR89], which entails the absence of shared variables at runtime between any

two literals being parallelized. It should be noted that some proposals exploit

and-parallelism between goals which do not meet this condition, but on which

other restrictions are imposed which also ensure the no-slowdown property and

absence of conflicts due to the binding of shared variables. An example of such

restrictions is non-strict independent and-parallelism (NSIAP) [HR90, HR95],

in which two goals share some variables, although there is no competition in

their bindings. Although non-strict independence between two literals cannot

be determined by inspecting the previous state of execution, and thus global

analysis of the original program is required, it is quite interesting because it

uncovers some of the parallelism that is present in applications that manip-

ulate open data structures, as for instance difference lists. Another example
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is determinacy-based independence, as used for example in the Basic Andorra

Model [SCWY91], which makes use of determinism information in order to

decide whether two goals are to be executed in parallel or not, since two com-

putations that have no alternatives to execute, and their execution is known to

never fail, are independent and can thus be executed in parallel. In addition,

an interesting issue is at what level of granularity the notion of independence

is applied: at the goal level, at the binding level, etc. These concepts of inde-

pendence have been generalized through the notion of search space preserva-

tion [dlB94] and local independence [BHMR94, BHMR98], and also extended

to constraint logic programming [dlBHM93, dlBHM00], and constraint logic

programming with dynamic scheduling [dlBHM96].

Example 3 The following code presents a parallel solution for the hanoi problem:

hanoi(1, A, _, C, [mv(A,C)]).

hanoi(N, A, B, C, M) :-

N > 1,

N1 is N - 1,

hanoi(N1, A, C, B, M1),

hanoi(N1, B, A, C, M2) &

append(M1, [mv(A,C)], T),

append(T, M2, M).

In this case, the second recursive call to hanoi/5 will be executed in parallel with the

first call to append/3. That will produce a correct parallelization since both calls are

independent, i.e., they do not share variables and thus conflicts are avoided. Also,

note that some other parallelizations are also possible in this algorithm.

In particular, both recursive calls to hanoi/5 could be executed in parallel, but that
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would require removing the parallelization with the first call to append/3, due to the

dependency created via the variable M1.

This thesis will focus on both strict and non-strict independent and-parallelism,

as both have practically identical implementation requirements.

Also, the work performed in this thesis has followed and extended some of the

ideas and the architecture of the &-Prolog model. It basically consisted of two com-

ponents: a parallelizing compiler which detects the possible runtime dependencies

between goals in clause bodies and annotates the clauses with expressions to decide

whether parallel execution can be allowed at runtime, and a run-time system that

exploits that parallelism. The following sections will provide a general overview of

these two components, since they will be the basis for this work.

2.4 CDG-Based Automatic Parallelization

Figure 2.1 presents an overview of the process that has been followed in the work

presented in this thesis to automatically transform a Prolog program into a seman-

tically equivalent parallel version of it [HW87, BdlBH99, GPA+01]. It uses three

different stages. The first stage explores the literals in the original clause search-

ing for candidates for parallel execution by detecting data and control dependencies

between pairs of those literals. A directed dependency graph (see Figure 4.1(b) as

an example) is then built to capture this extracted information. The nodes in the

graph correspond to literals in the body of the clause and the edges represent depen-

dence conditions between them. Edges are labeled with the associated dependence

conditions (which may be trivially true or false).

As a second stage, a global analysis [JL89, MH89, MH92, JL92, BdlBH99] can
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be run in order to gather information regarding, e.g., variable aliasing, groundness,

and side effects, in order to prove statically whether those dependence conditions

are statically true or false. Those edges whose dependence condition becomes true

are eliminated from the graph, since the two literals are independent. If an edge

condition becomes false then it will be left in the graph as an unconditional edge,

since the two literals are dependent. For the rest of the edges in the graph, when a

condition cannot be completely evaluated at compile-time, it may remain associated

to the edge, but possibly in a simplified form.

Finally, the third stage corresponds to the annotation process, which encodes

the resulting dependency graph in the target parallel language. This annotation

should respect the dependencies implied by the graph while, at the same time,

exploiting as much parallelism as possible. Several algorithms based on differ-

ent heuristics have been proposed to compile the dependency graph into parallel

code [DeG87, MBdlBH99, MH90, BdlBH94, CH94] using fork-join structures. In

this process, labeled edges result in run-time checks when conditional parallel ex-

pressions are allowed. Since the tasks to be parallelized may not represent a suf-

ficient amount of computation with respect to the overhead that is incurred when

the run-time check is evaluated, unresolved dependencies are sometimes assumed to

always hold, and parallel execution will be allowed only between literals which have

been statically determined to be independent. This approach brings simplicity and

avoids potentially costly run-time checks in the parallelized code at the expense of

potentially losing some parallelism.

Two main forms of annotating parallel code are presented in the following sec-

tions: restricted IAP and unrestricted IAP.
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Execution Model

Annotation Process

USER
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Side−effect Analysis

Granularity Analysis

Global Analysis (A. I.)

(&/2,&>/2,<&/1)

Parallel Prolog Code

Source Code

Figure 2.1: Simplified scheme of the parallelizing compiler architecture.

2.4.1 Restricted IAP

The &-Prolog language [Her86, HG91] has been a frequent vehicle for expressing

goal-level, restricted independent and-parallelism in logic programs. It is basically

an extension of Prolog, adding parallel expressions (ParExp in the grammar below).

In its restricted version, an associative parallel fork-join operator &/2 is used. Essen-

tially, the sequential comma can be replaced with this operator in order to mark goals

which can be executed in parallel. Programs parallelized in the &-Prolog language
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typically also use the standard Prolog if-then-else constructions to be able perform

computations in different ways (e.g., sequentially or in parallel) depending on the re-

sult of evaluating some independence-related run-time checks (such as independence

or groundness), or granularity control-related tests (such as data size checks). A

simplified grammar (i.e., without cuts, side-effects, and other built-ins) defining the

syntax of restricted &-Prolog programs follows:

Definition 1 (Restricted &-Prolog grammar) Let
−→
t be a tuple of terms and p

a predicte symbol. Then, the following grammar defines the set of valid sentences in

the restricted &-Prolog language:

Program ::= Clause . Program | ε

Clause ::= Literal | Literal :- Body

Body ::= Literal | Literal , Body | Body -> Body ; Body | ParExp

ParExp ::= Body & Body

Literal ::= p(
−→
t )

Programs parallelized in the &-Prolog language typically also use standard Prolog

if-then-else constructions (conds -> body1 ; body2), to be able perform computa-

tions in different ways (e.g., sequentially or in parallel) depending on the result

of evaluating some independence-related run-time checks (such as independence or

groundness), or granularity control-related tests (such as data size checks).

In addition, the operational semantics of the fork-join operator &/2 are as fol-

lows [HR89, MBdlBH99]:

Definition 2 (Operational semantics of &/2) Let 〈g, s〉 be the computational state,

where g is a goal and s is a store. The operational semantics of the state of com-
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putation 〈(g1 & . . . & gn).c, s〉, where c is the continuation of the parallel compu-

tation, is given by the parallel computation of the states 〈g1, s1〉, . . . , 〈gn, sn〉, if

〈ε, s ∧ s1〉, . . . , 〈ε, s ∧ sn〉 and 〈c, s ∧ s1 ∧ . . . ∧ sn〉.

However, the restricted &-Prolog language has some limitations in the paral-

lelization of some particular CDGs, which relies on the use of the fork-join operator,

which is a rigid operator in the sense that it does not allow to execute some other

literals until the execution of both parallel goals has finished, and furthermore this

can prevent exploiting some of the parallelism that is implicitly represented in the

dependency graph.

Section 4.1 will further explain this limitation and provide some examples in order

to acquire a better understanding of it.

2.4.2 Unrestricted IAP

As previously explained, some and-parallel systems rely on the use of the fork-join

operator (&/2) as the most basic construction to exploit parallelism between goals

which are independent at run-time, because of the simplicity in which parallel com-

putations can then be described. This section presents an extension of the restricted

&-Prolog language introduced in Section 2.4.1:

Definition 3 (Unrestricted &-Prolog grammar) Let
−→
t be a tuple of terms and

p a predicte symbol. Then the following grammar defines the set of valid sentences

in the unrestricted &-Prolog language:
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Program ::= Clause . Program | ε

Clause ::= Literal | Literal :- Body

Body ::= Literal | Literal , Body | Body -> Body ; Body | ParExp

ParExp ::= Body & Body | Body &> Handler | Handler <&

Handler ::= Literal

Literal ::= p(
−→
t )

The changes with respect to the previous language are the addition of two new

expressions for the production corresponding to the non-terminal ParExp and a

production for the non-terminal Handler. This new language will be referred to

as the unrestricted &-Prolog language. The new productions extend the parallel

expressions used in the restricted &-Prolog language by adding two more basic con-

structions [CH96, Cab04] to schedule goals for parallel execution, &>/2 and <&/1,

informally defined as follows:

Definition 4 (Publish operator) Goal &> H schedules goal Goal for parallel ex-

ecution and continues executing the code after Goal &> H. H is a handler which

contains (or points to) the state of goal Goal.

Definition 5 (Wait operator) H <& waits for the goal associated with H to finish,

or executes it if it has not been taken by another thread yet. After that point any

bindings made for the output variables of the goal associated to H are available to the

executing thread.

Furthermore, the following definitions will present the operational semantics of

these two operators:
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Definition 6 (Operational semantics of &>/2) Let 〈g, s〉 be the computational

state, where g is a goal and s is a store. The operational semantics of the state of

computation 〈(g1 &> h).c, s〉, where c is the continuation of &>/2, is given by the

computational state 〈c, s〉.

Definition 7 (Operational semantics of <&/1) Let 〈g, s〉 be the computational

state, where g is a goal and s is a store. The operational semantics of the state of

computation 〈(h1 <&).c, s〉, where h1 is the handler associated to goal g1 and c is the

continuation of the parallel computation, is given by the parallel computation of the

state 〈g1, s1〉, if 〈ε, s ∧ s1〉 and 〈c, s ∧ s1〉.

G &> H ideally takes a negligible amount of time to execute, although the precise

moment in which G actually starts depends on the availability of resources (primarily,

free agents/processors). On the other hand, H <& suspends until the associated goal

finitely fails or returns an answer. It is interesting to note that the approach shares

some similarities with the concept of futures in parallel functional languages. A

future is meant to hold the return value of a function so that a consumer can wait

for its complete evaluation. However, the notions of “return value” and “complete

evaluation” do not make sense when logic variables are present. Instead, H <& waits

for the moment when the producer goal has completed execution, and the “received

values” (a tuple, really) will be whatever (possibly partial) instantiations have been

produced by such goal.

In addition, it is necessary to highlight that actual backtracking is performed at

H <&, and the memory reserved by the handler needs to be released when G &> H

is reached on backtracking. If G &> H is reached on backtracking but H <& was not

reached on forward execution, this means that some of the goals between these two

points has failed without a solution, and the execution of goal G, whatever its state

is, must be cancelled, since its result will not be needed anymore.
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Also, although exception handling is beyond the scope of this thesis, in general

exceptions uncaught by a parallel goal surface at the corresponding <&/1, where they

can be captured by the parent.

With the previous definitions, the restricted fork-join operator &/2 can concep-

tually be written in terms of the unrestricted operators &>/2 and <&/1 as:

A & B :- A &> H, call(B), H <&. (2.1)

This is an important result, since it indicates that any parallelization performed

using the operator &/2 can be made using the operators &>/2 and <&/1 without loss

of parallelism.

Note that this does not preclude any implementation from trying to make &/2

as efficient as possible —for example, by expanding &/2 inline following the above

definition, or by giving lower-level explicit mechanisms to implement &/2. In any

case, the above definition clearly indicates that any parallelization performed using

&/2 can be made using &>/2 and <&/1 without loss of parallelism.

Also, literal B is executed locally because when running the very common tail-

recursive case p :- q & p, one wants the recursive call p, the ’generator’ of parallel

goals, to be executed with no delays in order to spawn parallel q’s as quickly as

possible. This reverses the order of solutions with respect to the sequential case, but

this is not a real problem for pure goals.

Chapter 4, and more in particular Section 4.1, will go further with the motivations

for using these unrestricted operators, and in addition will provide some examples

to show their effectiveness in the cases where the restricted fork-join operator misses

some of the possible parallelization in the program.
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2.5 Implementation Tools: The Marker Model

The &-Prolog model [HG91] was the first complete description of a parallel Prolog

system capable of achieving effective speedups with respect to the best sequential

systems, and its basic ideas have been adopted by many previously mentioned sys-

tems as, for instance, &ACE [GHPSC94] and DDAS [She96]. This section will now

focus on providing a general outline of the actual execution model of parallel logic

programs.

The execution model introduced by &-Prolog [HG91] is referred to as the multi-

sequential, marker model. This implementation approach has been adopted by many

and-parallel systems, for both IAP [HG91, PGH95] and DAP [She96], to execute

goals in parallel. In this model, parallel goals are executed in different abstract

machines which run in parallel. In order to preserve the sequential speed, these

abstract machines are extensions of the sequential model, usually the Warren Ab-

stract Machine (WAM) [War83, AK91], which is the basis of most efficient sequential

implementations.

Herein it is assumed for simplicity that each WAM has a parallel thread (an

“agent”) attached and that there are as many threads as processors. Thus, WAMs,

agents, or processors can be referred to interchangeably. In this model, within each

WAM, sequential fragments appear in contiguous stack sections exactly as in the

sequential execution. However, in some proposals this need not be so: continuation

markers [SH96] allow sequential execution to spread over non-contiguous sections.

In order to support parallel execution, the different WAMs need to be expanded.

Classical implementations using the marker model handle the &/2 fork-join operator

at the abstract machine level: the compiler recognizes &/2 and compiles it by issuing

specific WAM instructions, which are executed by a modified WAM implementation.
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These modifications are far from trivial, although they are relatively isolated (e.g.,

unification instructions are usually not changed, or changed in a generic, uniform

way).

Also, the following data areas and stack frames need to be added to each abstract

machine [Her86, HG91]:

Goal Stack: A shared area onto which goals that are ready to execute in parallel

are pushed. WAMs can pick up goals from other WAM’s (or their own) goal

stacks. Goal stack entries include a pointer to the environment where the goal

was generated and to the code starting the goal execution, plus some additional

control information.

Parcall Frames: these stack frames are created for each parallel conjunction and

they are utilized for holding the necessary data for coordinating and synchro-

nizing the parallel execution of the goals in the parallel conjunction between

the different agents.

Markers: they separate stack sections corresponding to different parallel goals.

When a goal is picked up by an agent, an input marker is pushed onto the

choicepoint stack. Likewise, an end marker is pushed when a goal execution

ends. These are linked to ensure that backtracking will happen following a

logical (i.e., not physical) order.

The following example will clarify the use of these data structures and stack

frames in the execution of an and-parallel program.

Example 4 Figure 2.2 sketches a possible stack layout for the execution of the fol-

lowing predicate pred/3:
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r(X,Y)

q(X)

r(X,Y)

q(X)

End marker
Parcall frame Parcall frame

Input marker

q(X)

c)b)a)

s(X,Z)

p(X,Y,Z) p(X,Y,Z) p(X,Y,Z)

s(X,Z) s(X,Z)

End marker

p(X, Y, Z) :− q(X), r(X, Y) & s(X, Z).

Parcall frame

Input marker

Figure 2.2: Sketch of data structures layout using the marker model.

pred(X, Y, Z) :- q(X), r(X, Y) & s(X, Z).

with query pred(X, Y, Z). Assume that X will be ground after calling q(X). Differ-

ent snapshots of the stack configurations are shown from left to right in Figure 2.2.

Note that, in Figure 2.2, parcall frames and markers in the same stack are inter-

mixed. Actual implementations have chosen to place them in different parts of the

available data areas. For example, in &ACE parcall frames are not pushed onto the

environment stack but on a different stack, and their slots are allocated in the heap,

to simplify the memory management.

When the first WAM executes the parallel conjunction r(X, Y) & s(X, Z), it pushes

a parcall frame onto its stack and a goal descriptor onto its goal stack for the goal

s(X, Z) (i.e., a pointer to the WAM code that will construct this call in the argument

registers and another pointer to the appropriate environment), and it immediately

starts executing r(X, Y). A second WAM, which is looking for jobs, picks s(X, Z)
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up, pushes an input marker into its stack (which references the parcall frame, where

data common to all the goals is stored, to be used in case of internal failure) and

constructs and starts executing the goal. Moreover, an end marker is pushed upon

completion.

When the last WAM finishes, it will link the markers (so as to proceed adequately on

backtracking and unwinding), and execution will proceed with the continuation of the

predicate pred(X, Y, Z).

One of the objectives of this thesis is to explore an alternative implementation

approach to the marker model, based on raising components to the source language

level and keeping at low level only a few selected operations, in order to provide a

solution easier to implement, maintain and extend.

Regarding the issue of related work that is closest to the one presented within

this thesis, some very early solutions to this problem (e.g., Conery’s [Con87] to name

one) were based on higher-level constructs, but they were not very efficient.

More recently, [MCN08] has proposed a set of high level multithreading primi-

tives. However, this work is somewhat different in objectives to that of this thesis,

concentrating more on providing the user with a flexible multithreading interface,

while the objective in this thesis focuses on developing directly and in a simple way

a correct and reasonably efficient full implementation of and-parallelism, including

the backtracking semantics. As a result, the high-level primitives implemented are

more special-purpose and tuned to this concrete objective. Also, performance is a

main issue.

Chapter 5 will present this high-level implementation of the execution model that

avoids all the modifications to the low-level compiler, and which allows at the same

time the execution of unrestricted independent and-parallel programs.
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2.6 Summary

Parallelism capabilities have become ubiquitous thanks to the wide availability of

multicore systems in the market at a reasonable price. However, the fact that paral-

lelizing programs is a difficult task has renewed the interest in the design and devel-

opment of support tools, of which parallelizing compilers are a noteworthy instance.

More in particular, programs written in functional or logic programming languages

can greatly simplify the parallelization process, due to the features of these languages,

and several other programming paradigms can benefit from the advances made and

the results obtained.

The following chapters will present the work performed on the design, develop-

ment, implementation and evaluation of automatic parallelization in multiparadigm

declarative languages based on a logic programming kernel.
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Chapter 3

Functions and Lazy Evaluation

Support to LP Kernels

This chapter presents the design for a syntactic functional extension, implemented

in the Ciao system [BCC+06], which can be implemented in ISO-standard Prolog

systems and covers function application, predefined evaluable functors, functional

definitions, quoting, and lazy evaluation. The extension is also composable with

higher-order features and can be combined with other extensions to ISO-Prolog,

such as constraints.

This chapter also highlights the features of the Ciao system which helped to

implement this syntactic extension of the language, and presents some performance

data on the memory and time overhead of using lazy evaluation with respect to eager

evaluation.
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3.1 Functional Notation in Ciao

This section presents the main components of the functional notation implemented

in Ciao.

3.1.1 Basic Concepts and Notation

The notion of functional notation for logic programming departs in a number of

ways from previous proposals. The fundamental one is that functional notation in

principle simply provides syntactic sugar for defining and using predicates as if they

were functions, but they can still retain the power of predicates. In this model, any

function definition is in fact defining a predicate, and any predicate can be used as a

function. The predicate associated with a function has the same name and one more

argument, meant as the place holder for the result of the function. This argument is

by default added to the right, i.e., it is the last argument, but this can be changed

by using a declaration.

The syntax extensions that have been implemented for functional notation are

the following:

Function applications: Any term preceded by the ~ operator is a function applica-

tion, as can be seen in the goal write(~arg(1,T)), which is strictly equivalent

to the sequence arg(1,T,A), write(A). To use a predicate argument other

than the last as the return argument, a declaration like:

:- fun_return functor(~,_,_).

can be used, so that ~functor(f,2) is evaluated to f(_,_) (where functor/3

is the standard ISO-Prolog builtin). This definition of the return argument

can also be done on the fly in each invocation as: ~functor(~,f,2). Functors
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can be declared as evaluable (i.e., being in calls in functional syntax) by using

the declaration fun_eval/1. This allows avoiding the need to use the ~ oper-

ator. Thus, “:- fun_eval arg/2.” allows writing write(arg(1,T)) instead

of write(~arg(1,T)) as above. This declaration can also be used to change

the default output argument: :- fun_eval functor(~,_,_).

Note that all these declarations, as is customary in Ciao, are local to the module

where they are included.

Predefined evaluable functors: In addition to functors declared with the decla-

ration fun_eval/1, several functors are evaluable, those being:

• The functors used for disjunctive and conditional expressions, (|)/2 and

(?)/2. A disjunctive expression has the form (V1|V2), and its value when

first evaluated is V1, and on backtracking V2. A conditional expression

has the form (Cond ? V1), or, more commonly, (Cond ? V1 | V2). If

the execution of Cond as a goal succeeds the return value is V1. Otherwise

in the first form it causes backtracking, and in the second form its value

is V2. Due to operator precedences, a nested expression

(Cond1 ? V1 | Cond2 ? V2 | V3)

is evaluated as (Cond1 ? V1 | (Cond2 ? V2 | V3)).

• If the declaration :- fun_eval arith(true) is used, all the functors un-

derstood by is/2 are considered evaluable (they will be translated to a

call to is/2). This is not active by default because several of those func-

tors, like (-)/2 or (/)/2, are traditionally used in Prolog for creating

structures. Using false instead of true the declaration can be disabled.

Functional definitions: A functional definition is composed of one or more func-

tional clauses. A functional clause is written using the binary operator :=, as

in opposite(red) := green.
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Functional clauses can also have a body, which is executed before the result

value is computed. It can serve as a guard for the clause or to provide the

equivalent of where-clauses in functional languages:

fact(0) := 1.

fact(N) := N * ~fact(--N) :- N > 0.

Note that guards can often be defined more compactly using conditional ex-

pressions:

fact(N) := N = 0 ? 1

| N > 0 ? N * ~fact(--N).

If the declaration :- fun_eval defined(true) is active, the function defined

in a functional clause does not need to be preceded by ~ (for example the

fact(--N) calls above). The translation of functional clauses has the following

properties:

• The translation produces steadfast predicates [O’K90], that is, output

arguments are unified after possible cuts.

• Defining recursive predicates in functional style maintains the tail recur-

sion of the original predicate, thus allowing the usual compiler optimiza-

tions.

Quoting functors: Functors (either in functional or predicate clauses) can be pre-

vented from being evaluated by using the (^)/1 prefix operator (it is read as

“quote”), as in pair(A,B) := ^(A-B). Note that this just prevents the evalu-

ation of the principal functor of the enclosed term, not the possible occurrences

of other evaluable functors inside.
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Scoping: When using function applications inside the goal arguments of meta-

predicates, there is an ambiguity as they could be evaluated either in the

scope of the outer execution or in the scope of the inner execution. The de-

fault behavior is to evaluate function applications in the scope of the outer

execution. If they should be evaluated in the inner scope the goal contain-

ing the function application needs to be escaped with the (^^)/1 prefix op-

erator, as in findall(X, (d(Y), ^^(X = ~f(Y)+1)), L) (which could also

be written as findall(X, ^^(d(Y), X = ~f(Y)+1), L)), and whose expan-

sion is findall(X, (d(Y),f(Y,Z),T is Z+1,X=T), L). With no escaping the

function application is evaluated in the scope of the outer execution, i.e.,

f(Y,Z), T is Z+1, findall(X, (d(Y),X=T), L).

Laziness: Lazy evaluation is a program evaluation technique used particularly in

functional languages. When using lazy evaluation, an expression is not eval-

uated as soon as it is assigned, but rather when the evaluator is forced to

produce the value of the expression. The when, freeze, or block control prim-

itives present in many modern logic programming systems are more powerful

operationally than lazy evaluation. However, they lack the simplicity of use

and cleaner semantics of functional lazy evaluation. In this design, a function

(or predicate) can be declared as lazy via the declarations:

:- lazy fun_eval function_name/N.

(or, equivalently in predicate version, “:- lazy pred_name/M.”, where M =

N + 1). In order to achieve the intended behavior, the execution of each

function declared as lazy is suspended until the return value of the function is

needed. Thus, lazy evaluation allows dealing with infinite data structures and

also evaluating function arguments only when needed.

Definition of real functions: In the previous scheme, functions are (at least by
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default) not forced to provide a single solution for their result, and, further-

more, they can be partial, producing a failure when no solution can be found. A

predicate defined as a function can be declared to behave as a real function us-

ing the declaration “:- funct name/N.”. Such predicates are then converted

automatically to real functions by adding pruning operators and a number of

Ciao assertions [PBH00] which pose (and check) additional restrictions such

as determinacy, modedness, etc., so that the semantics will be the same as in

traditional functional programming.

3.1.2 Examples

Several examples will illustrate now the use of the syntactic functionality introduced

above.

Example 5 The following example defines a simple unary function der(X) which

returns the derivative of a polynomial arithmetic expression:

der(x) := 1.

der(C) := 0 :- number(C).

der(A + B) := der(A) + der(B).

der(C * A) := C * der(A) :- number(C).

der(x ** N) := N * x ** ~(N - 1) :- integer(N), N > 0.

Note that if the directive mentioned is included before which makes arithmetic func-

tors the program would have had to be written in the following (clearly, less pleasant

and more obfuscated) way:

:- fun_eval(arith(true)).
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der(x) := 1.

der(C) := 0 :- number(C).

der(^(A + B)) := ^(der(A) + der(B)).

der(^(C * A)) := ^(C * der(A)) :- number(C).

der(^(x ** N)) := ^(N * ^(x ** (N - 1))) :- integer(N), N > 0.

Both of the previous code fragments translate to the following code:

der(x, 1).

der(C, 0) :-

number(C).

der(A + B, X + Y) :-

der(A, X),

der(B, Y).

der(C * A, C * X) :-

number(C),

der(A, X).

der(x ** N, N * x ** N1) :-

integer(N),

N > 0,

N1 is N - 1.

Note that in all cases the programmer may use der/2 as a function or as a predicate

indistinctly.

Example 6 Functional notation interacts well with other language extensions. For

example, it provides compact and familiar notation for regular types and other prop-

erties (assume fun_eval declarations for them):

color := red | blue | green.

list := [] | [_ | list].

list_of(T) := [] | [~T | list_of(T)].

which are equivalent to (note the use of higher-order in the third example):
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color(red).

color(blue).

color(green).

list([]).

list([_|T]) :- list(T).

list_of(_, []).

list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

Such types and properties are then admissible in Ciao-style assertions [PBH00], such

as the following, and which can be added to the corresponding definitions and checked

by the preprocessor or turned into run-time tests [HPBLG05]:

:- pred append/3 :: list * list * list.

:- pred color_value/2 :: list(color) * int.

Example 7 The combination of functional syntax and user-defined operators brings

significant flexibility, as can be seen in the following definition of a list concatenation

(append) operator, defined in an additional Ciao package, named functional:

:- op(600, xfy, (.)). :- op(650, xfy, (++)). :- fun_eval (++)/2.

[] ++ L := L.

X.Xs ++ L := X.(Xs ++ L).

This definition will be compiled exactly to the standard definition of append in Prolog

(and, thus, will be reversible). The functional syntax and user-defined operators allow
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writing for example: write("Hello" ++ Spc ++ "world!") instead of the equiv-

alent forms write( append("Hello", append(Spc, "world!"))) (if append/2

is defined as evaluable) or append(Spc, "world!", T1), append("Hello", T1,

T2), write(T2).

Example 8 As another example, an array indexing operator for multi-dimensional

arrays can be defined. Assume that arrays are built using nested structures whose

main functor is ’a’ and whose arities are determined by the specified dimensions, i.e.,

a two-dimensional array A of dimensions [N,M ] will be represented by the nested

structure a(a(A11,...,A1M), a(A21,..,A2M), ..., a(AN1,...,

ANM)), where A11,... ANM may be arbitrary terms.1 The following recursive

definition defines the property array/2 and also the array access operator @:

array([N],A) :-

functor(A,a,N).

array([N|Ms],A) :-

functor(A,a,N),

rows(N,Ms,A).

:- op(55, xfx, ’@’).

:- fun_eval (@)/2.

V@[I] := ~arg(I,V). %% Or: V@[] := V.

V@[I|Js] := ~arg(I,V)@Js.

rows(0,_,_).

rows(N,Ms,A) :-

N > 0,

arg(N,A,Arg),

array(Ms,Arg),

rows(N-1,Ms,A).

This allows writing, e.g., M = array([2,2]), M@[2,1] = 3 (which could also be

expressed as array([2,2])@[2,1] = 3), where the call to the array property gen-

1For simplicity, possible arity limitations are ignored, solved in any case typically by
further nesting with logarithmic access time (as in Warren/Pereira’s classical library).
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erates an empty 2×2 array M and M@[2,1] = 3 puts 3 in M [2, 1]. Another example

would be: A3@[N+1,M] = A1@[N-1,M] + A2@[N,M+2].

Example 9 As a simple example of the use of lazy evaluation consider the following

definition of a function which returns the (potentially) infinite list of integers starting

with a given one:

:- lazy fun_eval nums_from/1.

nums_from(X) := [ X | nums_from(X+1) ].

Ciao provides in its standard library the hiord package, which supports a form of

higher-order untyped logic programming with predicate abstractions [CH99a, Cab04,

CHL04]. Predicate abstractions are Ciao’s translation to logic programming of the

lambda expressions of functional programming: they define unnamed predicates

which will be ultimately executed by a higher-order call, unifying its arguments

appropriately.2 A function abstraction is provided as functional syntactic sugar for

predicate abstractions:

Predicate abstraction ⇒ Function abstraction

{’’(X,Y) :- p(X,Z), q(Z,Y)} ⇒ {’’(X) := ~q(~p(X))}

and the function application is simply defined as syntactic sugar over the predicate

application:

2A similar concept has been developed independently for Mercury, but their higher-order
predicate terms have to be moded.
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Predicate application ⇒ Function application

..., P(X,Y), ... ⇒ ..., Y = ~P(X), ...

The combination of this hiord package with the fsyntax and lazy packages

(and, optionally, the type inference and checking provided by the Ciao preproces-

sor [HPBLG05]) basically provide the functionality present in modern functional

languages, as well as some of the functionality of higher-order logic programming.

Example 10 This map example illustrates the combination of functional syntax and

higher-order logic programming:

:- fun_eval map/2.

map([], _) := [].

map([X|Xs], P) := [P(X) | map(Xs, P)].

With this definition, in the call: ["helloworld", "byeworld"] = map(["hello",

"bye"], ++(X))., where (++)/2 corresponds to the above definition of append, X

will be bound to "world", which is the only solution to the equation. Also, when

calling:

map(L, ++(X), ["hello.", "bye."]).

several values for L and X are returned through backtracking:

L = ["hello","bye"], X = "." ? ;

L = ["hello.","bye."], X = [] ?
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3.2 Implementation Details

As mentioned previously, certain Ciao features have simplified the proposed extension

to handle functional notation. In the following we introduce the features of Ciao that

were used and how they were applied in this particular application.

3.2.1 Code Translations in Ciao

Traditionally, Prolog systems have included the possibility of changing the syntax of

the source code through the use of the op/3 builtin/directive. Furthermore, in many

Prolog systems it is also possible to define expansions of the source code (essentially,

a very rich form of “macros”) by allowing the user to define (or extend) a predicate

typically called term expansion/2 [Qui86, CW94]. This is usually how, e.g., definite

clause grammars (DCG’s) are implemented.

However, these features, in their original form, pose many problems for modular

compilation or even for creating sensible standalone executables. First, the defini-

tions of the operators and, specially, expansions are often global, affecting a number

of files. Furthermore, it is not possible to determine statically which files are affected,

because these features are implemented as a side-effect, rather than a declaration:

they become active immediately after being read by the code processor (top-level,

compiler, etc.) and remain active from then on. As a result, it is impossible just by

looking at a source code file to know if it will be affected by expansions or definitions

of operators, which may completely change what the compiler really sees, since those

may be activated by the load of other, possibly unrelated, files.

In order to solve these problems, the syntactic extension facilities were redesigned

in Ciao, so that it is still possible to define source translations and operators, but
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such translations are local to the module or user file defining them [CH00]. Also,

these features are implemented in a way that has a well-defined behavior in the

context of a standalone compiler, separate compilation, and global analysis (and

this behavior is implemented in the Ciao compiler, ciaoc [CH99b]). In particular,

the load compilation module/1 directive allows separating code that will be used

at compilation time (e.g., the code used for program transformations) from code

which will be used at run-time. It loads the module defined by its argument into the

compiler.

In addition, in order to make the task of writing source translations easier, the

effects usually achieved through term expansion/2 can be obtained in Ciao by means

of four different, more specialized directives, which, again, affect only the current

module and are (by default) only active at compile-time.

The proposed functional syntax is implemented in Ciao using these source trans-

lations. In particular, add sentence trans/1 and add goal trans/1 directives have

been used. A sentence translation is a predicate which will be called by the com-

piler to possibly convert each term (clause, fact, directive, input, etc.) read by the

compiler to a new term, which will be used in place of the original term. A goal

translation is a predicate which will be called by the compiler to possibly convert

each goal present in each clause of the current text to another goal which replaces

the original one.

Furthermore, this model can be implemented in Prolog systems similarly using

the traditional term expansion/2 and operator declarations, but having operators

and syntactic transformation predicates local to modules is the key to making the

approach scalable and amenable to combination with other packages and syntactic

extensions in the same application.
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3.2.2 Ciao Packages

Packages in Ciao are libraries which define extensions to the language, and have

a well defined and repetitive structure. These libraries typically consist of a main

source file which defines only some declarations (operator declarations, declarations

loading other modules into the compiler or the module using the extension, etc.).

This file is meant to be included as part of the file using the library, since, be-

cause of their local effect, such directives must be part of the code of the module

which uses the library. Any auxiliary code needed at compile-time (e.g., transla-

tions) is included in a separate module which is to be loaded into the compiler via

a load compilation module/1 directive placed in the main file. Also, any auxiliary

code to be used at run-time is placed in another module, and the corresponding

use module declaration is also placed in the include file.

In this implementation of functional notation in Ciao, two packages have been

provided: one for the bare function features without lazy evaluation, and an addi-

tional one to provide the lazy evaluation features. The reason for this is that in many

cases the lazy evaluation features are not needed and thus the translation procedure

is simplified.

3.2.3 Implementation of Functional Extensions in Ciao

In order to perform a translation of the functional definitions, as mentioned above,

the add sentence trans/1 directive has been used, which provides a translation

procedure in order to transform each functional clause to a predicate clause, adding

to the function head the output argument, in order to convert it to the predicate head.

This translation procedure also deals with functional applications in heads, as well

as with fun eval directives. Furthermore, all function applications are translated
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into an internal normal form.

On the other hand, add goal trans/1 directive has been used to provide a trans-

lation procedure for dealing with function applications in bodies (which were previ-

ously translated into a normal form). The rationale for using a goal translation is

that each function application inside a goal will be replaced by a variable, and the

goal will be preceded by a call to the predicate which implements the function in

order to provide a value for that variable. A simple recursive application of this rule

achieves the desired effect.

An additional sentence translation is provided to handle the lazy directives.

The translation of a lazy function into a predicate is done in two steps. First, the

function is converted into a predicate using the procedure sketched above. Then,

the resulting predicate is transformed in order to suspend its execution until the

value of the output variable is needed. The transformation is explained in terms

of the freeze/1 control primitive that many modern logic programming systems

implement quite efficiently [Car87], since it is the most widespread (but obviously

when [Nai91] or, specially, the more efficient block [Car87] declarations can also be

used). This transformation renames the original predicate to an internal name and

add a bridge predicate with the original name which invokes the internal predicate

through a call to freeze/2, with the last argument (the output of the function) as

suspension variable. This will delay the execution of the internal predicate until its

result is required, which will be detected as a binding (i.e., demand) of its output

variable. The following section will provide a detailed example of the translation

of a lazy function. The implementation with block is even simpler since no bridge

predicate is needed.

As a reference, the main files that are part of the Ciao library packages fsyntax

are shown below:
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% fsyntax.pl

:- include(library(’fsyntax/ops’)). %% Operator definitions

:- load_compilation_module(library(’fsyntax/functionstr’)).

:- add_sentence_trans(defunc/3).

:- add_goal_trans(defunc_goal/3).

and lazy (which will usually be used in conjunction with the first one):

% lazy.pl

:- include(library(’lazy/ops’)). %% Operator definitions

:- use_module(library(freeze)).

:- load_compilation_module(library(’lazy/lazytr’)).

:- add_sentence_trans(lazy_sentence_translation/3).

These files will be included in any file that uses the package. The Ciao system source

provides the actual detailed code, which follows the our description.

3.2.4 Lazy Functions: an Example

In this section an example of the use of lazy evaluation is presented, which shows how

a lazy function is translated by the Ciao package. Figure 3.1 shows in the first row

the definition of a lazy function which returns the infinite list of Fibonacci numbers,

in the second row its translation into a lazy predicate3 (by the fsyntax package) and

in the third row the expansion of that predicate to emulate lazy evaluation (where

fiblist lazy$$$ stands for a fresh predicate name).

3The :- lazy fun eval fiblist/0. declaration is converted into a :- lazy
fiblist/1. declaration.

49



Chapter 3. Functions and Lazy Evaluation Support to LP Kernels

:- lazy fun_eval fiblist/0.
fiblist := [0, 1 | ~zipWith(+, FibL, ~tail(FibL))]

:- FibL = fiblist.

:- lazy fiblist/1.
fiblist([0, 1 | Rest]) :-

fiblist(FibL),
tail(FibL, T),
zipWith(+, FibL, T, Rest).

fiblist(X) :-
freeze(X, fiblist_lazy_$$$(X)).

fiblist_lazy_$$$([0, 1 | Rest]) :-
fiblist(FibL),
tail(FibL, T),
zipWith(+, FibL, T, Rest).

Figure 3.1: Code translation of a lazy Fibonacci function.

In the fiblist function defined, any element in the resulting infinite list of

Fibonacci numbers can be referenced, as, for example, nth(X, ~fiblist, Value).

The other functions used in the definition are tail/2, which is defined as lazy and

returns the tail of a list; zipWith/3, which is also defined as lazy and returns a

list whose elements are computed by a function having as arguments the successive

elements in the lists provided as second and third argument;4 and (+)/2 which is

defined as by the rule +(X, Y) := Z :- Z is X + Y.

Note that the zipWith/3 function (respectively the zipWith/4 predicate) is in

fact a higher-order function (resp. predicate).

4It has the same semantics as the zipWith function in Haskell.
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3.3 Related Work

With respect to the issue of the related work, Lambda Prolog [NM88] offers a highly

expressive language with extensive higher-order programming features and lambda-

term (pattern) unification. On the other hand it pays in performance the price of

being “higher order by default,” and is not backwards compatible with traditional

Prolog systems. It would be clearly interesting to support pattern unification, but it

can be proposed to do it as a further (and optional) extension, and some work is in

progress along these lines, but out of the scope of this thesis.

HiLog [CKW93] is a very interesting logic programming system (extending XSB-

Prolog) which allows using higher-order syntax, but it does not address the issue of

supporting functional syntax or laziness. Functional-logic systems such as Curry or

Babel [Han, MNRA89] perform a full integration of functional and logic program-

ming, with higher-order support. On the other hand, their design starts from a lazy

functional syntax and semantics, and is strongly typed. However, it may also be

interesting to explore supporting narrowing as another optional extension.

Mercury [SHC96] is a programming language which offers functional and higher-

order extensions based on Prolog-like syntax, but they are an integral part of the

language (as opposed to an optional extension) and, because of the need for type and

mode declarations, the design is less appropriate for non strongly-typed, unmoded

systems. As mentioned above, in the design type and mode declarations are optional

and handled separately through the assertion mechanism. Also, Mercury’s language

design includes a number restrictions with respect to Prolog-like systems which bring

a number of implementation simplifications. In particular, the modedness (no unifi-

cation) of Mercury programs brings them much closer to the functional case. As a

result of these restrictions, Mercury always performs the optimizations pointed out
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when discussing the funct declaration (or when that type of information is inferred

by CiaoPP). However, recent extensions to support constraints [BdlBM+06] recover

unification, including the related implementation overheads and mechanisms (such

as the trail), and will require analysis for optimization, moving Mercury arguably

closer to Ciao in design.

In the case of Oz [HF00], it also allows functional and (a restricted form of)

logic programming, and supports higher-order in an untyped setting, but its syntax

and semantics are quite different from those of logic programming systems. BIM

Prolog offered similar functionality to the ~/2 operator but, again, by default and

as a builtin.

3.4 Performance Measurements

Since the functional extensions proposed simply provide a syntactic bridge between

functions and predicates, there are only a limited number of performance issues worth

discussing. For the case of real functions, it is well known that performance gains

can be obtained from the knowledge that the corresponding predicate is moded (all

input arguments are ground and the “designated output” will be ground on output),

determinate, non-failing, etc. [Van94, MCH04]. In Ciao this information can in

general (i.e., for any predicate or function) be inferred by the Ciao preprocessor or

declared with Ciao assertions [HPBLG05, PBH00]. As mentioned before, for declared

“real” (func) functions, the corresponding information is added automatically. Some

preliminary results on current Ciao performance when this information is available

are presented in [MCH04].

In the case of functions that are evaluated lazily, the main goal of the technique

presented herein is not really any increase in performance, but achieving new func-
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:- fun_eval nat/1.

nat(N) :=

~take(N, nums_from(0)).

:- lazy fun_eval nums_from/1.

nums_from(X) :=

[X | nums_from(X+1)].

:- fun_eval nat/1.

:- fun_eval nats/2.

nat(X) := nats(0, X).

nats(X,Max) := X > Max ? []

| [X | nats(X+1,Max)].

Figure 3.2: Lazy and eager versions of nat function.

tionality and convenience through the use of code translations and delay declarations.

However, while there have also been some studies of the overhead introduced by de-

lay declarations and their optimization (see, e.g., [MdlBH94]), it is interesting to

see how this overhead affects the implementation of lazy evaluation by observing its

performance.

For instance, consider the nat/2 function in Figure 3.2, a simple function which

returns a list with the first N natural numbers from an (infinite) list of natural

numbers. Function take/2 in turn returns the list of the first N elements in the

input list. This nat(N) function cannot be directly executed eagerly due to the

infinite list provided by the nums from(X) function, so that, in order to compare

time and memory results between lazy and eager evaluation, an equivalent version

of that function is provided.

Table 3.1 reflects the time and memory overhead of the lazy evaluation version of

nat(X) and that of the equivalent version executed eagerly. As a further example,

Table 3.2 shows the results for a quicksort function executed lazily in comparison to

the eager version of this algorithm. All the results were obtained by averaging ten

runs on a medium-loaded Pentium IV Xeon 2.0Ghz, 4Gb of RAM memory, running
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Lazy Evaluation Eager Evaluation
List Time Heap Time Heap

10 elements 0.030 1503.2 0.002 491.2
100 elements 0.276 10863.2 0.016 1211.2
1,000 elements 3.584 104463.0 0.149 8411.2
2,000 elements 6.105 208463.2 0.297 16411.2
5,000 elements 17.836 520463.0 0.749 40411.2
10,000 elements 33.698 1040463.0 1.277 80411.2

Table 3.1: Performance results for function nat/2 (time in ms. and heap sizes in
bytes).

Lazy Evaluation Eager Evaluation
List Time Heap Time Heap

10 elements 0.091 3680.0 0.032 1640.0
100 elements 0.946 37420.0 0.322 17090.0
1,000 elements 13.303 459420.0 5.032 253330.0
5,000 elements 58.369 2525990.0 31.291 1600530.0
15,000 elements 229.756 8273340.0 107.193 5436780.0
20,000 elements 311.833 11344800.0 146.160 7395100.0

Table 3.2: Performance results for function qsort/2 (time in ms. and heap sizes in
bytes).

Fedora Core 2.0, with the simple translation of Figure 3.1, and compiled to traditional

bytecode (no global optimizations or native code).

It is observable in both tables that there is certainly an impact on the execution

time when functions are evaluated lazily, but even with this version the results are

quite acceptable if it is taken into account that the execution of the predicate does

really suspend.

Related to memory consumption, heap sizes are shown, without garbage collection

(in order to observe the raw memory consumption rate). Lazy evaluation implies as
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:- module(module1, [test/1], [fsyntax, lazy, hiord, actmods]).
:- use_module(library(’actmods/webbased_locate’)).
:- use_active_module(module2, [squares/2]).

:- fun_eval takeWhile/2.
takeWhile(P, [H|T]) := P(H) ? [H | takeWhile(P, T)]

| [].
:- fun_eval test/0.
test := takeWhile(condition, squares).
condition(X) :- X < 10000.

:- module(module2, [squares/1], [fsyntax, lazy, hiord]).

:- lazy fun_eval squares/0.
:- fun_eval square/1.
:- lazy fun_eval nums_from/1.
squares := map_lazy(take(1000000, nums_from(0)), square).
square(X) := X * X.
nums_from(X) := [X | nums_from(X+1)].

:- lazy fun_eval map_lazy/2.
map_lazy([], _) := [].
map_lazy([X|Xs], P) := [~P(X) | map_lazy(Xs, P)].

:- fun_eval take/2.
take(0, _) := [].
take(X, [H|T]) := [H | take(X-1, T)] :- X > 0.

Figure 3.3: A distributed (active module) application using lazy evaluation.

expected some memory overhead due to the need to copy (freeze) program goals into

the heap.

Also, while comparing with standard lazy functional programming implemen-

tations is beyond the scope of this thesis, some simple tests done for sanity check

purposes (with HUGS) show that the results are comparable, the implementation be-

ing for example slower on nat but faster on qsort, presumably due to the different

optimizations being performed by the compilers.
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An example when lazy evaluation can be a better option than eager evaluation

in terms of performance (and not only convenience) can be found in a concurrent or

distributed system environment (such as, e.g., [CH02]), and in the case of Ciao also

within the active modules framework [BCC+06, CH95].

The example in Figure 3.3 uses a function, defined in an active module, which

returns a big amount of data. Function test/0 in module module1 needs to execute

function squares/1, in (active, i.e., remote) module module2, which will return a

very long list (which could be infinite). If squares/1 were executed eagerly then

the entire list would be returned, to immediately execute the takeWhile/2 function

with the entire list. takeWhile/2 returns the first elements of a (possibly infinite)

list while the specified condition is true.

However, creating the entire initial list is very wasteful in terms of time and

memory requirements. In order to solve this problem, the squares/1 function could

be moved to module module1 and be merged with the takeWhile/2 function (or,

also, they could exchange a size parameter). However, rearranging the program is

not always possible and it may also perhaps complicate other aspects of the overall

design.

If, on the other hand, the squares/1 function is evaluated lazily, it is possible

to keep the definitions unchanged and in different modules, so that there will be a

smaller time and memory penalty for generating and storing the intermediate result.

As more values are needed by the takeWhile/2 function, more values in the list

returned by the squares/1 function are built (in this example, only while the new

generated value is less than 10, 000), considerably reducing the time and memory

consumption.
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3.5 Summary

We have presented a syntactic approach to allow the usage of functions in a logic

programming kernel. This proposal and its implementation offer a combination of

features which make it interesting in itself. More concretely, functions can be limited

or retain the power of predicates, any predicate can be called through functional

syntax, and lazy evaluation is supported both for functions and predicates. Further-

more, the functional syntax can be combined with numerous syntactic and semantic

extensions such as higher-order, assertions, records, constraints, objects, persistence,

other control rules, etc., without any modification to the compiler or abstract ma-

chine. This extension to the language has been implemented in the Ciao system.
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Chapter 4

Annotation Algorithms for

Unrestricted IAP

This chapter provides and evaluates two different algorithms for the annotation pro-

cess of unrestricted independent and-parallelism. The first algorithm does not need

to preserve the order of the solutions with respect to the sequential program, and

the second algorithm must respect this order. Also, the total correctness of both

algorithms will be proved. Additionally, these annotation algorithms will make use

of determinacy information in order to obtain better performance results.

4.1 Motivation and Related Work

This section presents a comparison between restricted and unrestricted paralleliza-

tion, showing how the unrestricted parallelization solves the limitation of the re-

stricted one.
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4.1.1 Fork-Join-Style Parallelization

In order to show the limitations of the fork-join operator &/2, consider the clause for

p/1 in Figure 4.1(a) and the parallelization depicted in Figure 4.2(b). The parallel

fork-join operator &/2 binds more tightly than the comma. Thus, the expression

“a(X,Z) & b(X), c(Y) & d(Y,Z)” means that literals a/2 and b/1 can be safely

executed in parallel. Execution can continue only when both a/2 and b/1 have

successfully finished. At that point c/1 and d/2 can start parallel execution.

As mentioned in Chapter 2, whether two goals can in fact be parallelized depends

on whether they are independent, under some notion of independence. As also

mentioned previously, it will be assumed that this information is obtained from local

and global data-flow analysis. For the sake of simplicity, it will also be assumed in

the rest of the chapter that all the dependencies are unconditional —i.e., conditional

dependencies are assumed to be always false, reducing the use of run-time checks

(and if-then-else constructions), which, as also mentioned before, is a reasonable

compromise between parallelism and run-time overhead. For this example, assume

that the dependencies detected between the literals in predicate p/3 are dep(a,b),

dep(a,d), dep(c,d), where dep(X,Y) denotes that Y depends on (and therefore must

be executed before) X. The resulting conditional dependency graph for predicate

p/3 is shown in Figure 4.1(b). In such a graph the vertices V correspond to the

literals of the clause and there exists an edge between two literals Li and Lj in E if

ind(Li, Lj) 6= true (i.e., dep(Li, Lj) = true, and thus literal Li has to be completed

before literal Lj), where ind is the notion of independence. This approach is thus

parametric on the notion of independence.

Given such a graph, several annotations are possible. As an example, Figure 4.2

shows two of the possible annotations for the running example. There are actually

other possible parallelizations, as for instance p :- a(X, Z), b(X) & c(Y), d(Y,
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p(X,Y,Z) :-

a(X,Z),

b(X),

c(Y),

d(Y,Z).

b(X)

c(Y) d(Y,Z)

a(X,Z)

(a) Predicate p/3. (b) Dependency graph.

Figure 4.1: Predicate p/3 and its associated dependency graph.

p(X, Y, Z):-

(a(X, Z), b(X)) & c(Y),

d(Y, Z).

(a) fj1 : Order-preserving

p(X, Y, Z):-

a(X, Z) & c(Y),

b(X) & d(Y, Z).

(b) fj2 : Non-order-preserving

Figure 4.2: Fork-join annotations for predicate p/3.

Z), which has been left out of Figure 4.2 for brevity (and because they do not

add anything to the discussion since they do not change the comparisons made

in Section 4.1.2). Some goals appear switched with respect to their order in the

sequential clause. This respects the dependencies in Figure 4.1(b), which reflects

a valid notion of parallelism (i.e., if solution order is not important). If additional

ordering requirements are needed (due to, e.g., side effects or impurity), these can

be included as additional edges in the graph.

It is possible in some cases to statically decide (or, at least, approximate) whether

some annotation is better than some other, for example by using the number of goals

annotated for parallelism in a clause or, more interestingly, by using information re-

garding the expected runtime of goals (see, e.g., [DLH90, DL91, DL93, DLGHL94,

LGHD96, DLGHL97, DLGH97, MLGCH08] and their references). However, even if

the actual costs are known, finding an optimal scheduling solution is a computation-

ally expensive combinatorial problem [MBdlBH99] and, in practice, since there are
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many decisions to make which multiply the number of possible annotations, annota-

tors use heuristics which may be more or less appropriate in concrete cases. Thus,

these heuristics are part of the important differences between annotators.

For example, consider the annotations in Figure 4.2. First, it should be noted

that none of these annotations (or, in fact, any of the other possible alternatives using

&/2), fully exploit all the parallelism available in Figure 4.1(b): Figure 4.2(a) misses

the possible parallelism between literals b/1 and d/2, while Figure 4.2(b) misses the

parallelism between literals b/1 and c/1. As for which of these two parallelizations is

better, a clearly meaningful measure of their quality is how long each of them takes

to execute. These times will be termed Tfj1 and Tfj2, for Figures 4.2(a) and 4.2(b),

respectively. This length depends on the execution times of the goals involved (i.e.,

Ta, Tb, Tc, Td), which are assumed to be non-zero. Tfj1 and Tfj2 are:

Tfj1 = max(Ta + Tb, Tc) + Td (4.1)

Tfj2 = max(Ta, Tc) + max(Tb, Td) (4.2)

Comparing the quality of the annotations in Figure 4.2(a) and Figure 4.2(b) boils

down to finding out whether it is possible to show that Tfj1 < Tfj2 or the other way

around.

It turns out that these execution time expressions are non-comparable, since there

are solutions for both orderings, so none of them is definitely better than the other

one:

• Tfj1 < Tfj2 holds if, for example, Ta+Tb < Tc, Td < Tb, and then Tfj2 = Tb+Tc,

Tfj1 = Td + Tc, and

• Tfj2 < Tfj1 holds if, for example, Tc ≤ Ta, Td ≤ Tb, and then Tfj1 = Ta+Tb+Td,
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Tfj2 = Ta + Tb.

While it is not possible to show that one of these two annotations is better in

general than the other, the reasoning used will be instrumental to show that the an-

notations proposed in Section 4.1.2 are better than any of those possible with the &/2

fork-join operator. It is well-known that the class of graphs the fork-join operator can

express directly (i.e., dependency graphs with a nested fork-join structure) is a subset

of that which can possibly be generated from programs [MBdlBH99]. This makes par-

allelism opportunities to be inevitably lost in cases with a complex enough structure

(and that one in Figure 4.1(b) is an example). Furthermore, inter-procedural paral-

lelism (i.e., parallel conjunctions which span literals in different predicates) cannot

be exploited easily with the &/2 operator without complex program transformations.

4.1.2 Parallelization with Finer Goal-Level Operators

Two motivations justify the use of these operators instead of the restricted operator

&/2:

• Their implementation is easier to devise and maintain than the monolithic

&/2 [CCH08b].

• The operators &>/2 and <&/1 allow more freedom to the annotator (and to the

programmer, if parallel code is written by hand) to express data dependencies

and, therefore, to extract more potential parallelism.

This last point will be now illustrated in this chapter, since the former will be

addressed in Chapter 5. Note that the &>/2 and <&/1 operators do not replace the
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fork-join operator &/2 at the language level due to its conciseness in cases in which

no extra parallelism can be exploited with &>/2 and <&/1.

Figure 4.3 shows an annotation of the running example using the unrestricted

operators. Note that this code allows executing in parallel a/2 with c/1, b/1 with

c/1, and b/1 with d/2. As in Equations (4.1) and (4.2), the execution time of p/3 is

based on that of the goals in its body and can be worked out as shown in Figure 4.4.

In that figure, the clause goals appear at the left and the time needed to execute up

to just after each of these body goals appears at the right. Time is relative to that

of the neck traversal. Tn (with n ∈ {a, b, c, d}) denotes the execution time of the

respective goals. The primitives &>/2 and <&/1 are, for simplicity, assumed to take

no time. Then, T7, the total time taken by the clause, can be solved as a function of

the length of the goals:

T7 = max(T6, T3 + Tb)

= max(T5 + Td, T2 + Ta + Tb)

= max(max(T4, T1 + Tc) + Td, Ta + Tb)

= max(max(Ta, Tc) + Td, Ta + Tb)

Thus, the execution time of p/3 is:

Tdep = max(max(Ta, Tc) + Td, Ta + Tb) (4.3)

While Equations (4.1) and (4.2) were incomparable, an analysis of Equation (4.3)

compared with these two other equations shows that:1

1The details of the analysis are not shown here. However, it is trivial to perform using
a CLP system, as shown in Appendix A.
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p(X, Y, Z) :-

c(Y) &> Hc,

a(X, Z),

b(X) &> Hb,

Hc <&,

d(Y, Z),

Hb <&.

Figure 4.3: Unrestrictedly annotated clause of predicate p/3.

• Tdep < Tfj1 holds if, for example, Tc ≤ Ta, and then Tdep = max(Ta+Tb, Ta+Td),

Tfj1 = Ta + Tb + Td.

• Tdep < Tfj2 holds if, for example, Ta < Tc, Tc + Td ≤ Ta + Tb, and then

Tdep = Ta + Tb, Tfj2 > Ta + Tb.

• Tdep = Tfj1 holds if, for example, Tb < Tc, Ta + Tb = Tc, and then Tdep =

Tc + Td = Tfj1.

• Tdep = Tfj2 holds if, for example, Td ≤ Tb, Tc ≤ Ta, and then Tdep = Ta + Tb =

Tfj2.

Additionally, there is no case in which Tdep > Tfj1 or Tdep > Tfj2. Therefore, the

annotations in Figure 4.2 (and, in fact, any other possible annotation for this clause

using &>/2) are, with the aforementioned assumptions regarding the execution time

of &>/2, <&/1, and &/2, worse than the annotation in Figure 4.3. The non-fork-join

annotation is, therefore, a better option than any of the other fork-join annotations.

In addition to the basic unrestricted operators, other specialized versions can

be defined and implemented in order to increase performance by adapting better

to some particular cases. For example, it appears interesting to introduce variants

for the very relevant and frequent case of deterministic goals, in which backward
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p(X, Y, Z):-

T1 = 0
c(Y) &> Hc,

T2 = T1

a(X, Z),

T3 = T2 + Ta

b(X) &> Hb,

T4 = T3

Hc <&,

T5 = max(T4, T1 + Tc)
d(Y, Z),

T6 = T5 + Td

Hb <&.

T7 = max(T6, T3 + Tb)

Figure 4.4: Deduction of execution time for unrestricted parallelization of predicate
p/3.

execution does not need to be performed —and, therefore, forward execution does

not need to be prepared for backtracking. For this purpose, two additional operators

are proposed: &!>/2 and <&!/1, which incur the overhead of having to prepare the

execution data structures to cope with the possibility of backtracking. This has

previously been shown to result in a significant efficiency increase in the underlying

machinery [Her86, PGT+96].

4.2 The UUDG and UOUDG Algorithms

This section will present two concrete algorithms which generate code annotated for

unrestricted independent and-parallelism (as in Figure 4.3) starting from sequential

code. The proposed algorithms process one clause at a time and work on a directed

acyclic dependency graph, where nodes are, in general, associated with a sequence
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of clause body goals, to be sequentially executed.2 It is required that literals which

are lexically identical to be distinguished by, e.g., attaching a unique identifier to

them. This is necessary in order not to lose information when building sets of nodes,

needed for the algorithms which will be presented later.

The idea behind these algorithms is to publish (i.e., to make available) goals for

parallel execution as soon as possible and to delay “importing” their bindings (i.e.,

issuing joins) as much as possible —but always respecting the dependencies in the

graph (as in Figure 4.1(b)). Intuitively, this should maximize the number of goals

available for parallel execution, and preserve the order of the solutions, if required.

The external interface of the annotation process is shown in the algorithm in

Figure 4.5. The first argument is the dependency graph associated to the clause to

be parallelized. The second argument corresponds to a boolean which determines

whether an order-preserving annotation is to be performed or not, and which is used

to decide which procedure (i.e., which of the algorithms Figures 4.6 and 4.9) should

be called. The last argument contains determinacy information on the clause literals,

needed to reorganize body goals (if this is the selected option) or, in any case, to

generate deterministic parallel annotations.

Note that, as mentioned in Section 4.1.1, only unconditional parallelism will be

considered, for simplicity and also because, as mentioned before, it has shown to

be a good compromise and effective as a default strategy in practice. However, the

algorithms can be easily adapted to deal with conditional parallelism without too

much effort.

In what follows, the dependency graph G will be denoted as the pair G = (V,E)

where V is the set of vertices or nodes, and E is the set of edges. G|U will denote

2As we will see later, it is possible to group goals in the output parallelized clause in
order to optimize execution time.
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the subgraph (U,E|U) of G where E|U ∈ E has only the edges in E connecting those

nodes in U . Set difference is defined as usual as A \ B = {x | x ∈ A, x /∈ B}.

The relation (x ; y)E expresses that there is a path from x to y using edges in E.

incoming(v, E) = {u | (u, v) ∈ E} denotes the set of nodes which are connected to

some particular node v. The function min card(S) = mins∈S |s| returns the size of

the smallest set in the set of sets S.

In order to keep track of the order of the solutions, it is assumed that there exists

a relation ≺ on the literals Li of the body of every clause H :- L1, L2, . . . , Lk−1, Lk

such that Li ≺ Lj if and only if i < j. Additionally, it is assumed that there exists

a partial function pred(L) which is defined as pred(Li+1) = Li, i.e., it returns the

literal at the left of some other literal in a clause.

It is also assumed that ≺ and pred(L) are suitably extended, in the straight-

forward way, to the nodes of the dependency graph (recall that nodes can have

associated sequences of adjacent literals in the original clause). Note also that graph

edges must respect the ≺ relation: (u, v) ∈ E ⇒ u ≺ v, since the graph would have

been incorrectly generated otherwise.

Both algorithms use the function get literals(v), which returns the set of

literals of the original clause associated to the node v. The input dependency

graph G = (V,E) used as input in Algorithm 4.5 is initially built so that ∀vi ∈

V, get literals(vi) = {Li}. In addition, set literals(u, S) associates to the

node u ∈ V the set of literals which are associated to the nodes in S, i.e., after

set literals(u, S) the value returned by get literals(u) is
⋃
v∈S

get literals(v).
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Algorithm: UnrestrictedAnnotation(G, order, ID)
Input: (1) A directed acyclic dependency graph G = (V,E).

(2) The boolean value order.
(3) Determinacy information ID for the literals of the clause.

Output: A clause annotated for unrestricted independent and-parallel execution.
begin

if order then
Exp← UOUDG(G, ID);

else
Exp← UUDG(G, ID);

end
return Exp

end

Figure 4.5: Entry point to the annotation algorithms.

4.2.1 Non Order-Preserving Annotation: the UUDG Algo-

rithm

Figure 4.6 presents an algorithm that parallelizes a clause, represented as an (acyclic)

directed dependency graph.

At every iteration step, new nodes in the graph are selected to be published, joined

or executed sequentially. Subsequent iterations proceed with a simplified graph in

which the literals which have been joined or executed sequentially, together with

their outgoing edges, have been removed. The set of goals which have already been

published is kept in a separate parameter in order not to schedule goals for parallel

execution more than once.

In order to not lose parallelism, sequences of goals which have to be necessarily

run sequentially are collapsed in a single node at the beginning of each iteration.

These sequences are characterized because there exists a path from every node in

the sequence to some successor literal in the clause and there are no incoming edges
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Algorithm: UUDG(Gi, ID)
Input: (1) A directed acyclic graph Gi = (Vi, Ei).

(2) Determinacy information.
Output: A parallelized clause exprGi

.
begin

exprGi
← (true);

Pub ← ∅;
G = (V,E)← Gi;
while V 6= ∅ do

G← group nonord(G, Pub); Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {Iv | v ∈ V, Iv = incoming(v, E), Iv 6= ∅, Iv ⊆ Indep};
if Dep = ∅ then
SS ← ∅;
Join ← V ;

else
SS ← {I | I ∈ Dep, |I| = min card(Dep)};
Join ← s s.t. s ∈ SS; /* s any element from SS */

end
if (Join ∩ (Indep \ Pub)) = ∅ then

Seq ← ∅;
else
Seq ← {v} s.t. v ∈ (Join ∩ (Indep \ Pub)); /* v any element */

end
Fork ← Indep \ (Pub ∪ Seq);
Join ← Join \ Seq ;

Pub ← Pub ∪ (
⋃

v∈Fork

get literals(v)) ∪ get literals(u) s.t. u ∈ Seq ;

G← G|(V \Join)\Seq;
exprGi

← (exprGi
, gen body nonord(Fork, Seq, Join, ID));

end
return exprGi

;
end

Figure 4.6: UUDG annotation algorithm.

starting in a node outside the sequence. The intuition behind this is to detect when

the sequence as a whole can be started as a compound parallel goal. This is performed

by running the function group nonord(G,P ), shown in Figure 4.7.
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Two sets are key in each iteration:

Indep, which contains the sources (i.e., all vertices without incoming edges in the

current graph, which can therefore be published), and

Dep, which contains sets of vertices Iv ⊆ Indep s.t. for each non-source v which can

only be reached from sources, Iv is the set of sources on which the literals in

v depend. I.e., Iv is the set of vertices to be joined before the literals in v can

start.

If there are no sets of vertices in Dep, then all the sequences of literals that

remain in the graph are independent, and thus they can all be published and joined

up. Otherwise, a set of nodes needs to be chosen from Dep in order to wait for the

result of their associated literals to be ready. The choice within that set is made by

selecting, among the sets of goals which can be joined at every moment, the one with

the lowest cardinality (using min card(S)), thus postponing the rest of the joins as

much as possible, in order to exploit more parallelism.

Note that a random selection from a set is made at two different points (marked

with comments stating ... any element...). Data regarding, e.g., the relative

expected run-time of goals would allow us to take a more informed decision and

therefore to precompute a perhaps better scheduling. Since this information is not

used here, any available goal to join / execute sequentially is just selected.

It is possible for a literal to be scheduled to be forked and then immediately joined.

In order to detect these situations, which in practice would cause an unnecessary

overhead, literals (in Seq, only one at a time) to which this applies are detected, and

they are not taken into account for the set of Forked nodes and they are removed

from the set of the Joined nodes. Other literals in the same situation will eventually

be selected in subsequent iterations.
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Algorithm: group nonord(G, Pub)
Input: (1) A nonempty directed acyclic graph G = (V,E).

(2) A set of goals already forked.
Output: A compacted directed acyclic graph
begin

forall v ∈ V s.t. get literals(v) 6⊆ Pub and incoming(v, E) = ∅ do
NewV ← {v};
DS ← {u | u ∈ V, u /∈ NewV , w ∈ NewV , (w, u) ∈ E};
while DS 6= ∅ do

NewV’ ← NewV ∪ DS ;
if (∀{vi, vj} ⊆ NewV ′, (vi ; vj)E ∨ (vj ; vi)E) and

(∀e = (vk, vl) ∈ E, vk /∈ NewV ′ ⇒ vl /∈ NewV ′) then
NewV ← NewV’ ;

else
break;

DS ← {u | u ∈ V, u /∈ NewV , w ∈ NewV , (w, u) ∈ E};
end
set literals(v, NewV );
G← G|(V \(NewV \{v}));

end
return G;

end

Figure 4.7: Nonorder-preserving grouping of nodes.

The UUDG algorithm then continues outputting a parallel expression generated

by the function gen body nonord(F, S, J, ID), shown in Figure 4.8, composed with

the parallelization of a simplified graph, generated by an iterative call. It makes

use of the definition seq(S), which sequentializes the literals in the set S preserving

their order in the original clause. Those literals associated to the node in Seq, if any,

are annotated after all literals in Fork have been published for parallel execution, in

order to exploit all the detected parallelism.

The function gen body nonord(F, S, J, ID) makes use of determinism informa-

tion, provided by the auxiliary predicate det(n, ID), which is true when the literals
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associated to a particular node n of the graph are deterministic or not, as follows:

• When the literals are known to have exactly one solution, the specialized ver-

sions of the unrestricted operators, &!>/2 and <&!/1 which do not perform

bookkeeping for backtracking (always complex in parallel implementations),

can be used and are thus more efficient.

• Additionally, since it is possible to switch goals around, deterministic goals will

be forked first in order to try to minimize relaunching goals which are likely to

be executed in parallel.

Example 11 This example will show how having determinism information can help

in achieving a better parallelization. Suppose the following predicate p/4:

p(A,B,C,D) :- a(A), b(B), c(C), d(D).

where literals a/1 and d/1 are deterministic and literals b/1 and c/1 are nondeter-

ministic. Let us assume that these four literals are independent. Then, the paral-

lelization obtained by the UUDG algorithm is:

p(A,B,C,D) :-

a(A) &!> Ha, d(D) &!> Hd, b(B) &> Hb,

c(C),

Ha <&!, Hd <&!, Hb <&.

Thus, the solutions of literal b/1 will not need to be recomputed each time a previous

parallel goal returns a new solution, since literals a/1 and d/1 are deterministic, i.e.,

only one solution will be obtained.

73



Chapter 4. Annotation Algorithms for Unrestricted IAP

Algorithm: gen body nonord(Fork, Seq, Join, ID)
Input: (1) A set of vertices to be forked.

(2) A set of vertices to be sequentialized.
(3) A set of vertices to be joined.
(4) Determinacy information.

Output: A parallelized sequence of literals Exp.
begin

Exp ← (true);
ForkDet ← {n | n ∈ Fork , det(n, ID)}; ForkNonDet ← Fork \ ForkDet ;
JoinDet ← {n | n ∈ Join, det(n, ID)}; JoinNonDet ← Join \ JoinDet ;
forall vi ∈ ForkDet do

Exp ← (Exp, seq(get literals(vi)) &!> Hvi
);

end
forall vi ∈ ForkNonDet do

Exp ← (Exp, seq(get literals(vi)) &> Hvi
);

end
if Seq = {v} then

Exp ← (Exp, seq(get literals(v)));
end
forall vi ∈ JoinDet do

Exp ← (Exp, Hvi
<&!);

end
forall vi ∈ JoinNonDet do

Exp ← (Exp, Hvi
<&);

end
return Exp;

end

Figure 4.8: Nonorder-preserving generation of a parallel body.

Determinism information can often be automatically inferred by tools such as the

abstract interpretation-based determinism analyzer included in CiaoPP [LGBH05],

and can be provided as input to the annotators presented in this chapter. This in-

formation can alternatively be stated by the programmer via assertions [HPBLG05].
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4.2.2 Correctness Proof of the UUDG Algorithm

This section presents the total correctness proof of the UUDG algorithm. The total

correctness of the group nonord(G,P ) function will be proved first.

Lemma 1 Assume a non-empty graph G = (V,E) and a particular set of nodes

NewV ⊆ V obtained by the function group nonord. Then, no parallelism is lost

when the nodes in NewV are grouped into the source v ∈ NewV .

Proof 1 Let us prove this by induction on V .

• Base case: if |V | = 1 then E = ∅ and trivially no parallelism can be lost. Note

that V 6= ∅ because of the precondition in function group nonord.

• Induction hypothesis: assume that nodes in NewV are mutually dependent.

• Inductive step: let us prove this by contradiction. Assume that some new nodes

in DS are added to NewV . Then, there are three cases in which parallelism

may be lost:

1. If NewV contains now two sources u,w, which would then not be candi-

dates to be independently scheduled for parallel execution. However, this

is not possible because of the definition of DS.

2. Assume that ∃u,w ∈ NewV s.t. (u 6; w)E ∧ (w 6; u)E —i.e., two nodes

in the newly grouped set are independent. Then the possible parallelism

between u and w will be lost. However, because of the first condition in

the if-structure, x ∈ NewV if ∀{x, y} ⊆ NewV, (x ; y)E ∨ (y ; x)E,

which means that @{x, y} ∈ NewV s.t. (x 6; y)E ∧ (y 6; x)E, and that

leads to a contradiction.
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3. Assume that ∃u ∈ NewV , ∃w /∈ NewV s.t. ∃(w, u) ∈ E ∨ ∃(u,w) ∈ E.

Then the possible parallelism between w and the nodes vi ∈ NewV s.t.

(w 6; vi)E ∧ (vi 6; w)E will be lost. If @vi ∈ NewV s.t. (w 6;

vi)E ∧ (vi 6; w)E then, because of the first condition in the if-structure,

w ∈ NewV and that leads to a contradiction. Otherwise,

(a) If (w, u) ∈ E then, because of the second condition in the if-structure,

u 6∈ NewV , which leads to a contradiction.

(b) If (u,w) ∈ E then ∃(u, vi) ∈ E s.t. (w 6; vi)E ∧ (vi 6; w)E.

Because of the first condition in the if-structure, since w /∈ NewV

then vi /∈ NewV , and that leads to a contradiction.

Thus no parallelism is lost.

Lemma 2 (Partial Correctness of Algorithm 4.7) The function group nonord,

when called with input graph G = (V,E) and with output graph Gf = (Vf , Ef ), is

partially correct with respect to the precondition {|V | > 0} and the postcondition

{P1;P2;P3}, where:

1. P1 ≡
⋃

v∈Vf

get literals(v) = V .

2. P2 ≡
⋂

v∈Vf

get literals(v) = ∅.

3. P3 ≡ no parallelism is lost when constructing Gf .

Proof 2 Starting with values that make the precondition true, for each source v ∈ G

which has not been published yet, Lemma 1 ensures that no parallelism is lost for any

of the groups of literals created, and therefore no parallelism is lost when building

Gf (property P3). Moreover, only nodes that have been grouped into a source are
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removed from the graph, and thus no nodes are missing in Gf . In addition, G is

simplified in each iteration, so there will be no repeated nodes in Gf . Therefore, the

postcondition is true and thus the function group nonord is partially correct.

Lemma 3 (Termination of Algorithm 4.7) The function group nonord termi-

nates.

Proof 3 For the inner loop, the set of natural numbers IN is chosen as set with

strict well-founded ordering <. Let |V \ NewV | be the termination expression. By

definition, |V \ NewV | ∈ IN . |V \ NewV | reduces its value in each iteration with

respect to < if NewV 6= ∅, so NewV ′ 6= ∅, and then DS 6= ∅, which is the exit

condition of the loop. Since the outer loop simply consists of a single execution of

the inner loop over each element of a finite set, the algorithm terminates.

Theorem 1 (Total Correctness of Algorithm 4.7) The function group nonord

is totally correct.

Proof 4 Lemma 2 states that the function group nonord is partially correct, and

Lemma 3 states that it terminates, so the function group nonord is totally correct.

Before proceeding with the total correctness proof of the UUDG algorithm, the

equivalence class of graphs with respect to transitive edges will be introduced:

Definition 8 (Equivalence class of graphs w.r.t. ≡t) Let G1 = (V1, E1) and

G2 = (V2, E2) be two different dependency graphs. Then, G1 ≡t G2 ⇔ (V1 =

V2) ∧ (∀e = (a, b) ∈ E1, e /∈ E2 ⇒ (a ; b)E2). I.e., direct dependencies in one of

the graph appear in the other one too, but maybe traversing several edges.
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Lemma 4 In any iteration of the UUDG algorithm over a graph G = (V,E), Fork,

Seq and Join are composed only by sources.

Proof 5 1. Join = V if E = ∅, or that Join ∈ Dep. In this case, ∀S ∈ Dep, S ⊆

Indep, then Join ⊆ Indep. Since Indep is composed only by sources then Join

is so as well.

2. Seq = ∅, or that Seq = {v} s.t. v ∈ (Join ∩ (Indep \ Pub)) ⊆ Join. Because

of the result above, Join ⊆ Indep and thus Seq is composed only by sources.

3. Fork = (Indep \ (Pub ∪ Seq)) ⊆ Indep, and thus the set Fork is composed

only by sources.

Lemma 5 G1 = (V1, E1) ≡t G2 = (V2, E2) ⇒ UUDG(G1) = UUDG(G2).

Proof 6 Proof by contradiction. Assume that UUDG(G1) 6= UUDG(G2) when G1 ≡t

G2. Then exprG1
6= exprG2

, which means that exprG1
= (t1exprG1

, . . . , tmexprG1
), m ≥

1, and exprG2
= (t1exprG2

, . . . , tnexprG2
), n ≥ 1, and ∃i s.t. tiexprG1

6= tiexprG2
. Thus,

for a particular iteration in UUDG(G1), either Fork, Seq or Join differs from the

respective one in the same iteration of UUDG(G2). If Dep = ∅ then V1 = V2 and

E1 = E2 = ∅. Thus, UUDG(G1) = UUDG(G2) and that leads to a contradiction.

Otherwise, ∃w ∈ V2 s.t. (w, b) ∈ E2 and (a ; w)E2, and then (a ; w)E1 and (w ;

b)E1. Thus, by definition, the content of Dep will be the same for both iterations in

UUDG(G1) and UUDG(G2). Then, the set Join in both iterations must be the same

and, furthermore, the set Seq, and the set Fork, which leads to a contradiction.

This result guarantees that the UUDG algorithm will exploit the same amount

of parallelism with two graphs that are in the same equivalence class ≡t. Now, the

total correctness of the UUDG algorithm will be proved:
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Lemma 6 (Partial Correctness of Algorithm 4.6) Let t, t1 and t2 be terms

from the grammar presented in Definition 3. Let Hv correspond to the handler asso-

ciated to a particular parallel goal v. The UUDG algorithm is partially correct with

respect to the precondition {|Vi| ≥ ∅; |Ei| ≥ ∅} and the postcondition {Gexpr ≡t Gi}

where expr is the parallelized clause generated by the algorithm, Gexpr = (Vexpr, Eexpr)

and Gi = (Vi, Ei), such that:

Vexpr =
⋃

t∈expr

get literals(v) s.t. t = v ∨ t = Hv<&! ∨ t = Hv<&

Eexpr = (
⋃

t1∈expr

{(a, b) | {a, b} ⊆ get literals(v) ∧ a ≺ b}) ∪

(
⋃

t2∈expr

{(w, v) | w = last(get literals(x)), v ∈ Vi \ P t2})

s.t. t1 = v&>Hv ∨ t1 = v&!>Hv

and t2 = x ∨ t2 = Hx<& ∨ t2 = Hx<&!

where last(S) = x iff ∀y ∈ S, (y 6= x ∧ y ≺ x), i.e., last(S) is a function which

returns the rightmost literal in the clause associated to any of the nodes in S.

and P f = {z | ∀y ∈ expr, (y = z ∨ y = z&>Hz ∨ y = z&!>Hz), y ≺ f}, i.e., the set

of all literals published for parallel execution in expr before f .

Proof 7 The first union of edges in Eexpr states that there will be an edge connecting

each node that is in the same group. Because of Theorem 1, all nodes in the same

group are mutually dependent and thus those nodes will just form an equivalent graph

to Gi with respect to ≡t. Because of Lemma 5, the final parallel expression will be

the same.

Thus, it can be assumed no grouping of nodes needs to be performed, and therefore

the postcondition can be simplified to:
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Vexpr = {v | v ∈ expr, Hv<& ∈ expr, Hv<&! ∈ expr}

Eexpr = (
⋃

t∈expr

{(w, v) | v ∈ Vi \ P t})

s.t. t = w ∨ f = Hw<& ∨ f = Hw<&!

Let us prove this now by induction on V .

• Base case: if |V | = 0 then expr = true, and thus Vexpr = ∅, Eexpr = ∅.

Therefore, Gexpr ≡t Gi.

• Induction hypothesis: assuming that the UUDG algorithm is started with a par-

ticular dependency graph G that makes the precondition true, the resulting

values make the postcondition true.

• Inductive step: Let the invariant of the loop be I = {Gi ≡t (G ∪Gexpr)}. It is

necessary to prove that the invariant still holds after executing an iteration of

the loop.

– Since G is simplified to G|(V \Join)\Seq at the end of the iteration, V will be

(V \ Join) \ Seq. Since expr is increased with some nodes to be Forked,

Sequentialized or Joined, Vexpr will be Vexpr∪{v | (v ∈ Seq) ∨ (v ∈ Join)},

because the annotations v, Hv<& and Hv<&! correspond to those for the

sets Seq and Join. Thus, Vexpr will be Vexpr ∪ (Join ∪ Seq). Therefore,

((V \ Join) \ Seq) ∪ (Vexpr ∪ (Join ∪ Seq)) = V ∪ Vexpr = Vi.

– Since G is simplified to G|(V \Join)\Seq at the end of the iteration, E will be

(E \ {(u, v) | u ∈ Join∪Seq, v ∈ V }) \ {(u, v) | (v ∈ Join∪Seq, u ∈ V }).

For Lemma 4, the node u must be a source and then the new value of E

is simplified to (E \ {(u, v) | u ∈ Join ∪ Seq, v ∈ V }). Moreover, since

v is a dependent node, it can be only a node that has not been published
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yet, and so E is simplified to:

(E \ {(u, v) | u ∈ Join ∪ Seq, v ∈ ((V \ Pub) \ Fork)})

Since expr is increased with some nodes to be Forked, Sequentialized or

Joined, Eexpr will be:

Eexpr ∪ (
⋃

u∈(Seq∪Join)

{(u, v) | v ∈ ((V \ Pub) \ Fork)}) =

= {(u, v) | u ∈ Join ∪ Seq, v ∈ ((V \ Pub) \ Fork)}

Therefore, E ∪ Eexpr = Ei.

In addition, I ∧ {V = ∅} ⇒ {Gexpr ≡t Gi}, which corresponds to the postcondition

of the UUDG algorithm, so it is partially correct.

Lemma 7 (Termination of Algorithm 4.6) The UUDG algorithm terminates.

Proof 8 The set of natural numbers IN is chosen as set with strict well-founded or-

dering <. Let |V | be the termination expression. By definition, |V | ∈ IN whenever

the control of the algorithm starts a new iteration. |V | takes a smaller value in each

iteration of the loop with respect to < if either Join or Seq is not empty. Since Join

= V 6= ∅ when Dep = ∅ or else Join = Iv ∈ Dep, which is by definition non-empty,

the algorithm terminates.

Theorem 2 (Total Correctness of Algorithm 4.6) The UUDG algorithm is to-

tally correct.

Proof 9 Lemma 6 states that the UUDG algorithm is partially correct, and Lemma 7

states that it terminates, so the UUDG algorithm is totally correct.
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In what follows, some examples will show how the UUDG algorithm works.

Example 12 (UUDG Annotation) This example shows the iterations of the UUDG

algorithm in order to parallelize the predicate p/3, introduced in Section 4.1.1 and

whose dependency graph is shown in Figure 4.1(b). Although the first step of the

UUDG algorithm groups literals, in the example at hand no grouping can be per-

formed in any iteration. Therefore, literals are taken into account as they appear in

the original clause.

• First iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep = {a, c}, Dep = {{a}, {a, c}}, SS = {a}

Seq = {a}, Fork = {c}, Join = ∅

Pub = {a, c}

Annotation: p(X,Y,Z) :- c(Y) &> Hc, a(X,Z),

The first step in the algorithm detects the nodes that are sources in the graph

(literals a/2 and c/1) and adds them to the set Indep. Literals which depend

on them and which have only incoming edges from sources are added to the set

Dep. In order to maximize exploitable parallelism, the least number of literals

required to free a dependent literal will be joined. This can be done by choosing

the smallest set in Dep ({a}, in this case). Thus, literals a/2 and c/1 are to

be published for parallel execution and only literal a/2 needs to be joined.

As an optimization, one of the goals among those which are scheduled for par-

allel execution and joined in the same iteration can be executed sequentially;

this is what happens to literal a/2. After the annotation is done, literals a/2
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and c/1 are stored in Pub and the graph is simplified by removing the node

corresponding to a/2.

• Second iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep = {b, c}, Dep = {{c}}, SS = {c}

Seq = ∅, Fork = {b}, Join = {c}

Pub = {a, b, c}

Annotation: b(X) &> Hb, Hc <&,

Literals b/1 and c/1 are sources now, and only d/2 is a dependent node. Literal

c/1 was scheduled for parallel execution in the previous iteration and therefore

only b/1 needs to be published. Since d/2 needs to be freed, c/1 is waited on.

After the annotation is done, literal b/1 is stored in Pub and the graph is

simplified.

• Last iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep = {b, d}, Dep = ∅, SS = ∅

Seq = {d}, Fork = ∅, Join = {b}

Pub = {a, b, c, d}

Annotation: d(Y,Z), Hb <&.

In the last iteration, and as all the nodes are sources, all not-yet-published liter-

als (i.e., d/2) will be scheduled for execution, and the joins of all the remaining

literals (i.e., b/1 and d/2) will be performed.
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Example 13 (UUDG Annotation with Grouping) In this example, intuitively,

there are two sequences of dependent literals each of which can be independently

executed. The second step of the algorithm will need to group both sequences of

literals.

• First iteration:

b(Y)

c(Y)

d(Y) g(Z)

f(Z)

e(Z)

a(Y,Z)

Indep = {a}, Dep = {{a}}, SS = {a}

Seq = {a}, Fork = ∅, Join = ∅

Pub = {a}

Annotation: a(Y,Z),

In the first step of the algorithm, literal a/2 is scheduled for sequential execu-

tion, since the rest of the literals in the clause depend on it. Literal a/2 is then

removed from the graph.

• Second (and last) iteration:

b(Y)

c(Y)

d(Y) g(Z)

f(Z)

e(Z)

Indep = {(b, c, d), (e, f, g)}, Dep = ∅, SS = ∅

Seq = (e, f, g), Fork = {(b, c, d)}, Join = {(b, c, d)}

Pub = {a, b, c, d, e, f, g}

Annotation: (b(Y),c(Y),d(Y)) &> H,

(e(Z),f(Z),g(Z)),

H <&.
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Literals b/1, c/1 and d/1 are grouped, and literals e/1, f/1 and g/1 are also

grouped. The graph is then reduced to one that has only two nodes, which are

both sources and which can be executed in parallel. Note that, as in Example 12,

all the parallelism is exploited due to the fact that mutually dependent literals

are grouped.

4.2.3 Order-Preserving Annotation: the UOUDG Algorithm

The UOUDG algorithm, presented in Figure 4.9, follows the same idea underlying

the UUDG algorithm introduced in Figure 4.6: publish early and join late. However,

the UOUDG algorithm has less freedom to publish goals, since the order of solutions

is preserved. This is done by respecting the relative order of literals in the original

clause, through the use of the relation ≺ and the partial function pred(L).

As a previous step in each iteration of the algorithm, the function group ord(G,P ),

shown in Figure 4.10, is called in order to group nodes in a fashion similar to

group nonord(G,P ) (Figure 4.7). However, for this case the grouping of literals

is done in such a way that its order is always preserved.

An important element in the algorithm is pvt, the pivot vertex, which will be used

in order to decide which nodes are to be joined, taking into account that it is not

possible to change the order of the solutions. If Dep is empty, then all the remaining

literals are already independent and can be joined up to the rightmost literal in the

clause. Otherwise, the leftmost node among those which have dependencies which

can be fulfilled in one step is selected. These dependencies are readily available in

Dep. Note that as the leftmost node among those which can be joined is selected,

joining nodes is delayed as much as possible —or, alternatively, in every step only

the joins which are needed to continue one more step are performed. This is aimed
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Algorithm: UOUDG(Gi, ID)
Input: (1) A directed acyclic graph Gi = (Vi, Ei).

(2) Determinacy information.
Output: A parallelized clause exprGi

in unrestricted and fashion in which the
order of the solutions in the original clause is preserved.

begin
exprGi

← (true);
Pub ← ∅;
G = (V,E)← Gi;
while V 6= ∅ do

G← group ord(G, Pub);
Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {(v, Iv) | v ∈ V, Iv = incoming(v, E), Iv 6= ∅, Iv ⊆ Indep};
if Dep = ∅ then

(pvt , Join)← (u, V ) s.t. ∀(w ∈ (V \ {u})) . w ≺ u;
else

(pvt , Join)← (u, S) s.t. (u, S) ∈ Dep ∧ ∀((w,D) ∈ (Dep \ {(u, S)})) . u ≺ w;
end
Seq ← {v | v ∈ (Indep \ Pub), (v,pvt) ∈ E, v = pred(pvt)};
Fork ← {v | v ∈ (Indep \ Pub), v ≺ pvt} \ Seq ;
Join ← Join \ Seq ;

Pub ← Pub ∪ (
⋃

v∈Fork

get literals(v)) ∪ get literals(u) s.t. u ∈ Seq ;

G← G|(V \Join)\Seq;
exprGi

← (exprGi
, gen body ord(Fork, Seq, Join, ID));

end
return exprGi

;
end

Figure 4.9: UOUDG annotation algorithm.

at maximizing the number of parallel goals being executed at any moment.

The UOUDG algorithm uses the gen body ord(F, S, J, ID) function, which is shown

in Figure 4.11, to output a parallelized clause. The function gen body ord(F, S, J, ID),

as well as the function gen body nonord(F, S, J, ID) in Figure 4.8, make use of the

auxiliary function get literals(v), in addition to some determinism information,
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Algorithm: group ord(G, Pub)
Input: (1) A nonempty directed acyclic graph G = (V,E).

(2) A set of goals already forked.
Output: A compacted directed acyclic graph Gf = (Vf , Ef ) which preserves

the order of literals in the grouping.
begin

forall v ∈ V s.t. get literals(v) 6⊆ Pub and incoming(v, E) = ∅ do
NewV ← {v};
DS ← {u | u ∈ V, u /∈ NewV , w ∈ NewV , (w, u) ∈ E};
while DS 6= ∅ do

NewV’ ← NewV ∪ DS ;
if (∀u ∈ NewV’ , (u = v) ∨ (pred(u) ∈ NewV’ )) and

(∀{vi, vj} ⊆ NewV ′, (vi ; vj)E ∨ (vj ; vi)E) and
(∀e = (vk, vl) ∈ E, vk /∈ NewV ′ ⇒ vl /∈ NewV ′) then

NewV ← NewV’ ;
else

break;
DS ← {u | u ∈ V, u /∈ NewV , w ∈ NewV , (w, u) ∈ E};

end
set literals(v, NewV );
G← G|(V \(NewV \{v}));

end
Gf ← G;
return Gf ;

end

Figure 4.10: Order-preserving grouping of nodes.

by using the auxiliary boolean function det(n, ID), in order to decide whether the

optimized versions of the operators &>/2 (i.e., &!>/2) and <&/1 (i.e., <&!/1) are to

be used when literals are known to be deterministic.

4.2.4 Correctness Proof of the UOUDG Algorithm

In order to prove the total correctness of the UOUDG algorithm, we will start by

proving the total correctness of the group ord function by proving partial correctness
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Algorithm: gen body ord(Fork, Seq, Join, ID)
Input: (1) A set of vertices to be forked.

(2) A set of vertices to be sequentialized.
(3) A set of vertices to be joined.
(4) Determinacy information.

Output: An unrestricted parallelized sequence of literals Exp.
begin

Exp ← (true);
forall vi ∈ Fork do

if det(vi, ID) then
Exp ← (Exp, seq(get literals(vi)) &!> Hvi

);
else

Exp ← (Exp, seq(get literals(vi)) &> Hvi
);

end
end
if Seq = {v} then

Exp ← (Exp, seq(get literals(v)));
end
forall vi ∈ Join do

if det(vi, ID) then
Exp ← (Exp, Hvi

<&!);
else

Exp ← (Exp, Hvi
<&);

end
end
return Exp;

end

Figure 4.11: Order-preserving generation of a parallel body.

and termination.

Lemma 8 (Partial Correctness of Algorithm 4.10) The function group nonord

is partially correct with respect to the precondition {|V | > ∅} and the postcondition

{P1;P2;P3;P4} such that:

1. P1 ≡
⋃

v∈Vf

get literals(v) = V .
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2. P2 ≡
⋂

v∈Vf

get literals(v) = ∅.

3. P3 ≡ no parallelism is lost when constructing Gf .

4. P4 ≡ ∀v ∈ Vf , ∀u ∈ get literals(v), ((u = v) ∨ (pred(u) ∈ get literals(v))).

Proof 10 It can be proved in a similar way to Lemma 2. Note that the only difference

in the postcondition is the new statement P4, which demands that all nodes to be

grouped be consecutive, in order to preserve the order of solutions. That condition

will be always true because of the first condition of the if-structure.

Lemma 9 (Termination of Algorithm 4.10) The function group ord terminates.

Proof 11 Same proof as in Lemma 3.

Theorem 3 (Total Correctness of Algorithm 4.10) The function group ord is

totally correct.

Proof 12 Lemma 8 states that the function group ord is partially correct, and

Lemma 9 states that it terminates, so the function group ord is totally correct.

The following definition introduces the concept of equivalence class of graphs with

respect to a notion of order of literals:

Definition 9 (Equivalence class of graphs w.r.t. ≡o) Let G1 = (V1, E1) and

G2 = (V2, E2) be two different dependency graphs. Then, G1 ≡o G2 ⇔ V1 =

V2 ∧ (∀v ∈ V1, ((v, w) ∈ E1 ⇒ ((v, w) ∈ E2 ∧ (∀x ∈ V2 s.t. w ≺ x, (v, x) ∈ E2)))).

Lemma 10 G1 = (V1, E1) ≡o G2 = (V2, E2) ⇒ UOUDG(G1) = UOUDG(G2).
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Proof 13 Proof by contradiction. Assume that UOUDG(G1) 6= UOUDG(G2) when

G1 ≡o G2. Then exprG1
6= exprG2

, which means that exprG1
= (t1exprG1

, . . . , tmexprG1
), m ≥

1, and exprG2
= (t1exprG2

, . . . , tnexprG2
), n ≥ 1, and ∃i s.t. tiexprG1

6= tiexprG2
. Thus,

for a particular iteration in UOUDG(G1), either Fork, Seq or Join differs from the

respective one in the same iteration of UOUDG(G2). If Dep = ∅ then V1 = V2 and

E1 = E2 = ∅. Thus, UOUDG(G1) = UOUDG(G2) and that leads to a contradiction.

Otherwise, pvt and Join will be the same in both UOUDG(G1) and UOUDG(G2)

because pvt represents the first dependent node with respect to ≺, and Join its depen-

dencies which precede it. Fork and Seq will also be the same since they are dealing

only with predecessors to the pvt, and that leads to a contradiction.

The total correctness proof of the UOUDG algorithm follows.

Lemma 11 (Partial Correctness of Algorithm 4.9) The UOUDG algorithm is

partially correct with respect to the same precondition as in Lemma 6, and postcondi-

tion {Gexpr = (Vexpr, Eexpr) ≡o (Vi, Ei) = Gi}, where Vexpr and Eexpr have the same

value as in Lemma 6.

Proof 14 This lemma can be proved in a similar way to Lemma 6. Because of the

results of Theorem 3 and Lemma 10, the postcondition can also be simplified. The

inductive part of the proof is similar to that of Lemma 6, with the loop invariant

I = {Gi ≡o (G ∪Gexpr)}.

Lemma 12 (Termination of Algorithm 4.9) The UOUDG algorithm terminates.

Proof 15 It can be proved in a similar fashion to Lemma 7.

Theorem 4 (Total Correctness of Algorithm 4.9) The UOUDG algorithm is to-

tally correct.
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Proof 16 Lemma 11 states that the UOUDG algorithm is partially correct, and

Lemma 12 states that it terminates, so the UOUDG algorithm is totally correct.

The following example will sketch how the UOUDG algorithm works.

Example 14 (UOUDG Annotation) In order to illustrate how the UOUDG al-

gorithm works, in a similar fashion to Example 12, the different iterations in the

parallelization process of the predicate p/3, whose dependency graph is shown in Fig-

ure 4.1(b).

• First iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep = {a, c}, Dep = {(b, {a}), (d, {a, c})}, pvt = b

Seq = {a}, Fork = ∅, Join = ∅

Pub = {a}

Annotation: p(X,Y,Z) :- a(X,Z),

In the first step of the algorithm, both literals a/2 and c/1 are both candidates

for parallel execution (they are in Indep). Also, since literals b/1 and d/2 only

have dependencies with nodes in Indep, both literals will be stored in Dep, with

their respective set of dependencies. Since literal b/1 is the one in Dep with

fewer dependencies, it is chosen as pivot, and literal a/2 marked to be joined in

this iteration of the algorithm. Moreover, although literal c/1 is in Indep, only

literal a/2 can be marked to be published for parallel execution, since the order

of the literals in the initial clause must be preserved, and literal b/1 has not

been published yet. However, as literal a/2 is the only one to be published and
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must be joined too, then it is simply selected to be sequentially executed. As a

final step, literal a/2 is stored in Pub and the dependency graph simplified by

removing the node corresponding to the literal a/2. Note how this annotation

has less freedom than the UUDG annotation in Example 12, always respecting

the dependencies that are implicit in the graph.

• Second (and last) iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep = {b, (c, d)}, Dep = {}, pvt = (c, d)

Seq = {(c, d)}, Fork = {b}, Join = {b}

Pub = {a, b, c, d}

Annotation: b(X) &> Hb, c(Y), d(Y,Z), Hb <&.

In this iteration, both literals b/1 and c/1 are sources. In this case, literals

c/1 and d/2 are compacted into a single node in the graph. Thus, all the nodes

in the graph are sources and can be scheduled for parallel execution.

Once this iteration finishes, the initial clause is unrestrictedly parallelized and

the order of the literals in the initial clause, given by the operator &>/2, pre-

served.

Finally, note that more parallelism is exploited (in fact, all the possible paral-

lelism) with the UUDG annotation in Example 12 than with the UOUDG anno-

tation, since the order of the literals in the clause does not have to be preserved.
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4.3 Granularity-Aware Annotation

The annotators presented in this chapter are concerned only with capturing inde-

pendence and mark as available for parallel execution any goals determined to be

independent. However, in practice, and even on quite efficient multicore architec-

tures, parallel execution involves overheads associated with task creation, scheduling,

locking, memory management, etc.

As a result, if the granularity of parallel tasks, i.e., the “work available” under-

neath them, is too small, it may happen that the costs of parallel execution are

larger than the benefits. This makes it desirable to take task granularity into ac-

count in parallel execution. Granularity control has been studied in the context of

traditional programming [KL88, MG89], functional programming [Hue93, HLA94],

and also logic programming [Kap88, DLH90, ZTD+92, DL93, LGHD96].

It is interesting to devise annotation algorithms which take task granularity into

account. In the traditional approach to this problem [DLH90, ZTD+92, DL93,

LGHD96] granularity control is applied after the annotation process. While this

approach has been shown to indeed bring improved speedups [LGHD96] the follow-

ing motivational example illustrates its limitations:

Example 15 Consider the following clause (the arguments of the literals, which

create the dependencies between them, are omitted for simplicity):

p :- a, b, c, d, e.

Assume that the dependencies detected between the subgoals of p are dep(a,b),

dep(a,d), dep(b,e), dep(c,d), where we denote by dep(X,Y) that Y depends on

(and therefore must be executed before) X.
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Two of the possible parallelizations for this clause are ( a, b & c, d & e )

and ( c & ( a, b, e ), d ), both of which respect the dependencies.

Let T (n) be the vector of cost functions for each literal of the clause. T (i) < T (j)

means that the cost of the subgoal i is smaller than the cost of j. Assume that

T (a) < T (c) < T (e) < T (b) < T (d).

It can be seen that, in principle, the second parallel expression exploits more

parallelism than the first one. However, the first annotation will probably result in

better speedups, since literal d (which is large) is executed sequentially in the second

annotation and in parallel with e in the first one. Assume now that only b and

d are worth being parallelized. In this case, the first annotation is also inefficient,

because b is scheduled to be executed in parallel with c, of small cost. In this case,

a better solution would be ( a, c, ( b & d ), e ). Note that post-processing of

the previous annotations to perform granularity control [LGHD96] would not achieve

this result.

This type of annotation requires the use of functions to evaluate whether the cost

function of a literal is bigger or smaller than the cost function of another literal. It

is indeed sometimes possible to determine precisely at compile time the maximum

or minimum among several cost functions. This can also be done heuristically, e.g.,

comparing only the order information, looking for crossover points between the func-

tions, evaluating the functions on user provided annotations regarding bounds on

input data sizes (for example, saying that a given input array is larger than nxn),

etc.

In addition, it is necessary to evaluate at compile time if a literal is “sufficiently

large”. For this case, also different heuristics can be used. Note that the classic anno-

tators are in fact using the simple compile-time heuristic that all tasks are sufficiently
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large and of the same cost. When size determinations and comparisons cannot be

resolved at compile-time, run-time tests can be introduced in the parallelized clause

during the annotation process (as done in [LGHD96], but in that case after the

annotation) with the idea of evaluating them at run-time to determine whether a

particular parallelization can be performed.

A prototype of a granularity-aware annotation algorithm has been implemented

and integrated within the CiaoPP system [HPBLG05].

4.4 Performance Evaluation

The proposed annotation algorithms have been integrated into the Ciao/CiaoPP

system [HPBLG05]. Information gathered by the analyzers on variable sharing,

groundness, and freeness is used to determine goal independence, using the libraries

available in CiaoPP. Determinism is used in the annotators as described previously.

The execution platform used is the shared-memory high-level implementation of

the proposed parallelism primitives [CCH08a] developed as an extension of the Ciao

system [BCC+06] as part of this thesis, and presented in Chapter 5. This imple-

mentation is an evolution of [Her86, HG91] based on raising the level of certain

components to the source language and keeping only some selected operations (re-

lated to thread handling, locking, etc.) at a lower level. This approach does not

eliminate altogether modifications to the abstract machine, but it greatly simplifies

them.

The impact of the different annotations on the execution time has been evalu-

ated by running a series of benchmarks (briefly described in Table 4.1) in parallel.

Table 4.2 shows the speedups obtained with respect to the sequential execution (i.e.,
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AIAKL An abstract interpreter for the AKL language.
FFT An implementation of the Fast Fourier transform.
FibFun A version of the Fibonacci program written in functional

notation.
Hamming A program to compute the first N Hamming numbers.
Hanoi A program to compute the movements to solve the well-known

puzzle, as proposed in [MBdlBH99].
Takeuchi Computes the Takeuchi function.
WMS2 A scheduler assigning a number of workers to a series of jobs.

Table 4.1: Benchmark programs

they are actual speedups, which is the reason why some speedups start below 1 for,

e.g., one thread), when using from 1 to 8 threads.

The machine used is a Sun UltraSparc T2000 (a Niagara) with 8 4-thread cores.

In the performance results shown in Table 4.2, not more than 8 cores are used since

in that case, and due to access to shared units, speedups are sublinear even for

completely independent tasks.

The fork-join annotators chosen to compare with are MEL [MBdlBH99] (which

preserves goal order and tries to maximize the length of the parallel expressions) and

UDG [Cab04] (which can reorder goals). The MEL algorithm tries to find longest

parallel expression by proceeding backwards from the last literal in order to find a

hard dependency between two literals and hence finding a point where the expression

can be split into two different ones. The UDG algorithm assumes that all the depen-

dence conditions that cannot be completely determined statically are false, in order

to eliminate the overhead of evaluating run-time checks in the parallel expression.

However, the limitation (and complication) of these fork-join annotation algo-

rithms comes from the use of the fork-join operator, illustrated in Section 4.1. MEL

can add runtime checks to decide dynamically whether to execute or not in parallel.
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Benchmark Annotator
Number of threads

1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

FFT

UMEL 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UOUDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UUDG 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming

UMEL 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UOUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
UDG 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19
UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67
UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2

UMEL 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.81
UOUDG 0.99 1.09 1.09 1.09 1.09 1.09 1.09 1.09
UDG 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
UUDG 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Table 4.2: Speedups for several benchmarks and annotators.

In order to make the annotation unconditional (as the annotators presented in this

chapter), the conditional parallelism was removed in the places where it was not

being exploited. This is why it appears in Table 4.2 under the name UMEL.

All the benchmarks executed were parallelized automatically by CiaoPP, starting
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Figure 4.12: Speedups obtained with different annotations for AIAKL.

from their sequential code. Since UOUDG and UUDG can improve the results of

fork-join annotators only when the code to parallelize has at least a certain level

of complexity, not all benchmarks with (independent) parallelism can benefit from

using the unrestricted operators. Additionally, comparing speedups obtained with

programs parallelized using order-preserving and non-order-preserving annotators is

not really meaningful.

Note that the speedups themselves are not the interesting issue of the performance

results. Although of utmost practical interest, raw speed is very connected with the

implementation of the underlying parallel abstract machine, and improvements on

it can be expected to uniformly affect all parallelized programs. Rather, the main

focus of attention is in the comparison among the speedups obtained using different

annotators.

A first examination of the experimental results in Table 4.2, and also in Fig-
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Figure 4.13: Speedups obtained with different annotations for FFT.
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Figure 4.14: Speedups obtained with different annotations for FibFun.
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Figure 4.15: Speedups obtained with different annotations for Hamming.
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Figure 4.16: Speedups obtained with different annotations for Hanoi.
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Figure 4.17: Speedups obtained with different annotations for Takeuchi.

ures 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17, allows observing that in no case UUDG is

worse than any other annotator, and in no case is UOUDG worse than (U)MEL. The

results therefore suggest that these should be the annotators of choice (at least com-

pared to the other annotators in CiaoPP). Besides, there are cases where UOUDG

is better than UDG, and the other way around, which is in accordance with the

non-comparable nature of these two algorithms.

Among the cases in which a better speedup is obtained by some of the U(O)UDG

annotators, improvements range between “no improvement” (because no benefit is

obtained for some particular cases and combinations of annotators) to an increase

of 757% in speedup, with several other levels in between. Also, it is worth pointing

out that the difference in speedup does not stabilize in any benchmark (at least in

a sizable amount) as the number of threads increases; moreover, in some cases the

difference in speedup between the restricted and the unrestricted versions grows sub-
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stantially with the number of threads. This can (clearly) be seen in, e.g., Figure 4.17.

Finally, the performance results of three particular benchmarks can be specially

highlighted. FibFun is the result of parallelizing a definition of the Fibonacci num-

bers written using the functional notation capabilities of Ciao [CCH06]. Because

of the particular order in which code is generated in the (automatic) translation

into Prolog (which is somewhat different to the traditional, hand-coded Prolog ver-

sion), the result is only parallelizable by UOUDG and UUDG, hence the speedup

obtained in this case. The case of Hanoi is also interesting, as it is the first example

in [MBdlBH99]: in the arena of order-preserving parallelizers, UOUDG can extract

more parallelism than MEL for this benchmark. Lastly, the Takeuchi benchmark has

a relatively small loop which only allows parallelizing with a simple &/2. However,

by unrolling one iteration in the loop the resulting body has dependencies which

are complex enough to take advantage of the increased flexibility of the proposed

annotators.

4.5 Summary

New annotation algorithms have been proposed which perform a source-to-source

transformation of a logic program into an unrestricted independent and-parallel ver-

sion of itself. Both algorithms rely on the use of more basic high-level primitives than

the fork-join operator, and differ on whether the order of the solutions in the original

program must be preserved or not. The proposed algorithms have been proved to

be correct, and implemented and evaluated in CiaoPP, showing to be more efficient

than previous fork-join annotation algorithms.
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High-Level Implementation of

Unrestricted IAP

This chapter presents an alternative for implementing and-parallelism in logic pro-

gramming that raises the core parts of the implementation to the source language

level, with the only help of a small number of concurrency-related primitives in or-

der to deal with low-level tasks. This alternative simplifies the complex machinery

required by previous solutions, which is in fact difficult to maintain and extend.

In addition, it is able to exploit both restricted and unrestricted independent and-

parallelism.

First, a simplified version of the implementation that is optimized for the case of

non-failing deterministic benchmarks is introduced, and then the complete version

of the system for executing non-deterministic independent and-parallel benchmarks

is presented. Finally, this chapter will show that the performance results obtained

are quite acceptable.
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5.1 Shared Memory Implementation for Non-Fail-

ing Deterministic IAP

This section presents the solution proposed for the parallel execution of non-failing

deterministic parallel programs. Section 5.2 will cover the more complex case of

non-deterministic parallel programs.

The proposed implementation divides responsibilities among several layers. User-

level parallelism and concurrency primitives intended for the programmer and par-

allelizers are at the top and written in Prolog. Below, goal publishing, searching for

available goals, and goal scheduling are written at the Prolog level, relying on some

low-level support primitives for, e.g., locking, low-level goal management or stack set

management, with a Prolog interface, but written in C.

In this implementation for shared-memory multiprocessors, and in a similar way

to [HG91], agents wait for work to be available, and execute it if so. Every agent is

created as a thread attached to an extended WAM stack set. Sequential execution

proceeds as usual, and coordination with the rest of the agents is performed by means

of shared data structures.

Similarly to the &-Prolog model, agents make new work available to other agents

(and also to itself) through a goal list which is associated with every stack set and

which can be consulted by all the agents. This is an instance of the general class

of work-stealing scheduling algorithms, which date back at least as far as Burton

and Sleep’s [BS81] research on parallel execution of functional programs and Hal-

stead’s [Hal85] implementation of Multilisp, for functional programs, and the original

&-Prolog abstract machine for logic programs [Her86].

In the following sections, the library with the deterministic low-level parallelism
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primitives will be introduced, as well as the design and the actual code of the main

source-level algorithms used to execute non-failing deterministic goals in parallel.

5.1.1 Low-Level Parallelism Primitives

The low-level layer has been implemented as a Ciao library [BCC+06] (“apll ”) writ-

ten in C, which provides basic mechanisms to start threads, wait for their completion,

publish goals for parallel execution, search for goals, access to O.S. locks, etc. Most

of these primitives need to refer to an explicit goal and need to use some information

related to its state (whether it has been taken, finished, etc.). Hence the need to

pass them a Handler data structure which abstracts information related to the goal

at hand.

The current list of primitives follows. Note that this is not intended to be a

general-purpose concurrency library (such as those available in Ciao and other Prolog

systems —in fact, very little of what should appear in such a generic library is

here), but simply a list of primitives suitable for efficiently implementing at a higher-

level different approaches to exploiting independent and-parallelism. For clarity, the

library qualification is added explicitly.

apll:add goal(+Goal,+Det,-Handler) atomically creates a unique handler (an o-

paque structure) associated to Goal and publishes Goal for any agent to pick

it up. Handler will henceforth be used in any operation related to Goal. Det

describes whether Goal is deterministic or not.

apll:find goal(-Handler) searches for a goal published for parallel execution. If

one exists, Handler is unified with a handler for it; the call fails otherwise, and

it will succeed at most once per call.1

1Different versions exist of this primitive which can be used while implementing different
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apll:goal available(+Handler) succeeds if the goal associated to Handler has

not been picked up yet, and fails otherwise.

apll:retrieve goal(+Handler,-Goal) unifies Goal and the goal initially associ-

ated to Handler.

apll:goal finished(+Handler) succeeds if the execution state of the goal associ-

ated to Handler is finished, and fails otherwise.

apll:set goal finished(+Handler) sets to finished the execution state of the goal

associated to Handler.

apll:waiting(+Handler) succeeds when the execution state of the agent which

published the goal associated Handler is suspended and fails otherwise.

Additionally, a set of locking primitives is provided to synchronize thread execu-

tions and to obtain mutual exclusion at the Prolog level. Agents are synchronized by

using two different locks: one which is used to ensure mutual exclusion when dealing

with shared data structures (i.e., when adding new goals to the list), and another

one which is used to synchronize the agent waking up when <&/1 is waiting for either

more work to be available, or the execution of a goal picked up by some other agent

to finish. Both can be accessed with specific (* self) predicates to specify the ones

belonging to the calling agent. Otherwise, they are accessed through a goal Handler,

and then the locks accessed are those belonging to the agent which created the goal

that Handler refers to (i.e., its creator).

apll:suspend suspends the execution of the calling thread.

apll:release(+Handler) releases the agent which created Handler (which could

have suspended itself with the above described predicate).

goal scheduling strategies.
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apll:release some suspended thread selects one out of any suspended threads

and resumes its execution.

apll:enter mutex(+Handler) attempts to enter a mutual exclusion by using the

lock of the agent associated to Handler, in order to access its shared variables.

apll:enter mutex self same as above, with the agent’s own mutex.

apll:exit mutex(+Handler) signals the lock in the realm of the agent associated

to Handler in order to exit mutual exclusion.

apll:exit mutex self same as above with the calling thread.

The next section will clarify how these primitives are intended to be used.

5.1.2 Implementation

Based on the primitives presented in the previous section, the algorithms for the

user-level primitives will be now developed.

High-level Goal Publishing:

In the execution model proposed, a particular strategy will be implemented in which

rather than, e.g., having idle agents busily looking for work, such agents are sus-

pended and resumed in a more organized way depending on availability of work (this

strategy is also the one used in the experiments).

A call to &!>/2 implies publishing the goal for parallel execution, i.e., making it

available for other agents to pick up for execution. Figure 5.1 shows the (simplified)
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Goal &!> Handler :-
apll:add_goal(Goal,det,Handler),
apll:release_some_suspended_thread.

Figure 5.1: Source code for publishing a deterministic parallel goal.

Handler <&! :-
apll:enter_mutex_self,
(

apll:goal_available(Handler) ->
apll:retrieve_goal(Handler,Goal),
apll:exit_mutex_self,
call(Goal)

;
apll:exit_mutex_self,
perform_other_work(Handler)

).

Figure 5.2: Source code for performing a deterministic goal join with continuation.

Prolog code implementing this functionality. The code shown can be expanded in

line but it is shown as a meta-call for clarity.

First, the goal is published for parallel execution. Second, the current thread will

signal any suspended agents that there is new work available. As will be seen later,

the agent receiving the signal will resume its execution, pick up the new parallel goal,

and start its execution.

After executing Goal &!> H, the handler H will hold the state of Goal, which can

be inspected both by the thread which publishes Goal and by any thread which picks

up Goal to execute it. Therefore, in some sense, H takes the role of the parcall frame

in [HG91], but it is not placed in the environment —it goes to the heap instead,

as in [PGH95]. Threads can communicate and synchronize through the handler in
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perform_other_work(Handler) :-
apll:enter_mutex_self,
(

apll:goal_finished(Handler) ->
apll:exit_mutex_self

;
(

find_goal_and_execute ->
true

;
apll:exit_mutex_self,
apll:suspend

),
perform_other_work(Handler)

).

Figure 5.3: Source code for performing some other work when available.

order to consult and update the state of Goal. This is especially important when

executing H <&!.

Performing Goal Joins:

Figures 5.2 and 5.3 provide code implementing <&!/1 (the deterministic version of

<&/1).

First, the thread needs to check whether the goal has been picked up by some

other thread, using apll:goal available/1. In order to avoid concurrency prob-

lems, the thread creates a mutual exclusion using its own lock, since it is accessing

its own data structures. If the goal has not been picked up yet by another agent then

the publishing agent exits the mutual exclusion and executes it locally, and <&!/1

will succeed trivially.

If the goal has been picked up by another agent and its execution has finished
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find_goal_and_execute :-
apll:find_goal(Handler),
apll:exit_mutex_self,
apll:retrieve_goal(Handler,Goal),
call(Goal),
apll:enter_mutex(Handler),
apll:set_goal_finished(Handler),
(

apll:waiting(Handler) ->
apll:release(Handler)

;
true

),
apll:exit_mutex(Handler).

Figure 5.4: Source code for finding a parallel goal and executing it.

then <&!/1 will automatically succeed. Note that a mutual exclusion is entered again

in order to safely check the status of the execution. In that case, the bindings made

during goal execution are, naturally, available, since the implementation is a shared-

memory one. If the goal execution has not finished yet then the thread will not

suspend right away. Instead, it will search for more work in order to keep itself busy,

and it will only suspend if there is definitely no work to perform at the moment.

This ensures that overall efficiency is kept at a reasonable level, as will be seen in

Section 5.3. Note that all this process is protected from races when accessing shared

variables by using locks for mutual exclusion and conditional synchronization.

Figure 5.4 presents the source code which searches for a goal available and ex-

ecutes it. find goal and execute/0 will fail if there is no goal available. If one

is found then the thread will pick it up, execute it, create a mutual exclusion with

the lock of the publishing agent (since the handler associated to the goal resides

in the publishing agent) in order to mark the execution as finished and resume the

execution of the publishing agent, if suspended.
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create_agents(0) :- !.
create_agents(N) :-

N > 0,
conc:start_thread(agent),
N1 is N - 1,
create_agents(N1).

agent :-
apll:enter_mutex_self,
(

find_goal_and_execute ->
true

;
apll:exit_mutex_self,
apll:suspend

),
agent.

Figure 5.5: Source code for creating parallel agents.

In that case, the publishing agent (suspended in eng suspend/0) will check which

situation applies after resumption and act accordingly after recursively invoking the

predicate perform other work/1.

Agent Creation:

Agents are generated using the create agents/1 predicate which launches a num-

ber of O.S. threads using the start thread/0 predicate imported from a generic

concurrency library (thus the conc prefix used, again, for clarity). Every one of

these threads executes continuously the agent/0 code which takes care of searching

for more work or suspending, if that is the case (Figure 5.5). Thus, during normal

execution agents are either sleeping because there is nothing to execute or working

on some goal. It is assumed for simplicity that agent creation is in general performed

at system startup or just before starting a parallel execution.

Higher-level predicates are however provided in order to manage threads in a

more flexible way. For instance, ensure agents/1 makes sure that a given number

of executing agents is available. In fact, agents can be created lazily, and added or

deleted dynamically as needed, depending on machine load. However, this interesting
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issue of thread throttling is beyond the scope of this thesis.

5.2 Shared Memory Implementation for Non-De-

terministic IAP

Section 5.1 proposed a high-level implementation that raised some of the main com-

ponents of the implementation to the source level, and was able to exploit the flexibil-

ity provided by unrestricted and-parallelism, i.e., not limited to fork-join operations.

However, that solution provided a solution which is only valid for the parallel

execution of goals which have exactly one solution each, thus avoiding some of the

hardest implementation problems classically found in and-parallel execution. While

it can be argued that a large part of application execution is indeed single-solution,

on one hand this cannot always be determined a priori, and on the other there are

also cases of parallelism among non-deterministic goals, and thus a system must offer

a complete implementation, capable of coping with parallel non-deterministic goals,

in order to be realistic.

In this section, a high-level implementation will be presented, which is able to

exploit unrestricted IAP over non-deterministic parallel goals, while maintaining the

optimizations of previous solutions for non-failing deterministic parallel goals. This

proposal provides solutions for the trapped-goal and garbage-slot problems, and is

able to cancel the execution of a parallel goal when needed.

Although the execution model is based on the multi-sequential, marker model,

there exist significant differences between this proposal and the &-Prolog run-time

model, which will be presented in the following sections.
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5.2.1 Goal Stacks vs. Goal Lists

In this execution model, each agent is extended with a goal list, the functionality

of which is similar to that of the goal stack in the &-Prolog run-time model. The

goal list entries store pointers to those goals which have been prepared for parallel

execution, and thus agents which are idle can search for parallel goals to execute by

consulting the goal lists of the rest of the agents. Goal lists are accessed atomically

so as to avoid races when updating them.

A list is used instead of the traditional stack due to the greater flexibility needed in

order to deal with the unrestricted nature of the &>/2 and <&/1 operators (instead of,

or in addition to &/2): goals can be joined in any order —not necessarily the inverse

to the order in which they were published— and, in the case of goal cancellation,

arbitrary goal entries inside the list may have to be removed.

For instance, the conjunction (g1&g2&. . .&gn) can be executed as:

(g1&>H1, g2&>H2, . . . , gn, . . . , H2<&, H1<&)

as per Equation (2.1), but in fact any order for the goal joins would be equally

correct.

Goal lists are implemented in C as doubly-linked lists. This makes it possible to

experiment with different scheduling strategies and gives more flexibility for the case

of unrestricted and-parallel execution.

5.2.2 Parcall Frames vs. Handlers

As mentioned in Section 2.5, parcall frames in the &-Prolog run-time model are

additional (environment) stack frames used for the coordination and synchronization
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of the parallel execution. In &-Prolog a parcall frame is created as soon as a parallel

call is made, and it has a slot for each of the literals g1,g2 . . . gn in the parallel call

g1&g2&. . .&gn, in order to keep track of the execution of each of these goals.

In most WAM implementations the handling of environments is relatively brit-

tle and introducing different elements in the environment stack complicates things.

As an alternative to parcall stack frames, the proposal makes use of handlers, heap

structures accessible from source-level code, introduced in Chapter 2. Each handler

is associated to a particular parallel goal and used for synchronization between the

publishing agent and the agent which picks up the parallel goal. In this implemen-

tation, handlers will store information such as, e.g., a pointer to the actual parallel

goal, a pointer to its location in the goal list (to remove it from there in case the

goal is not taken by any other agent), a field to mark the goal as deterministic or

not, the state of the goal execution, and pointers to both the publishing agent and

the executing agent in order to release their execution when so needed.

5.2.3 Markers vs. (Prolog) Choice Points

As introduced in Section 2.5, markers are used in the &-Prolog run-time model to

set boundaries between different sections in the stack, each of them corresponding to

the segment of execution of a parallel goal. This separation of segments in the stack

is used to provide a solution to the trapped goal problem [HN86]. Markers are also

used in &-Prolog to implement storage recovery mechanisms during backtracking of

parallel goals, in order to solve the garbage slot problem [HN86].

The proposal to avoid the use of new stack frames to implement markers is the

creation instead of normal choice points, and to do so in a very simple way by creating

alternatives (through predicates with more than one clause) directly in the source-
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level (Prolog) code of the scheduler (see Section 5.2.4). This is done whenever a

parallel goal is to be executed, as shown in Figure 5.6(e). In addition to that, pointers

to the choice points that mark the beginning and the end of the goal execution will

be stored in the handler associated to that goal, in order to delimit the segment of

execution in such a way that those limits can be accessed during backwards execution.

This is also done in part at the source level. Section 5.2.4 provides further explanation

of how backwards execution over parallel goals is performed using these normal choice

points.

5.2.4 Implementation

Figure 5.6 presents a sketch of the high-level implementation of the scheduler for

unrestricted IAP. The library qualification of the primitives is omitted for clarity.

The implementation is an extension of that presented in Section 5.1. Similarly to it,

agents are created with a small stack (which can grow on demand) and they wait

for some work to be available. They do not continuously search for new tasks to be

performed, in order to avoid active waiting.2

First, when an agent is created, in a fashion very similar to the behavior of

the agents presented in Section 5.1, it executes the code shown in Figure 5.6(f),

and during normal execution it will start working on the execution of some goal,

or will sleep because there is no task to perform (yet). An agent searches for new

parallel goals to execute by using a work-stealing scheduling algorithm based on those

in [Her86, HG91].

Figure 5.6(a) presents the code for the &>/2 primitive, which publishes a goal

for parallel execution. A pointer to the parallel goal is added to the goal list of the

2This decision was taken because it gave slightly better speedups in the experiments
and it is in general good usage of a multiuser system.
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Goal &> Handler :-

add_goal(Goal,nondet,Handler),

undo(cancellation(Handler)),

release_some_suspended_thread.

(a) Non-deterministic goal publishing.

Handler <& :-

enter_mutex_self,

(

goal_available(Handler) ->

exit_mutex_self,

retrieve_goal(Handler,Goal),

call(Goal)

;

check_if_finished_or_failed(Handler)

).

Handler <& :-

add_goal(Handler),

release_some_suspended_thread,

fail.

(b) Goal join and speculation.

check_if_finished_or_failed(Handler) :-

(

goal_finished(Handler) ->

exit_mutex_self,

sending_event(Handler)

;

(

goal_failed(Handler) ->

exit_mutex_self,

fail

;

suspend,

check_if_finished_or_failed(Handler)

)

).

(c) Checking status of goal execution.

sending_event(_).

sending_event(Handler) :-

enter_mutex_self,

enter_mutex_remote(Handler),

set_goal_tobacktrack(Handler),

add_event(Handler),

release_remote(Handler),

exit_mutex_remote(Handler),

check_if_finished_or_failed(Handler).

(d) Sending event to executing agent.

call_handler(Handler) :-

retrieve_goal(Handler,Goal),

save_init_execution(Handler),

call(Goal),

save_end_execution(Handler),

enter_mutex(Handler),

set_goal_finished(Handler),

release(Handler),

exit_mutex(Handler).

call_handler(Handler) :-

enter_mutex(Handler),

set_goal_failed(Handler),

release(Handler),

metacut_garbage_slots(Handler),

exit_mutex(Handler),

fail.

(e) High-level markers definition.

agent :-

enter_mutex_self,

work,

agent.

agent :- agent.

work :-

(

read_event(Handler) ->

(

more_solutions(Handler) ->

move_execution_top(Handler)

;

move_pointers_down(Handler)

),

exit_mutex_self,

fail

;

(

find_goal(H) ->

exit_mutex_self,

call_handler(H)

;

exit_mutex_self,

suspend,

work

)

).

(f) Agent code.

Figure 5.6: High-level solution for unrestricted IAP.
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agent, and a signal is sent to one of the agents that are currently waiting for some

task to do. This agent will resume its execution, pick up the goal, and execute it.

The communication and synchronization between both agents will be performed via

the handler created for that goal. In addition, when the &>/2 primitive is reached

in backwards execution, the memory reserved by the handler is released. Also, if the

goal was taken by another agent and the goal execution was not finished yet, then

a signal is sent to the executing agent to cancel its execution. This is done with

the cancellation/1 primitive. This operation for cancellation avoids performing

unnecessary work and increases the overall performance of the system, as it will be

shown in Section 5.3. Moreover, in order to be able to execute this operation in the

presence of cuts in the code of the clause, it is invoked via the undo/1 predicate.

Figure 5.6(b) presents the implementation of the <&/1 operator. First, the pub-

lishing agent needs to check whether the goal was picked up by some other agent or

not. If it was not taken then the publishing agent will remove it from the goal list

and execute it locally (using call/1), and then it will continue executing scheduler

code. If the goal was taken by some other agent then its status will be checked (i.e.,

to know whether the goal execution has already finished or failed) as shown in Fig-

ure 5.6(c). If the goal execution fails then the parallel goal will be added to the goal

list of the publishing agent, so it can be taken and reexecuted by some other agent.

This is a form of speculative execution, since the reexecution of that literal may not

be needed for the actual computation. However, it increases the actual parallelism in

the system, and note that the goal execution would be cancelled if the corresponding

&>/2 was reached in backtracking.

If the goal execution succeeds and <&/1 is reached on backtracking, then back-

wards execution needs to be performed over the parallel goal. If the goal was not

taken by some other agent then backwards execution is trivially performed. If it
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was picked up by some other agent then the publishing agent sends a signal to the

executing agent with a request for a new solution for that goal. The executing agent

will serve the signal as soon as it is able. In order to enable this communication,

each agent has an event queue from which the agent reads and removes events con-

sisting of pointers to handlers associated to the goals to be backtracked over. The

primitives which perform this communication are add event/1, which inserts a new

pointer to a handler in the event queue of the agent which executed the associ-

ated goal, and read event/1, which either reads and deletes an item from the event

queue in order to perform backwards execution over the parallel goal associated to

it, or fails if the event queue is empty. These primitives extend the list of primitives

shown in Section 5.1.1. Figure 5.6(d) presents the source code which is executed to

add the corresponding event to the executing agent, releasing its execution if it was

suspended.

When an agent reads an event, as shown in Figure 5.6(f), backwards execution

over a parallel goal needs to be performed. If the segment of execution is at the top

of its stack, then the agent will invoke fail/0 and a new solution will be obtained.

However, it might be the case that the segment of execution of the parallel goal

is trapped, i.e., it is currently not at the top of the stack. In this case, there are

two possible scenarios. If the goal is known not to have additional solutions, for

instance because it did not push any choice point or because it has been marked

as deterministic during compilation, or by the user [BLGPH06, HPBG05], then the

segment where the goal lies does not need to be expanded and the pointers to the

top of the segment in the handler are simply made to point to the beginning of the

segment. The section of the trail corresponding to that segment is used to undo the

bindings. After this the stack and the trail pointers are restored to their previous

values — i.e., they point to the tops of the corresponding stacks.

118



Chapter 5. High-Level Implementation of Unrestricted IAP
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Figure 5.7: Copying trapped goal onto top of stack.

If there may be more solutions for that goal, then a mechanism is needed to

untrap the segment of execution of the goal. Several solutions have been proposed to

solve this problem [Her87, SH96]. A first approach consists of avoiding it altogether

by carefully selecting goals to be executed so that they cannot cause trapped goals

(which would dramatically reduce the amount of exploited parallelism). Another

solution is to create a new, independent stack set for every goal taken, which would

probably be memory-inefficient or impose an extra overhead in memory management.

This proposal is a variant of the solution adopted by several parallel systems

(e.g., ACE, DASWAM, &-Prolog, . . . ), which essentially try to continue the goal

execution on top of the stack. However, in this case, and for simplicity, when a

trapped goal is to be backtracked over, its execution segment is copied on top of the

stack, where it can expand freely. The garbage slot created is marked as such, and

can be recovered when everything between this garbage slot and the top of the stack

turns into garbage (or on backtracking). Figure 5.6(e) shows how the limits of the

segment of execution of the parallel goal are stored in the handler, so their values

can be accessed in backwards execution, through the save init execution/1 and

save end execution/1 primitives, which actually have similar behavior to that of
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the input markers and end markers in the &-Prolog model. Note that the choice

point created by the predicate call handler/1 is in fact the input marker of the

parallel execution, but again defined in the source language. Finally, when the goal

execution fails, the metacut garbage slots/1 primitive will pop from the stack

those discarded segments that are right underneath the segment of execution of the

parallel goal. All these primitives extend the list of primitives shown in Section 5.1.1.

Although most of the garbage collection implementations do not recover dead

choice points, this does not affect the presentation of the implementation, since

the garbage collection algorithms have to be changed anyway to work with parallel

execution and cross-agent pointers. Handlers already keep pointers to boundaries of

every live segment, which the improved garbage collector algorithm can use.

Figure 5.7 shows an example of this solution for the trapped goal and garbage

slot problems. It is assumed that the variables X, Y, and Z are independent. When

literals a/1 and b/1 are taken and executed by the second agent, the pointers that

define the actual segment of execution of both literals are stored in the corresponding

handler. Thus, when Ha <& is reached in backtracking, the segment of execution of

literal a/1 is trapped, and it is copied on top of the stack in order to have enough

space to expand and obtain a new solution for the goal a/1. The handler associated

to the literal b/1 will in addition mark the garbage slot left by the literal a/1, which

will be freed when the execution of the literal b/1 fails.

Figure 5.8 presents a state diagram which shows the different states in which a

parallel goal can be, and graphically represents the and-parallel execution of goals

previously shown in Figure 5.6. First, a goal is published to be executed in parallel,

by adding a pointer to it in the goal list and releasing the execution of an agent that

is currently idle. When performing the goal join, if the goal is still available in the

goal list it will be executed locally. If the goal was found by some other agent then it
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push_goal/3

release_some_suspended_agent/0

Published
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set_goal_failed/1

release/1

Failed
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execution finishedfail

execution failed

Remotely Executing

call_handler/1

cancellation/1

execution cancelledLocally Executing

call/1

execution failed

execution finished

read event

goal foundgoal available

speculative execution

Figure 5.8: State diagram of a parallel goal.

will be executed remotely. That goal execution could be cancelled if the outcome of

the execution is not needed for the actual computation. If the goal execution is not

cancelled then it may succeed, in which case it may be backtracked over with the

communication between agents performed via adding and removing events, or fail,

in which case the goal will be published again for parallel execution.

5.3 Experimental Results

This section presents the performance results obtained after executing a selection of

well-known benchmarks with independent and-parallelism. Although most of these

benchmarks are quite well-known, Table 5.1 provides a brief description of them.
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AIAKL An abstract interpreter for the AKL language.
Ann Annotator for and-parallelism.
Boyer Simplified version of the Boyer-Moore theorem prover.
Chat Question parser of Chat-80.
Deriv Symbolic derivation.
FFT Fast Fourier transform.
Fibonacci Doubly recursive Fibonacci.
Hamming Calculates Hamming numbers.
Hanoi Solves Hanoi puzzle.
MergeSort Sorts a 10, 000 element list.
MMatrix Multiplies two 50× 50 matrices.
Numbers Obtains a number from a list of others.
Palindrome Generates a palindrome of 214 elements.
Progeom Constructs a perfect difference set of order n.
Queens The n-queens problem.
QueensT Solves the n-queens problem T times.
QuickSort Sorts a 10, 000 element list.
Takeuchi Computes Takeuchi.

Table 5.1: Benchmarks to measure the performance of the high-level IAP implemen-
tation.

As mentioned before, the proposed approach has been implemented in the Ciao

system [BCC+06], and all the benchmarks in Table 5.1 were automatically par-

allelized [MBdlBH99] using CiaoPP [HPBG05], and starting from their sequential

code. All results were obtained by averaging ten runs on a state-of-the-art multipro-

cessor, a Sun Fire T2000 with 8 cores (4 threads each), and 8 Gb of memory, the

same machine used to evaluate the annotation algorithms presented in Chapter 4.

While each core is capable in theory of running 4 threads in parallel, and in

theory up to 32 threads could run simultaneously on this machine, only speedups up

to 8 agents are shown. The Sun Fire T2000 machine cannot produce linear speedups

beyond 8 processors even for independent computations due to the limitations in
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the hardware of the multiprocessor machine3. Thus, beyond 8 agents, it is hard to

know whether reduced speedups are due to the parallelization and implementation

or to limitations of the machine. In order to experiment with this issue, a Prolog

example using as many threads as natively available in the machine was executed,

and its speedup compared to that of a C program generating completely independent

computations. Such C program returned a practical upper bound on the attainable

speedups. The results are depicted in Figure 5.9, which shows both the ideally

parallel C program and a parallelized Fibonacci running on the implementation.

Interestingly, the speedup obtained is only marginally worse than the best possible

one. In both curves it is possible to observe a sawtooth shape, presumably caused

by tasks filling in a row of units in all cores and starting to use up additional thread

units in other cores, which happens at 1× 8, 2× 8, and 3× 8 threads.

Table 5.2 presents the speedups obtained after running only deterministic pro-

grams (using &!/2, &!>/2 and <&!/1) parallelized using [N]SIAP. Table 4.2 already

presented a comparison of the performance results for some of the benchmarks an-

notated with restricted and unrestricted IAP. The speedups are with respect to

the sequential speed on one processor of the original, not parallelized benchmark.

Therefore, the column tagged 1 corresponds to the slowdown coming from execut-

ing a parallel program on a single processor. Benchmarks with a GC suffix were

executed with granularity control with a suitably chosen threshold and benchmarks

with a DL suffix use difference lists (hence no append/3 is needed), and require

NSIAP for parallelization. All the benchmarks were automatically parallelized using

CiaoPP [HPBG05] and the annotation algorithms described in [CCH07a].

It can be deduced from the results that in several benchmarks the natural par-

allelizations produce small granularity. This, understandably, impacts the imple-

3Mainly, we suspect the availability of a reduced number of integer units and a single
FP unit.
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Figure 5.9: Performance results of Fibonacci with granularity control vs. maximum
speedup in real machine (Sun Fire T2000, 8 cores, 8 Gb of memory and 4 threads
per core).

mentation since a sizable part of it is written in Prolog, which implies additional

overhead in the preparation and execution of parallel goals. Thus, it is not possi-

ble to perform a fair comparison of the speedups obtained with respect to previous

(lower-level) and-parallel systems. In addition, &-Prolog does not run in current

multiprocessors machines and, since these machines are not as “parallel” as, e.g.,

early shared-memory multiprocessors, such as the Sequent Balance or Symmetry

machines, where early parallel logic programming systems were benchmarked, per-

formance results cannot be compared directly.

The overhead implied by the proposed approach produces comparatively low per-

formance on a single processor, and in some cases with very fine granularity, such

as Boyer and Takeuchi, speedups are shallow (below 2×) even over 8 processors. In

these examples, execution is dominated by the sequential code of the scheduler and

124



Chapter 5. High-Level Implementation of Unrestricted IAP

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 1  2  3  4  5  6  7  8

S
pe

ed
up

Number of agents

Boyer-Moore
Boyer-Moore with granularity control

Figure 5.10: Speedups obtained with and without granularity control for Boyer.
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Figure 5.11: Speedups obtained with and without granularity control for Deriv.
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Figure 5.12: Speedups obtained with and without granularity control for FFT.
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Figure 5.13: Speedups obtained with and without granularity control for Fibonacci.
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Figure 5.14: Speedups obtained with and without granularity control for Hanoi.
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Figure 5.15: Speedups obtained with and without granularity control for QuickSort.
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Benchmark
Number of processors

1 2 3 4 5 6 7 8

AIAKL 0.97 1.82 1.82 1.82 1.82 1.83 1.83 1.83
Ann 0.98 1.86 2.72 3.56 4.38 5.16 5.88 6.64

Boyer 0.32 0.64 0.95 1.21 1.32 1.47 1.57 1.64
BoyerGC 0.92 1.76 2.58 3.16 3.39 4.01 4.31 4.55

Deriv 0.32 0.61 0.86 1.09 1.15 1.30 1.55 1.75
DerivGC 0.91 1.63 2.37 3.05 3.78 4.49 4.98 5.49

FFT 0.61 1.08 1.30 1.63 1.65 1.67 1.68 1.70
FFTGC 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

Fibonacci 0.30 0.60 0.94 1.25 1.58 1.86 2.22 2.50
FibonacciGC 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
Hanoi 0.67 1.31 1.82 2.32 2.75 3.20 3.70 4.07

HanoiDL 0.73 1.44 2.08 2.77 3.37 4.04 4.58 5.19
HanoiGC 0.89 1.76 2.47 3.32 3.77 4.17 4.61 5.25
MergeSort 0.79 1.47 2.12 2.71 3.01 3.30 3.56 3.71

MergeSortGC 0.83 1.52 2.23 2.79 3.10 3.43 3.67 3.95
MMatrix 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28

Palindrome 0.44 0.77 1.09 1.40 1.61 1.82 2.10 2.23
PalindromeGC 0.96 1.79 2.37 2.97 3.30 3.62 4.13 4.46

QuickSort 0.75 1.42 1.98 2.44 2.84 3.07 3.37 3.55
QuickSortDL 0.95 1.69 2.30 2.82 3.10 3.25 3.47 3.60
QuickSortGC 0.97 1.78 2.31 2.87 3.19 3.46 3.67 3.75

Takeuchi 0.23 0.46 0.68 0.91 1.12 1.32 1.49 1.72
TakeuchiGC 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

Table 5.2: Speedups obtained for several deterministic IAP benchmarks.

agent management in Prolog. However, even in these cases, setting a granularity

threshold based on a measure of the input argument size [LGHD96] much better re-

sults can be obtained. Figures 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15 depict graphically

the impact of granularity control in some of the selected benchmarks. Annotating

the parallelized program to take into account granularity measures based on size of

the input arguments, and automatically finding out the optimal threshold for a given

platform, can be done automatically in many cases [LGHD96, MLGP+07].
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Figure 5.16: Speedups with stack set expansion for Boyer.
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Figure 5.17: Speedups with stack set expansion for FFT.
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Figure 5.18: Speedups with stack set expansion for Fibonacci.
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Figure 5.19: Speedups with stack set expansion for QuickSort.
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Benchmark Op.
Number of agents

Seq. 1 2 3 4 5 6 7 8

AIAKL
&! 1.00 0.97 1.82 1.82 1.82 1.83 1.83 1.83 1.82
& 1.00 0.96 1.70 1.71 1.72 1.74 1.75 1.72 1.72

Ann
&! 1.00 0.98 1.86 2.72 3.56 4.38 5.16 5.88 6.64
& 1.00 0.96 1.85 2.72 3.57 4.35 5.14 5.87 6.61

Boyer
&! 1.00 0.92 1.76 2.58 3.16 3.39 4.01 4.31 4.55
& 1.00 0.90 1.21 1.83 2.06 2.26 2.30 2.39 2.56

Deriv
&! 1.00 0.91 1.63 2.37 3.05 3.78 4.49 4.98 5.49
& 1.00 0.84 1.60 2.34 2.99 3.73 4.43 4.56 4.85

FFT
&! 1.00 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63
& 1.00 0.98 1.72 1.97 2.65 2.67 2.75 2.93 2.97

Fibonacci
&! 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
& 1.00 0.98 1.58 2.04 2.53 3.28 4.06 4.61 5.46

Hamming
&! 1.00 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
& 1.00 0.92 1.02 1.41 1.63 1.62 1.62 1.62 1.62

Hanoi
&! 1.00 0.89 1.76 2.47 3.32 3.77 4.17 4.61 5.25
& 1.00 0.89 1.77 1.91 2.84 3.13 3.54 3.96 4.47

HanoiDL
&! 1.00 0.73 1.44 2.08 2.77 3.37 4.04 4.58 5.19
& 1.00 0.74 1.43 1.89 1.87 2.73 3.07 3.59 3.87

MMatrix
&! 1.00 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28
& 1.00 0.90 1.48 2.16 2.88 3.51 4.13 4.71 5.25

Palindrome
&! 1.00 0.96 1.79 2.37 2.97 3.30 3.62 4.13 4.46
& 1.00 0.96 1.78 2.14 2.56 3.11 3.30 3.74 3.90

QuickSort
&! 1.00 0.97 1.78 2.31 2.87 3.19 3.46 3.67 3.75
& 1.00 0.97 1.71 2.17 2.43 2.60 2.93 3.06 3.19

QuickSortDL
&! 1.00 0.95 1.69 2.30 2.81 3.10 3.25 3.47 3.60
& 1.00 0.95 1.68 2.14 2.39 2.56 2.92 2.94 3.19

Takeuchi
&! 1.00 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72
& 1.00 0.88 1.45 2.02 2.85 3.41 3.80 4.23 4.66

Table 5.3: Speedups obtained for several deterministic unrestricted IAP benchmarks.

Another particular fact that limits the performance results is the expansion of the

stack set of an agent when space allocated to them is about to be exhausted. Stack

sets are initially created with a relatively small size, and they dynamically grow as
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Benchmark
Number of agents

Seq. 1 2 3 4 5 6 7 8

Chat 1.00 2.31 4.49 5.42 6.91 9.79 9.95 11.10 17.29

Numbers 1.00 1.84 1.79 1.79 1.79 1.79 1.79 1.78 1.78

Progeom 1.00 0.99 0.96 0.97 0.98 0.98 0.98 0.98 0.98

Queens 1.00 0.99 0.94 0.94 0.94 0.94 0.94 0.94 0.94

QueensT 1.00 0.99 1.90 2.41 3.18 4.71 4.61 4.58 4.57

Table 5.4: Speedups obtained for several non-deterministic unrestricted IAP bench-
marks.

needed. Due to the work-stealing strategy adopted, and the shared-memory nature

of this implementation, there are cross-agent pointers. The approach that has been

taken in this prototype implementation to ensure a correct stack set expansion is

to suspend the execution of all the agents. The stack set which is short on space

is then expanded and the pointers pointing to that stack set (from any agent) are

updated. The execution of the agents finally resumes. A smarter algorithm could

be implemented, but this topic is out of the scope of this thesis and a subject for

further work.

That scheme indeed affects the performance of the execution. Figures 5.16, 5.17,

5.18 and 5.19 present the speedups obtained when executing some selected bench-

marks with 2, 4, 8, 16 and 32 agents, ten consecutive times. By joining together the

points corresponding to the n-th execution with a given number of processors, we can

construct a profile of how the speedup evolves as the system executes several times

the same programs. It can be observed that the first executions do suffer from stack

expansions. However, after several executions, the stack set of each agent reaches

an appropriate size, reducing the number of expansions, and thus the performance

results stabilize.

Table 5.3 presents the speedups obtained for some deterministic benchmarks par-
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Benchmark
Queens, 2 agents Queens, 4 agents Queens, 8 agents
No Gr No Gr No Gr

1 N 1 N 1 N 1 N 1 N 1 N

G &> H 11,810 171,858 9 290 11,810 171,858 9 290 11,810 171,858 9 290

Taken
x 6,649 97,798 9 290 6,860 99,373 9 290 6,476 96,056 9 290
σ 9.35 45.04 0.00 0.00 16.15 65.02 0.00 0.00 13.49 59.04 0.00 0.00

LBack
x 858 14,319 0.00 0.00 618 10,905 0.00 0.00 755 12,786 0.00 0.00
σ 1.03 1.25 0.00 0.00 14.93 99.89 0.00 0.00 5.79 23.59 0.00 0.00

RBack
Top

x 1,838 29,725 2 234 2,345 38,420 2 234 2,208 36,261 2 234
σ 0.46 2.14 0.00 0.00 15.14 98.66 0.00 0.00 6.34 26.53 0.00 0.00

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.5: Behavior of Queens(8) with different number of agents.

Benchmark
Progeom, 2 agents Progeom, 4 agents Progeom, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 215 154,260 1 60 215 154,260 1 60 215 154,260 1 60

Taken
x 100 72,375 0 1 91 65,643 0 1 55 75,113 0 1
σ 1.85 248.69 0.00 0.80 1.36 414.68 0.00 0.70 3.49 192.25 0.00 0.78

LBack
x 1 738 0 29 3 2,131 0 29 9 364 0 29
σ 0.46 52.03 0.00 0.80 1.10 83.78 0.00 0.70 0.80 26.82 0.00 0.78

RBack
Top

x 10 6,530 0 1 8 5,131 0 1 2 6,907 0 1
σ 0.57 52.08 0.00 0.80 1.10 84.26 0.00 0.70 0.80 27.02 0.00 0.78

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.6: Behavior of Progeom(5) with different number of agents.

allelized using unrestricted IAP, and executed with both deterministic (&!/2) and

non-deterministic operators (&/2). As well as in Table 5.2, the speedups were ob-

tained with respect to the execution time that the sequential version of the bench-

marks takes on one processor.

It can be concluded from the results that the difference in speedups between both

parallel versions is of little significance in most cases, and only in very few cases (for

example, Boyer and Fibonacci) the difference is relevant. Note that determinism

can either be annotated by hand or, in many cases, automatically detected by a
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Benchmark
Fibonacci, 2 agents Fibonacci, 4 agents Fibonacci, 8 agents
No Gr No Gr No Gr

1 N 1 N 1 N 1 N 1 N 1 N

G &> H 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596

Taken
x 1 1 1 1 5 5 5 5 37 37 31 31
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

LBack
x 121,391 121,391 1,595 1,595 121,387 121,387 1,591 1,591 121,355 121,355 1,565 1,565
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

RBack
Top

x 1 1 1 1 5 5 5 5 18 18 16 16
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.40 0.98 0.98

Tp
x 0 0 0 0 0 0 0 0 19 19 15 15
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 2.86 1.68 1.68

Table 5.7: Behavior of Fibonacci(25) with different number of agents.

sophisticated analyzer [BLGPH06, HPBG05]. In any case, reasonably good speedups

are obtained, despite the fact that the proposal suffers from the overhead added by

the source-level coded scheduler etc., but which, in return, offers other advantages

such as significantly reduced development (and maintenance) time, more flexibility,

simpler and faster experimentation, etc.

Table 5.4 presents the speedups obtained for some non-deterministic benchmarks

executed in parallel. Some of them do not achieve any speedup when executed in

parallel due to the very fine granularity of the parallel goals in these benchmarks

and the high-level nature of this implementation. However, super-linear speedups

can be achieved in some other benchmarks, thanks to the implementation of goal

cancellation.

Tables 5.5, 5.6 and 5.7 present some data from the execution of some of the

benchmarks which exploit and-parallelism on non-deterministic programs.

They present the data from executions with 2, 4, and 8 agents, using or not

granularity control (resp., Gr and No), and for the cases in which only one solution

(1) or all solutions (N) are requested. The first row in the table (G &> H) contains

the number of parallel goals published. The second row (Taken) presents the number
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of parallel goals that were picked up by some other agent. x is always the average

of the results in ten runs and σ will correspond to the standard deviation. The

third row (LBack) represents the number of times that backtracking over parallel

goals took place locally (because the goal was not picked up by some other agent).4

The fourth row in the table (RBack) shows the number of times that a parallel goal

was backtracked over remotely. In this case, Top counts how many times remote

backtracking was performed at the top of the stack, and Tp shows the number of

times that backtracking over a trapped goal was necessary. A relevant conclusion

extracted from these results is that, while the amount of remote backtracking is

quite high, the number of trapped goals is surprisingly low. Therefore, the overhead

associated with copying the trapped segments to the top of the stack should not be

very expensive in comparison with the rest of the goal execution.

Furthermore, it is expected to see a similar behavior in most of the non-deter-

ministic parallel programs where parallel goals are of very fine granularity or very

likely to fail: these two behaviors make the piling up of segments corresponding to

the execution of loosely related parallel goals in the same stack relatively uncommon,

which indeed reduces the chances to suffer from the trapped goal and garbage slot

problems.

5.4 Summary

A new implementation approach for exploiting independent and-parallelism in logic

programs has been presented, with the objectives of providing a simpler machinery

and more flexibility than previous approaches. The approach is based on raising the

4The backtracking measured for Fibonacci in Table 5.7 corresponds to the stack un-
winding performed when failing after the execution is finished.
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implementation of some components to the source language level by using more basic

high-level primitives than the fork-join operator and keeping only some relatively

simple operations at a lower level, making the system easier to code, maintain, and

extend. The high-level execution model for unrestricted IAP presented in this chapter

has been implemented and evaluated in the Ciao system.
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Chapter 6

Concluding Remarks and Future

Work

This final chapter is intended to conclude the thesis by presenting a brief overview

of the main contributions made, situated in the domain of automatic parallelization

of multiparadigm declarative languages. Furthermore, some suggestions for future

research will be made.

6.1 Functional Notation and Lazy Evaluation in

LP Systems

As previously mentioned in this thesis, the idea of adding functional features to logic

programming systems is not new [BBLM84, BL86, Nai91], since there are currently

a good number of systems which integrate functions and higher-order programming

into some form of logic programming. However, the approach presented in Chapter 3

is very interesting in itself. First, the approach is completely syntactic, and thus
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functions are mere predicates, thus maintaining their power. Also, predicates may

be invoked through functional syntax or evaluated lazily. In addition, this syntactic

extension of the language is composable with other extensions such as higher-order

or objects. Moreover, another important characteristic of this approach is that most

of it can be applied directly (or with minor changes) to any ISO-standard Prolog

system.

Finally, and perhaps most importantly, and again because of the syntactic nature

of this extension, it can be the target of analysis, optimization, static checking, and

verification (of types, modes, determinacy, nonfailure, cost, etc.), as performed by,

e.g., the Ciao preprocessor (CiaoPP) [HPBLG05].

The original version of the functional extension was first distributed in Ciao

0.2 [BCC+97] and later used as an example in [CH00]. As part of the evaluation

of this extension, the performance of the lazy evaluation was tested with several

examples. As expected, the usage of lazy evaluation implies some extra time and

memory overhead, which justifies making lazy evaluation optional to the user via a

declaration.

6.2 Automatic Unrestricted Annotation for IAP

Chapter 4 presented and proved correct two different annotation algorithms for IAP

which rely on the use of high-level primitives that have a simpler nature than the

traditional fork-join operator. The main difference between the algorithms is the

imposed restriction to preserve the order of the solution in the original or not.

The annotation algorithms have been implemented and evaluated in CiaoPP,

using the high-level execution model for IAP presented in Chapter 5. The results
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of the experiments performed show that, although the parallelization provided by

the new annotation algorithms is the same in quite a few of the traditional parallel

benchmarks, in the experiments it is actually never worse and in some cases it is

significantly better. Some simple representative cases were presented in which the

performance results were notoriously increased by the unrestricted parallelization.

This supports the observations made based on the expected performance of the

annotations.

In addition, the benefits are larger for programs with high numbers of goals in

their clauses, since their more complex graphs make the ability to exploit unrestricted

parallelism more relevant.

6.3 High-Level Execution Model for Unrestricted

IAP

Most of the previous implementations of and-parallelism have relied on a very com-

plex low-level machinery, which was indeed very difficult to code and maintain.

Therefore, to the best of my knowledge, no currently available low-level imple-

mentation of Prolog with and-parallelism fully implements backtracking of non-

deterministic parallel goals.

Chapter 5 presented a new execution model, based on a high-level implemen-

tation, which is able to exploit full independent and-parallelism, both restricted

and unrestricted. It has been implemented as part of the Ciao system, and eval-

uated with representative benchmarks, some of which perform backtracking over

non-deterministic parallel goals. Furthermore, performance data from actual par-

allel executions has been shown in order to provide a better understanding of the
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behavior of the parallel execution.

The experimental results show that quite reasonable speedups are achievable with

this approach, although the additional overhead makes it necessary to use granularity

control in many cases in order to obtain good performance results. While this might

seem to complicate the code, in fact automatic, compile-time granularity analysis

can be applied to alleviate the programmer from the burden of adding such control

by hand.

In addition, for the non-deterministic parallel benchmarks, in several cases super-

linear speedups were obtained thanks to the backtracking model implemented, since

the internal failure of a goal in a parallel, non-deterministic conjunction cancels the

other goal.

The fundamental claim of this work is that a high-level implementation can be

usefully competitive with a lower level one in terms of “speed / complication”. It is

clear, at least with the current state-of-the-art compilers, that once the components

of the system stabilize additional parts of the code (those which are a bottleneck)

that are written in Prolog could be moved down to C, in order to increase the

overall performance of the system. However, that is not currently planned, since the

benefits may not surpass the added complexity and reduced flexibility. Also, it should

be taken into account that, by maintaining the flexibility of the system, smarter

schedulers could be, in principle, easier to develop than with other approaches.

But, most importantly, some of the recent compilation technology and implemen-

tation advances, as in [CMM+06, SC99, MCH07], provide hope that it will eventually

be possible to recover a significant part of the efficiency lost due to the level at which

the parallel execution is expressed simply because the difference in speed between

the high-level (Prolog) code and C is diminishing significantly.
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6.4 Future Work

There exist several improvements to the work presented in this thesis which could

be developed and many directions in which it could be extended.

First, it would be very interesting to enrich the functional syntax extension to

the language with more extensive higher-order programming features, as for instance

the possibility to have higher-order lambda-term (pattern) unification. Due to the

Ciao system’s design features, the higher-order pattern unification could be used

as an optional extension to the user, in order to avoid the performance overhead

that other implementations, as for instance Lambda Prolog [NM88], have to pay for

having it by default. In this direction, preliminary implementation was done and is

currently a library in the Ciao system.

Also, since the performance results of the high-level solution for unrestricted IAP

which have been obtained are very encouraging, further research could be done in

a similar direction in order to improve the current state of the system and develop

new ways of parallelizing logic programs. Both the UUDG and UOUDG annotation

algorithms only take into account dependency information in order to decide whether

a literal can be scheduled for parallel execution or not. These annotation algorithms

could benefit from the use of cost and resource compile-time analysis [NMLGH07] in

order to control the additional inherent overhead due to the nature of the high-level

implementation. Some work has already been performed on designing new heuristics

in order to perform approximate comparisons of cost functions at compile-time, as

well as on extending the annotation algorithms presented in Chapter 4 to generate

conditional expressions in order to provide different parallelizations depending on

run-time evaluation of selected cost functions.

In addition, the high-level implementation of unrestricted IAP could be improved
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by the usage of other existing tools, as for instance tabling [dGCH+08]. Also, de-

veloping new high-level operators would most likely allow the system to exploit new

sources of parallelism. Finally, another issue for further research may be the de-

sign and evaluation of new efficient stack expansion and parallel garbage collection

algorithms, in which the synchronization required between threads is minimized.
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Appendix A

Comparison Between Restricted

and Unrestricted IAP

In this appendix, let us consider the predicate p/3 of Section 4.1.1, whose dependency

graph is shown in Figure 4.1. The following sections will show how the unrestricted

parallelization is a better option in this case than the restricted ones.

A.1 Overhead in Parallel Execution Assumed to

be Zero

The execution time expressions for the two restricted parallelizations of the predicate

p/3, given in Figure 4.2(a) and Figure 4.2(b), are presented in Equation (4.1) and

Equation (4.2), assuming that there is not overhead in the parallel execution. These

two equations can be implemented using constraint logic programming (CLP) as

shown in Figure A.1.

145



Appendix A. Comparison Between Restricted and Unrestricted IAP

positive([]).

positive([X|Xs]) :-

X .>. 0,

positive(Xs).

%% Tfj1 = max(a + b, c) + d

tfj1(A, B, C, D, T) :-

positive([A,B,C,D,T]),

AB .=. A + B,

max(AB, C, MaxABC),

T .=. D + MaxABC.

max(X, Y, X) :- X .>=. Y.

max(X, Y, Y) :- X .<. Y.

%% Tfj2 = max(a, c) + max(b, d)

tfj2(A, B, C, D, T) :-

positive([A,B,C,D,T]),

max(A, C, MAC),

max(B, D, MBD),

T .=. MAC + MBD.

Figure A.1: CLP code for Equations (4.1) and (4.2), assuming no overhead in the
parallel execution.

In order to compare Equations (4.1) and (4.2), each of the following queries are

thrown:

?- tfj1(A,B,C,D,T1), ?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2), tfj2(A,B,C,D,T2),

T1 .<. T2. T2 .<. T1.

yes yes

Thus, none of the restricted parallelizations of predicate p/3 is better than the

other.

The parallelization resulting from the execution of the UUDG annotator is shown

in Figure 4.3 and the expression which gives the execution time appears in Equa-

tion (4.3). In a similar fashion as in Figure A.1, Figure A.2 presents the constraint

logic programming code that implements the unrestricted parallelization of predicate

p/3 shown in Equation (4.3).
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%% Tnfj = max(a+b, d + max(a,c))

tnfj(A, B, C, D, T) :-

positive([A,B,C,D,T]),

AB .=. A + B,

max(A, C, MaxAC),

DAC .=. D + MaxAC,

max(AB, DAC, T).

Figure A.2: CLP code for Equation (4.3), assuming no overhead in the parallel
execution.

In order to compare Equation (4.3) with Equations (4.1) and (4.2), and decide

whether any of the fork-join annotations can be handled better than the non-fork-

join one with the &>/2 and <&/1 operators, the following queries can be executed:

?- tfj1(A,B,C,D,T1), tnfj(A,B,C,D,T2), T1 .<. T2.

no

?- tfj2(A,B,C,D,T1), tnfj(A,B,C,D,T2), T1 .<. T2.

no

Thus, it can be concluded that there does not exist a combination of execution

times for the sequential goals that can make the non-jork-join annotation be worse

than either of the fork-join ones. Therefore, Equation (4.3) will never perform worse

than Equation (4.1) or Equation (4.2), and the unrestricted annotation is, therefore,

a better option than any of the other restricted ones.
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A.2 Considering Overhead in Parallel Execution

The previous section compared the restricted and unrestricted parallelization assum-

ing that there was not overhead in the parallel execution. Figure A.3 presents the

source code for both types of parallelization without that assumption. Focusing in

the comparison between restricted and unrestricted parallelizations, the following

queries can be executed:

?- tfj1_o(A,B,C,D,Oa,Ob,Oc,Oab,T1),

tnfj_o(A,B,C,D,Oa,Ob,Oc,Oab,T2), T1 .<. T2.

Oa.>=.0, C.>.0,

C.=<.A, D.>.0,

D.=<.B, Oc.>.0,

D.<. -Oab+Ob+Oc, Ob.>.0,

Oab.>.0, T2.=.B+Ob+Oc+A,

T1.=.D+Oab+B+A ?

yes

?- tfj2_o(A,B,C,D,Oa,Ob,Oc,Oab,T1),

tnfj_o(A,B,C,D,Oa,Ob,Oc,Oab,T2), T1 .<. T2.

Oab.>=.0, D.>.0,

D.=<.B, Oa.>.0,

C.=<.A, C.>.0,

Oa.<.Oc, T2.=.Ob+A+Oc+B,

Ob.>.0, T1.=.Ob+Oa+A+B ?

yes
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Thus, there are some cases in which the restricted parallelization may be better

than the unrestricted one. By having a more in depth look at the answers, the

restricted parallelization will take less time to execute if a particular goal takes less

time to execute than a constant value, defined by the overhead of the parallelizations.

Therefore, it can be concluded that a notion of granularity control can be applied

if the overhead of the parallelization is taken into account. Moreover, the simplifi-

cation of the answers returned above will define the threshold that can be used to

choose between parallelizations, in a similar fashion to the following:

p :-

...

(

granularity_threshold ->

Unrestricted parallelization

;

Restricted parallelization

),

...
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%% Tfj1_o = max(a + b + oa, c) + d

tfj1_o(A, B, C, D, Oa, Ob, Oc, Oab, T) :-

Oa .>=. 0,

Ob .>=. 0,

Oc .>=. 0,

positive([A,B,C,D,Oab,T]),

ABO .=. A + B + Oab,

max(ABO, C, MaxABOC),

T .=. D + MaxABOC.

%% Tfj2_o = max(a + oa, c) + max(b + ob, d)

tfj2_o(A, B, C, D, Oa, Ob, Oc, Oab, T) :-

Oc .>=. 0,

Oab .>=. 0,

positive([A,B,C,D,Oa,Ob,T]),

AO .=. A + Oa,

max(AO, C, MAOC),

BO .=. B + Ob,

max(BO, D, MBOD),

T .=. MAOC + MBOD.

%% Tnfj_o = max(a + b, d + max(a,c)) + Ob + Oc

tnfj_o(A, B, C, D, Oa, Ob, Oc, Oab, T):-

Oa .>=. 0,

Oab .>=. 0,

positive([A,B,C,D,Ob,Oc,T]),

AB .=. A + B,

max(A, C, MaxAC),

DAC .=. D + MaxAC,

max(AB, DAC, MaxABDAC),

T .=. MaxABDAC + Ob + Oc.

Figure A.3: CLP code for Equations (4.1), (4.2) and (4.3) taking into account the
overhead of the parallel execution.
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Garćıa, and G. Puebla (Eds.). The Ciao System. Ref. Manual
(v1.13). Technical report, C. S. School (UPM), 2006. Available at
http://www.ciaohome.org.

151

http://www.ciaohome.org


Bibliography
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[dlBHM00] M. Garćıa de la Banda, M. Hermenegildo, and K. Marriott. Indepen-
dence in CLP Languages. ACM Transactions on Programming Lan-
guages and Systems, 22(2):269–339, March 2000.
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