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Abstract

Goal-level Independent and-parallelism (IAP) is exploiby scheduling for simultaneous execution
two or more goals which will not interfere with each otherwt time. This can be done safely even if
such goals can produce multiple answers. The most suct&sBfimplementations to date have used
recomputation of answers and sequentially ordered baditrg. While in principle simplifying the
implementation, recomputation can be very inefficient & granularity of the parallel goals is large
enough and they produce several answers, while sequgridired backtracking limits parallelism.
And, despite the expected simplification, the implemeatatf the classic schemes has proved to
involve complex engineering, with the consequent diffictillr system maintenance and extension,
while still frequently running into the well-known trappgdal and garbage slot problems. This work
presents an alternative parallel backtracking model fd? hd its implementation. The model fea-
tures parallel out-of-order (i.e., non-chronologicaltkaacking and relies on answer memoization to
reuse and combine answers. We show that this approach carsihificant performance advantages.
Also, it can bring some simplification to the important erggiring task involved in implementing the
backtracking mechanism of previous approaches.

KEYWORDSParallelism, Logic Programming, Memoization, Backtiiagk Performance.

1 Introduction

Widely available multicore processors have brought reeénterest in languages and tools
to efficiently and transparently exploit parallel executie- i.e., tools to take care of the
difficult (Karp and Babb 1988) task of automatically uncamgrparallelism in sequential
algorithms and in languages to succinctly express thidlplisan. These languages can be
used to both write directly parallel applications and age#s for parallelizing compilers.
Declarative languages (and among them, logic programnainguages) have tradition-
ally been considered attractive for both expressing andbéipy parallelism due to their
clean and simple semantics and their expressive power.gk @mount of work has been
done in the area of parallel execution of logic progréms (@epal. 200/1), where two main
sources of parallelism have been exploited: parallelistwéen goals of a resolvent (And-
Parallelism) and parallelism between the branches of teewgion (Or-Parallelism). Sys-
tems efficiently exploiting Or-Parallelism include Aurdtaisk et al. 1988) and MUSE (Ali and Karlsson 1990),

* Work partially funded by EU projects IST-215483Cubeand FET IST-23162B1ATS MICINN projects TIN-
2008-05624DOVES and CAM project S2009TIC-146BROMETIDOS Pablo Chico is also funded by an
MICINN FPU scholarship.
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while among those exploiting And-Parallelism, &-Prolpgefithenegildo and Greene 1991)
and DDAS [[Shen 1996) are among the best known ones. In parti&iProlog exploitdn-
dependent And-Paralleliswhere goals to be executed in parallel do not compete fat-bin
ings to the same variables at run time and are launched fioltpa nested fork-join struc-
ture. Other systems such a8)ACE (Pontelli et al. 1995), AKL[(Janson 1994), Andorra-
| (Santos-Caosta 1993) and the Extended Andorra Model (E/8dhtos Costa, V. et al. 1991;

[Copes et al. 2011) have approached a combination of bothnoraad-parallelism. In this
paper, we will focus on independent and-parallelism.

While many IAP implementations obtained admirable perfamoe results and achieved
efficient memory management, implementing synchroninagiod working around prob-
lems such agrapped goalgSectior{h) andjarbage slotsn the execution stacks required
complex engineering: extensions to the WAM instruction setv data structures, special
stack frames in the stack sets, and others (Hermenegilds) 1B8e to this complexity,
recent approaches have focused instead on simplicity,mg@ore components of the im-
plementation to the source level. [n(Casas et al. 2008ylalevel implementation of goal-
level IAP was proposed that showed reasonable speedupssdésmoverhead added by the
high level of the implementation. Other recent proposalsuif et al. 2008), with a dif-
ferent focus than the traditional approaches to parattelisLP, concentrate on providing
machinery to take advantage of underlying thread-baseduddry blocks.

A critical area in the context of IAP that has also receivedmattention is the implemen-
tation of backtracking. Since in IAP by definition goals dd affect each other, an obvious
approach is to generate all the solutions for these goalarallgl independently, and then
combine theni (Conery 1987). However, this approach hasalelr@wbacks. First, copying
solutions, at least naively, can imply very significant dvead. In addition, this approach
can perform an unbounded amount of unnecessary work if,anty. some of the solutions
are actually needed, and it can even be non-terminatingdafadrthe goals does not fail
finitely. For these reasons the operational semanticsailpitnplemented in IAP systems
performs an ordered, right-to-left backtracking. For eplamif execution backtracks into a
parallel conjunction such as& b & c, the rightmost goald) backtracks first. If it fails, then
b is backtracked over whileis recomputed and so on, until a new solution is found or until
the parallel conjunction fails. The advantage of this apphas that it saves memory (since
no solutions need to be copied) and keeps close to the sémjusarhantics. However, it
also implies that many computations are redone and a largeminof backtracking work
can be essentially sequential.

Herein we propose an improved solution to backtracking id &med at reducing recom-
putation and increasing parallelism while preserving igfficy. It combinesnemoization of
answers to parallel goal§to avoid recomputationjut-of-order backtrackingto exploit
parallelism on backtracking), andcremental computation of answets reduce memory
consumption and avoid termination problems. The fact tittis approach the right-to-left
rule may not be followed during parallel backtracking metirag answer generation order
can be affected (this of course does not affect the declaraimantics) but, as explained
later, it greatly simplifies implementation. The EAM alsgpuorts out-of-order execution
of goals. However, our approach differs from EAM in that th&NEis a more encom-
passing and complex approach, offering more parallelistheatost of more complexity
(and overhead) while our proposal constitutes a simplemname: approachable solution to
implement.
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In the following we present our proposal and an IAP impleragan of the approach, and
we provide experimental data showing that the amount oflletisan exploited increases
due to the parallelism in backward execution, while keegiogpetitive performance for
first-answer queries. We also observe super-linear spsedcipievable thanks to memoiza-
tion of previous answers (which are recomputed in sequesitia resolutionﬂ

2 An Overview of AP with Parallel Backtracking

In this section we provide a high-level view of the executdgorithm we propose to intro-
duce some concepts which we will explain in more detail idaections.

The IAP + parallel backtracking model we propose behavesanymespects as classical
IAP approaches, but it has as its main difference the useaafidative backward execution
(when possible) to generate additional solutions eagehig brings a number of additional
changes which have to be accommodated. We assume as usfiBl@anumber ohgents
which are normally each attached to their ogtack setcomposed of heap, trail, stack,
and goal queue (and often referred in the following simplga éstack”). Active agents are
executing code using their stack set, and they place any agallgl work they find in their
goal queue. Idle agents steal parallel work from the goaligs®f other agenEWe will
also assume that stack sets have a new memo area for stolttigrs® (explained further
later, see Figurig 2).

Forward execution:as in classical IAP, when a parallel conjunction is first rest; its
goals are started in parallel. When a goal in the conjundade without returning any
solution, the whole conjunction fails. And when all goalv&dound a solution, execu-
tion proceeds. However, and differently to classical IAR Bolution has been found for
some goals, but not for all, the agents which did finish maygsiagively perform backward
execution for the goals they executed (unless there is a fogeabents to execute work
which is not speculative, e.g., to generate the first answer goal). This in turn brings
the need to stash away the generated solutions in order tmaersearching for more an-
swers (which are also saved). When all goals find a soluthmsg which were speculatively
executing are suspended (to preserve the property of madsion w.r.t. sequential execu-
tion (Hermenegildo and Rossi 1995)), their state is savée teesumed later, and their first
answer is reinstalled.

Backward executionwe only perform backtracking on the goals of a parallel coofion
which are on top of the stacks. If necessary, stack sectiangeardered to move trapped
goals to the top of the stack. In order not to impose a rigictond), we allow backtracking
on these goals to proceed in an arbitrary order (i.e., notssgily corresponding to the
lexical right-to-left order). This opens the possibilitiperforming backtracking in parallel,
which brings some additional issues to take care of:

e When some of the goals executing backtracking in paralldldimew answer, back-
tracking stops by suspending the rest of the goals and s#wvéiigstate.
e The solution found is saved in the memoing area, in orderdiaecomputation.

1 For brevity we assume some familiarity with the WANI_(Warred83; [Ait-Kaci 1991) and the RAP-
WAM (Hermenegildo and Greene 1991).
2 For a more in-depth understanding of the memory model aneldsting used in traditional IAP approaches,

please refer td (Hermenegildo and Greene 1991; Shen andddegiido 1994; Gupta et al. 2001).




e Every new solution is combined with the previously avaiabblutions. Some of
these will be recovered from the memoization memory andretheay simply be
available if they are the last solution computed by some gaodlthus the bindings
are active.

e If more solutions are needed, backward execution is peddrin parallel again.
Goals which were suspended resume where they suspended.

All this brings the necessity of saving and resuming execustates, memoing and re-
covering answers quickly, combining previously existimjusons with newly found so-
lutions, assigning agents to speculative computationg ibtihere are no non-speculative
computations available, and managing computations whiange from speculative to non
speculative. Note that all parallel backtracking is spatvit work, because we might need
just one more answer of the rightmost parallel goal, andishighy backward execution is
given less priority than forward execution. Note also thatrey point in time we only have
one active value for each variable. While performing patdihcktracking we can change
the bindings which will be used in forward execution, butdvefcontinuing with forward
execution, all parallel goals have to suspend to reingtallkindings of the answer being
combined.

3 An Execution Example

We will illustrate our approach, and specially the inteyptd memoization and parallel
backtracking in IAP execution with the following program:

main(X, Y, Z, T) :-a(X, Y) &b(Z, T).

a(X,y) :-al(X) & a2(Y).

b(X, Y) - b1(X) & b2(Y).

We will assume thaa1(X), a2(Y), b1(X) andb2(Y) have two answers each, which take 1
and 7 seconds, 2 and 10 seconds, 3 and 13 seconds, and 4 acdrfsseespectively. We
will also assume that there are no dependencies among tladlesrin the literals of these
clauses, and that the cost of preparing and starting uplelagalals is negligible. Finally,
we will assume that there are two agents available to exd¢base goals at the beginning
of the execution of the predicateain/4. Figure[l summarizes the evolution of the stack of
each agent throughout the executiomaiin/4 (abbreviated as\/4 in the figure).

Once the first agent starts the executiomafn/4, a/2 is published for parallel execution
andb/2 is executed locally. The second agent ste&#lspublishes1/1 for parallel execution
and executes2/1 locally, while the first agent marksl/1 as parallel and executbg/1. The
execution state can be seen in Fidure]1(a). When the secendfawls the first answer for
a2/1, it marksa2/1 to be executed in a speculative manner. However, sibeandb1/1 are
still pending, the second agent will start executing onéheht instead. We will assume it
starts executing1/1. Once it finds an answex/1 is marked to be executed speculatively.
Sincea2/1 is also marked as such, then the entire prediattecan be configured to be
executed speculatively. However, the second agent will@xeuteb1/1 since it is pending
and has higher priority than speculative execution (Fififbg).

Figurg I(c) shows the execution state when the first agerst éin@nswer fop2/1. In this
case, since there is no other parallel goal to execute, steafijient starts the execution of
b2/1 speculatively, until the second agent finishes the execofib1/1. When that happens,
the first agent suspends the executiob@f and the first answer afain/4 is returned, as

shown in Figur¢ I(d).
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Fig. 1. Execution ofnain/4 with memoization of answers and parallel backtracking.

In order to calculate the next answeradin/4, both agents will backtrack ovee/1 and
b1/1, respectively. Note that they would not be able to backtoaek other subgoals because
they are currently trapped. Once the second agent finds toed@nswer ob1/1, the first
agent suspends the executiorbafl and returns the second answemafin/4, combining
all the existing answers of its literals.

In order to obtain the next answer mhin/4, the first agent continues with the execution
of b2/1, and the second agent fails the executiorbdfi and starts computing the next
answer ofal/1, since that goal has now been freed, as shown in F[gurk 1(eynéver the
answer ofa1/1 is completed, shown in Figufe 1(f), the executiom®fl is again suspended
and a set of new answersmtin/4 involving the new answer far2/1 can be returned, again
as a combination of the already computed answers of its slfgio obtain the rest of the
answers of predicat@ain/4, the first agent resumes the executiorb®2fl and the second
agent starts calculating a new answea®fL (Figure[1(g)). The first agent finds the answer
of b2/1, suspends the execution of the second agent, and returnewh&nswers ahain/4.
Finally, Figure I(H) shows how the second agent continués thie execution 0f2/1 in
order to obtain the rest of the answersafin/4.

Note that in this example memoization of answers avoidsiggid recompute expensive
answers of parallel goals. Also note that all the answersd#gh parallel literal could have
been found separately and then merged, producing a simitdrexecution time. However,
the computational time for the first answer would have beastarally increased.

4 Memoization vs. Recomputation

Classic IAP uses recomputation of answers: if we exea(Xg& b(Y), the first answer of
each goal is generated in parallel. On backtrackifg) generates additional answers (one
by one, sequentially) until it finitely fails. Then, a new wmes for goala(X) is computed in
parallel with the recomputation of the first answebf). Successive answers are computed
by backtracking again oin(Y), and later ora(X).

However, since(X) andb(Y) are independent, the answers of go@l) will be the same
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in each recomputation. Consequently, it makes sense ®istdrindings after every answer
is generated, and combine them with those frg(X) to avoid the recomputation afY).
Memoing answers does not require having the bindings faettamswers on the stack; in
fact they should be stashed away and reinstalled when reage$fierefore, when a new
answer is computed fa(X) the previously computed and memorized answersfoy are
restored and combined.

4.1 Answer Memoization

In comparison with tabling (Tamaki and Sato 1986: Warren?]@hen and Warren 1996),
which also saves goal answers, our scheme shows a numbéfeoéuces: we assume that
we start off with terminating programs (or that if the origiprogram is non-terminating in
sequential Prolog, we do not need to terminate), and therafe do not need to take care of
the cases tabling has to: detecting repeatedallsspending / resuming consumers, main-
taining SCCs, etc. We do not keep stored answers after dedarall finitely fails: answers
for a(X) & b(Y) are kept for only as long as the new bindingsXoandY are reachable. In
fact, we can discardll stored answers as soon as the parallel conjunction costafter its
last answer. Additionally, we restrict the visibility ofafstored answers to the parallel con-
junction: if we havea(X) & b(Y), a(2), the calls taa(zZ) do not have access to the answers for
a(X). While this may lead to underusing the saved bindings, iayeimplifies the imple-
mentation and reduces the associated overhead. Therefasdlvmot use the memoization
machinery commonly found in tabling implementatidns (Rernshnan et al. 1995).

Instead, we save a combination of trail and heap terms whagiuce all the bindings
made by the execution of a goal, for which we need two slighhges: we push a choice-
point before the parallel goal execution, so that all bigdito variables which live before
the parallel goal execution will be recorded, and we modify trail code to always trail
variables which are not in the agent’s WAMThis ensures that all variable bindings we
need to save are recorded on the trail.

Therefore what we need to save are the variables pointedtfiertrail segment corre-
sponding to the execution of the parallel goal (where thelibiys to its free variables are
recorded) and the terms pointed to by these variables. Taess are only saved if they live
in the heap segment which starts after the execution of thalpbgoal, since if they live
below that point they existed before the parallel goal waseted and they are unaffected
by backtracking. Note that bindings to variables which wareatedvithin the execution of
the parallel goal and which are not reachable from the argtinagiables do not have to be
recorded, as they are not visible outside the scope of thalplegoal executiofi.

Figure[2 shows an example.is a parallel goal whose execution unifieswith a list
existing before the execution @, Y with a list created by, andz, which was created
by G, with a list also created bg. Consequently, we save those variables appearing in the
trail created byG which are older than the execution®f(X andY), and all the structures

3 Detecting repeated calls requires traversing the arguswerd goal, which can be arbitrarily more costly than
executing the goal itself: for example, consider taking rgdalist and returning just its first element, as in
first([X| ],X).

4 This introduces a slight overhead which we have measuretana 1%.

5 Another possible optimization is to share bindings comesling to common parts of the search tree of a parallel
goal: if a new answer is generated by performing backtrackim, for example, the topmost choicepoint and the
rest of the bindings generated by the goal are not changactlysspeaking only these different bindings have
to be saved to save the new answer, and not the whole sectimail @nd heap.
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Fig. 2. Snapshot of agent’s stacks during answer memoizptiocess.

hanging from them[x,y,z] is not copied because is not affected by backtracking. Thg co
operation adjusts pointers of variables in a way that islamto what is done in tabling
implementations (Ramakrishnan et al. 1995). For examiphg save a variable pointing to
a subterm of1,2], this variable would now point to a subterm of the copyio?#].

Note that this is at most the same amount of work as that oftbeution of the goal, be-
cause it consists of stashing away the variables bound lyoihleplus the structureseated
by the goal. The information related to the boundaries ofjthed and its answers is keptin a
centralized per-conjunction data structure, akinpaecall frame(Hermenegildo and Greene 1991).
Similar techniques are also used for the local stack.

Reinstalling an answer for a goal boils down to copying bacthe heap the terms that
were previously saved and using the trail entries to makeahiables in the initial call point
to the terms they were bound to when the goal had finished. 6these variables point
to the terms just copied onto the heap and some will pointtogevhich existed previously
to the goal execution and which were therefore not savedutremample[1,2] is copied
onto the heap and unified withandX is unified with[x,y,z], which was already living on
the heap.

As mentioned before, while memoization certainly has a,dbstan also provide by
itself substantial speedups since it avoids recomputatiSince it is performed only on
independengoals, the number of different solutions to keep does natvgngponentially
with the number of goals in a conjunction, but rather onlgéirly. This is an interesting
case of synergy between two different concepts (indeperedamd memoization), which in
principle are orthogonal, but which happen to have a verjtigesnutual interaction.

4.2 Combining Answers

When the last goal pending to generate an answer in a pacatli@inction produces a so-
lution, any sibling goals which were speculatively workitogvards producing additional

solutions have to suspend, reinstall the previously foumnslvars, and combine them to
continue with forward execution. A similar behavior is nes&ry when backtracking is
performed over a parallel conjunction and one of the goalshvare being reexecuted in
parallel finds a new solution. At this moment, the new answepmbined with all the pre-

vious answers of the rest of the parallel goals. For eacHlpbgaal, if it was not suspended
when performing speculative backtracking, its last anssvalready on the execution envi-
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ronment ready to be combined. Otherwise, its first answeasinstalled on the heap before
continuing with forward execution.

When there is more than one possible answer combinatiom(isecsome parallel goals
already found more than one answergjteostchoice point is created. This choicepoint has
an “artificial” alternative which points to code which takese of retrieving saved answers
and installing the bindings. On backtracking, this codépribduce the combinations of an-
swers triggered by the newly found answer (i.e., combimatadready produced are not re-
peated). Note that this new answer may have been produced/tgoal in the conjunction,
but we proceed by combining from right to left. The invariaete is that before producing
a new answer, all previous answer combinations have beeuped, so we only need to fix
the bindings for the goal which produced the new answerdsand successively installing
the bindings for the saved answers produced by the rest giahis.

Therefore, we start by installing one by one the answersiqusly produced by the
rightmost goal. When all solutions are exhausted, we mov® dhe next goal to the left,
install its next answer and then reinstall again one by oeaitiswers of the rightmost goal.
When all the combinations of answers for these two goalsxdratested, we move on to the
third rightmost one, and so on —but we skip ggabecause we only need to combine its
last answer since the previous ones were already combined.

An additional optimization is to update the heap top poinfahe ghostchoice point to
point to the current heap top after copying terms from the oieation area to the heap,
in order to protect these terms from backtracking for a fdss$uture answer combination.
Consequently, when the second answer of the second righpacalel goal is combined
with all the answers of the rightmost goal, the bindings efdéinswers of the rightmost goal
do not need to be copied on the heap again and then we only ee@dt&il bindings from
the last combined answer and redo bindings of the answeg lbembined. Finally, once the
ghostchoice point is eliminated, all these terms that were copiethe heap are released.

One particular race situation needs to be considered. Whenalel goal generates a
new solution, other parallel goals may also find new answefsrb being suspended, and
thus some answers may be lost in the answer combination.der ¢o address this, our
implementation maintains a pointer to the last combinedvan®f each parallel goal in
the parcall frame. Therefore, if, e.g., two parallel goal$,andb/1, have computed three
answers each, but only two of them have been combined, ttteghswer ot/1 would be
combined with the first two answers bfl, updating afterward its last combined answer
pointer to its third answer. Once this is done, the fact tiiathas uncombined answers
is detected before performing backtracking, and the thirslneer ofb/1 is combined with
all the computed answers afl and, then, the last combined answeb¥) is updated to
point to its last answer. Finally, when no goal is left withcombined answers, the answer
combination operation fails.

5 Trapped Goalsand Backtracking Order

The classical, right-to-left backtracking order for IAPkisown to bring a number of chal-
lenges, among them the possibility tohpped goalsa goal on which backtracking has to
be performed becomérmppedby another goal stacked on top of it. Normal backtracking
is therefore impossible. Consider the following example:

m(X,Y,Z) - b(X,Y) & a(2).

b(X,Y) - a(X) & a(Y).

a(1). a(2).
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Fig. 3. Execution ofn/3. Fig. 4. Execution ofn/2.

Figurd3 shows a possible state of the execution of predi¢atby two agents. When the
first agent starts computing/3, b(X, Y) anda(2) are scheduled to be executed in parallel.
Assume tha&(Z) is executed locally by the first agent an,Y) is executed by the second
agent. Then, the second agent schedua(®$ and a(Y) to be executed in parallel, which
results ina(Y) being locally executed by the second agent a( executed by the first
agent after computing an answer &gg). In order to obtain another answer far3, right-
to-left backtracking requires computing additional ansafer a(z), a(Y), anda(X), in that
order. Howevera(z) cannot be directly backtracked over siragi) is stacked on top of it:
a(z) is atrapped goal

Several solutions have been proposed for this problem. @tieecoriginal proposals
use<continuation markergHermenegildo 1986; Shen and Hermenegildo 1996kipover
stacked goals. This is, however, difficult to implement gndypand needs to take care of a
large number of cases. It can also leave unused sectionsmbrydgarbage slotswhich
are either only reclaimed when finally backtracking overgheallel goals, or require quite
delicate memory management. A different solutlon (Casas 2008) is to move the execu-
tion of the trapped goal to the top of the stack. This simiffee implementation somewhat,
but it also leaves garbage slots in the stacks.

5.1 Out-of-Order Backtracking

Our approach does not follow the sequential backtrackinigmto reduce the likelihood
of the appearance of trapped goals and garbage slots. Thedeis to allow backtracking
(and therefore the order of solutions) to dynamically ad@fte configuration of the stacks.

As mentioned before, the obvious drawback of this apprositinait it may alter solution
order with respect to sequential execution, and in an ungteae way. However, we argue
that in many cases this may not be a high price to pay, spgdfathe programmer is
aware of it and can have a choice. Programs where solutia@r ordtters, typically because
of efficiency, are likely to have dependencies between gehish would anyway make
them not amenable for IAP. For independent goals we argueatttaving out-of-order
backtracking represents in some way a return to a simpleg aheclarative semantics that
has the advantage of allowing higher efficiency in the im@atation of parallelism.

The alternative we propose herein consists of always haalkitig over the goal that is on
top of the stack, without taking into account the originahbexecution order. For example,
in the case of backward execution over predicatin Figure[3, both agents may be able
to backtrack ovea(X) anda(Y), without having to move the execution afz).
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5.2 First Answer Priority and Trapped goals

Out-of-order backtracking, combined with answer memoiogto lose answer combina-
tions, can avoid trapped goals if no priority is given to ayte parallel goals, because
there will always be a backtrackable goal on the stack topidicue the execution of the
program. However, as mentioned before, we do impose a lgjgtw notion of priority to
first answers to preserve no-slowdown: backward execufigauallel goals that have not
found any answer has more priority than backward executigraallel goals which have
already found an answer. Note that even using this very ligmof priority, the possibility
of trapped goals returns, as illustrated in the followingreple:

m(X,Y) :- a(X) & b(Y).

b(Y) :-c(Y) &d, e(Y).

a(1). a(2). c(1). c(2). d. e(2)

Figure[4 shows a possible state of the execution of prediatdy two agents. The first
agent starts with the execution of predicat® and publishes/1 andb/1 to be executed
in parallel. The first agent starts with the executiorbdf and marks botf/1 andd/0 for
parallel execution. The second agent then execufewvhile the first agent is executing
d/0, and when the execution ef1 finishes then it computes an answer &t. Once the
execution of goals/1 andd/0 has finishede/1 is executed. However, this execution will fail
because/1 already gave a different binding to variabldf the first answer is given priority,
c/1 should be backtracked befaaél, butc/1 is trapped by the execution afl. While this
example shows that it is possible to have trapped goals wittoborder backtracking, we
experimentally found that the percentage of trapped g@alewmotely executed goals varies
between 20% and 60% under right-to-left backtracking arnsl always 0% under out-of-
order backtracking, thus allowing for a simpler solutionttee problem without degrading
the performance of parallel execution.

Our approach is to perform stack reordering to create a neaution state which is con-
sistent, i.e., which could have been generated by a seqi€hd execution. Consequently,
the parallel scheduler is greatly simplified since it doeshawe to manage trapped goals.
We cannot present the algorithm due to space limitatiortsa bigh-level view follows:

1. Copy the choice point and trail section correspondindnéottapped goal to the top
of the stacks (their original allocations become garbage).

2. Move down the choice point and trail section to remove #eegated garbage slots.

3. Update the trail pointers of relocated choice points éorfordered trail section.

4. Keep heap and local stack in the same location. Globalramaef stack top pointers
of the trapped goal choice points are updated to point to¢heahtop of global and
frame stack. Consequently, the execution memory of thesgbat were moved down
the stack is protected from backtracking.

6 The Scheduler for the Parallel Backtracking | AP Engine

Once we allow backward execution over any parallel goal @nttp of the stacks, we
can perform backtracking over all of them in parallel. Cangantly, each time we perform
backtracking over a parallel conjunction, each of the pelrgbals of the parallel conjunc-
tion can start speculative backward execution.

As we mentioned earlier, the management of goals (when dagawailable and can start,
when it has to backtrack, when messages have to be broadtakis encoded in Prolog
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parcall_back(LGoals, NGoals) :-
fork(PF,NGoals,LGoals,[Handler|LHandler]),

(
goal_not_executed(Handler) —>
call_local_goal(Handler,Goal) agent :- work, agent.
agent :- agent.
true
), work :-
look_for_available_goal(LHandler), find_parallel_goal(Handler) —>
join(PF).
goal_not_executed(Handler) —>
look_for_available_goal([]) :- !, true. save_init_execution(Handler),
look_for_available_goal([Handler|LHandler]) :- call_parallel_goal(Handler)
( ;
goal_available(Handler) —> move_execution_top(Handler),
call_local_goal(Handler,Goal) falil
; )
true ;
), suspend,
look_for_available_goal(LHandler). work.

Fig. 5. Parallel backtracking Prolog code.

code which interacts with the internals of the emulatoruFéfB shows a simplified version
of such a scheduler, which is executed when agents (a) logiefe work to do and (b) have
to execute a parallel conjunction. Note that locks are notvshin the algorithm.

6.1 Looking for Work

Agents initially execute thegent/0 predicate, which callsvork/0 in an endless loop to
search for a parallel goal to execute, via fimel_parallel_goal/1l primitive, which defines
the strategy of the scheduler. Available goals can be in $tates: non-executed parallel
goals necessary for forward execution, backtrackabldlpbgmals necessary for forward
execution, non-executed parallel goals not necessaryfaraid execution (because they
were generated by goals performing speculative work), auktbackable parallel goals
not necessary for forward execution. Different schedufinficies are possible in order to
impose preferences among these types of goals (to, e.gded&hich non-necessary goal
can be picked) but studying them is outside the scope of #pgip

Once the agent finds a parallel goal to execute, it is prep@aretart execution in a
clean environment. For example, if the goal has to be badkddover and it is trapped,
a primitive operatiomove_execution_top/1 moves the execution segment of the goal to the
top of the stacks to ensure that the choice point to be batkddbover is always on the top
of the stack (using the algorithm of Sectioh 5). Also, the miation of the last answer
found is performed at this time, if the execution of the patgoal was not suspended.

If find_parallel_goal/1 fails (i.e., no handler is returned), the agent suspends sorhe
other agent publishes more wowkall_parallel_goal/l saves some registers before starting
the execution of the parallel goal, such as the currentaradl heap top, changes the state
of the handler once the execution has been completed, failestispended, and saves some
registers after the execution of the parallel goal in ordemtinage trapped goals and to
release the execution of the publishing agent.
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6.2 Executing Parallel Conjunctions

The parallel conjunction operatéy2 is preprocessed and converted iptrcall_back/2,
which is the entry point of the scheduler, and which recetheslist of goals to execute
in parallel (Goals) and the number of goals in the ligtarcall_back/2 invokes firstfork/4,
written in C, which createskandlerfor each parallel goal in the scope of the parcall frame
containing information related to that goal, makes goaslable for other agents to pick
up, resumes suspended agents which can then steal somer@tevailable goals, and
inserts a new choice point in order to release all the datiztstres on failure.

If the first parallel goal has not been executed yet, it is daleal for local execution by
call_local_goal/2, which performs housekeeping similar to thatcafi_parallel_goal/1. It can
be already executed because this parallel goal, which iayalexecuted locally, can fail
on backtracking, but the rest of the parallel goals coultlksi performing backtracking to
compute more answers. In this case, the choice poiiotlo# will succeed on backtracking
to continue forward execution and to wait for the completadrthe remotely executed
parallel goals to produce more answer combinations.

Then, look for_available_goal/1 executes locally parallel goals which have not already
been taken by another agent. Finalbin/1 waits for the completion of the execution of
the parallel goals, their failure, or their suspension befmombining all the answers. Af-
ter all answers have been combined, the goals of the pacaliglinction are activated to
perform speculative backward execution.

7 Suspension of Speculative Goals

Stopping goals which are eagerly generating new soluticamgime necessary for both cor-
rectness and performance reasons. The agent that detsrihaiesuspension is necessary
sends a suspension event to the rest of the agents that syodé the sibling parallel goals
(accessible via the parcall frame). These events are ciénkbe WAM loop each time
a new predicate is called, using existing event-checkinghimery shared with attributed-
variable handling (and therefore no additional overheadided). When the execution has
to suspend, the argument registers are saved on the heapnamdchoice point is inserted
onto the stack to protect the current execution state. Thigce point contains only one
argument pointing to the saved registers in order to rdirts@am on resumption. The al-
ternative to be executed on failure points to a special WASrirction which reinstalls the
registers and jumps to the WAM code where the suspension erésrmed, after releasing
the heap section used to store the argument registers.folerthe result of failing over
this choice point is to resume the suspended execution @ioinewhere it was suspended.
After this choice pointis inserted, goal execution needsrigp back to the Prolog sched-
uler for parallel execution. In order to jump to the apprafeipoint in the Prolog scheduler
(aftercall_parallel_goal/1 or call_local_goal/2), the WAM frame pointer is saved in the handler
of the parallel goal before callingall_parallel_goal/1 or call_local_goal/2. After suspension
takes place, it is reinstalled as the current frame poititeWWAM'’s next instructiorpointer
is updated to be the one pointed to by this frame, and this WAdituction is dispatched.
The result is that the scheduler continues its executiofths parallel goal had succeeded.
Parallel goals to be suspended may in turn have other neatatlgh calls. Suspension
events are recursively sent by agents following the chamtepfendencies saved in the par-
call frames, similarly to théail messages in &-Prolog (Hermenegildo and Greene|[1991).
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8 A Noteon Deterministic Parallel Goals

The machinery we have presented can be greatly simplifiedhwinening deterministic
goals in parallel: answer memoization and answer comloinaire not needed, and the
scheduler (Sectidnl 6) can be simplified. Knowing ahead of@i@n which goals are de-
terministic can be used to statically select the best ei@tstrategy. However, some opti-
mizations can be performed dynamically without compilgrsart (e.g., if it is not available
or imprecise). For example, teove_execution_top/1 operation may decide not to memo-
ize the previous answer if there are no choice points adsacia the execution of the
parallel goal, because that means that at most one answérecgenerated. By applying
these dynamic optimizations, we have detected improveswénip to a factor of two in the
speedups of the execution of some deterministic benchmarks

9 Comparing Performance of |AP Models

We present here a comparison between a previous high-fepldimentation of IAF (Casas et al. 2008)
(which we abbreviate asegback) with our proposed implementatiopdrback). Both im-
plementations are similar in nature and have similar ovathdinherent to a high-level
implementation), with the obvious main difference being shupport for parallel backtrack-
ing and answer memoization parback. Both are implemented by modifying the standard
Ciao [Bueno et al. 2009; Hermenegildo et al. 2011) distidsutWe will also comment on
the relation with the very efficient IAP implementation|ingiienegildo and Greene 1991)
(abbreviated a&-Prolog) for deterministic benchmarks in order to evaluate the lovad
incurred by having part of the system expressed in Prolog.

We measured the performance results of malback andsegback on deterministic
benchmarks, to determine the possible overhead causedimgatle machinery to perform
parallel backtracking and answer memoization, and alscoafse on non-deterministic
benchmarks. The deterministic benchmarks used are thékn@n Fibonacci seriesifo),
matrix multiplication (mma) and QuickSortgsor. fibogenerates the 23 Fibonacci num-
ber switching to a sequential implementation from th€ ¥fimber downwardsnmatuses
50x50 matrices andsortis the version which usesppend/3 sorting a list of 10000 num-
bers. The GC suffix means task granularity confrol (Lopeze et al. 1996) is used for
lists of size 300 and smaller.

The selected nondeterministic benchmarks @reckfiles illumination, and gsortnd.
checkfilesreceives a list of files, each of which contains a list of filenes which may
exist or not. These lists are checked in parallel to find nmtent files which appear listed
in all the initial files; these are enumerated on backtraghiltuminationreceives arv x N
board informing of possible places for lights in a room. i¢$rto place a light in each of
the columns, but lights in consecutive columns have to barséged by a minimum dis-
tance. The eligible positions in each column are searchpdrallel and position checking
is implemented with a pause of one second to represent tagkhkegsortnd is a Quick-
Sort algorithm where list elements have only a partial ardegckfilesandilluminationare
synthetic benchmarks which create 8 parallel goals andwéxploit memoization heavily.
gsortndis a more realistic benchmark which creates over one thalsarallel goals. All
the benchmarks were parallelized using CiadPP (Hermeaftegilal. 200b) and the annota-
tion algorithms described in_ (Muthukumar et al. 1999; Cali#304[ Casas et al. 2007).

Table[d shows the speedups obtained. Performance resukgdback and parback
were obtained by averaging ten different runs for each ob#rechmarks in a Sun Ultra-
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Number of threads

Benchmark | Approach 1 2 3 7 5 6 7 8
&-Prolog 0.98 1.93 - 3.70 - 5.65 - 7.34

Fibo seqgback 0.95 1.89 2.80 3.70 4.61 5.36 6.23 6.96
parback 0.95 1.88 2.78 3.69 4.60 5.33 6.21 6.94
parbackg.; 0.96 1.91 2.83 3.74 4.65 5.41 6.28 7.04

&-Prolog 1.00 1.92 - 3.03 - 3.89 - 4.65

0Sort seqgback 0.50 0.98 1.38 1.74 2.05 2.27 2.57 2.67
parback 0.49 0.97 1.37 1.74 2.05 2.27 2.58 2.69

parback . 0.56 1.10 1.54 1.96 2.31 2.57 2.90 3.02
segbackGC 0.97 1.77 2.42 3.02 3.37 3.77 3.98 4.15
parbackGC 0.97 1.76 2.41 3.00 3.34 3.74 3.94 4.12
parbackGC. 0.97 1.78 2.44 3.04 3.41 3.79 3.99 421

&-Prolog 1.00 1.99 - 3.98 - 5.96 - 7.93

MMat seqgback 0.78 1.55 2.28 2.99 3.67 4.29 491 5.55
parback 0.76 1.52 2.25 2.95 3.60 4.22 4.83 5.45

parback . 0.80 1.60 2.38 3.01 3.79 4.55 5.19 5.87

seqgback i, 0.99 1.09 1.11 1.12 1.12 1.12 1.13 1.13
CheckFiles segback,; 0.99 1.05 1.07 1.07 1.07 1.08 1.08 1.08
parbacky;, 3917 | 8612 10604] 17111] 17101 17116] 17134 44222

pb_relsi o 1.00 2.20 2.71 4.37 4.37 4.37 437 11.29

parback,;; 12915 23409] 30545 45818 46912 46955 46932 89571

pb_rel.; 1.00 1.81 2.37 3.55 3.63 3.64 3.63 6.94
seqbackyi,s¢ 1.00 1.37 1.55 1.56 1.56 1.61 1.67 1.67
llumination seqback,; 1.00 1.16 1.21 1.24 1.24 1.25 1.25 1.27
parback i, 1120 1725 2223| 3380| 3410| 4028 4120| 6910

pb_relyi, . 1.00 154 1.98 3.02 3.04 3.60 3.68 6.17

parback,; 8760 | 16420 20987 31818] 31912 31888 31934 65314

pb_rel.; 1.00 1.87 2.40 3.63 3.64 3.64 3.65 7.46

seqback i, 0.94 1.72 2.36 2.92 3.25 3.59 3.78 3.92

QSorND segback,; 0.91 0.96 0.98 0.99 0.99 1.00 1.00 1.00
parback s, 0.94 1.72 2.35 2.91 3.24 3.57 3.76 3.91

parback,; 4.29 6.27 8.30 9.90 10.5 10.9 11.1 11.3

pb_rel.u 1.00 1.46 1.93 2.31 2.45 2.54 2.59 2.64

Table 1. Comparison of speedups for several benchmarksaridrentations.

Sparc T2000 (dNiagara) with 8 4-thread cores. The speedups shown in this tableadre c

culated with respect to the sequential execution of theiralgunparallelized benchmark.

Therefore, the column taggédorresponds to the slowdown coming from executing a par-

allel program on a single processor. BeProlog we used the results in (Hermenegildo and Greene|1991).
To complete the comparison, we note that one of the mosteitié?rolog systems, YAP

Prolog (), very optimized for SPARC, is on these benchmarks betwegardd 2.7 faster

than the execution of the parallel versions of the programthe parallel version of Ciao

using only one agent, but the parallel execution still otfgrens YAP. Of course, YAP could

in addition take advantage of parallel execution.

For deterministic benchmarksarback,.; refers to the implementation presented in this
paper with improvements based on determinacy informattatained from static analy-
sis (Lopez-Garcia et al. 2005). For nondeterministicdbamarks we show a comparison
of the performance results obtained both to generate thestistion €egback ¢;.s+ and
parback;..;) and all the solutionssggback,; and parback,;). Additionally, we also
show speedups relative to the execution in parallel with miegnin one agent (which
should be similar to that which could be obtained by exegusiaquentially with memo-
ing) in rowspb_rely;,..; andpb_rely;.

The speedups obtained in both high-level implementatioesery similar for the case
of deterministic benchmarks. Therefore, the machinergssary to perform parallel back-
tracking does not seem to degrade the performance of delistimiprograms.
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Static optimizations bring improved performance, but iis tase they seem to be quite
residual, partly thanks to the granularity control. Whemgparing with&-Prolog we of
course suffer from the overhead of executing partly at tiedogrlevel (especially immat
andgsort without granularity control), but even in this case we thih&t our current im-
plementation is competitive enough. It is important thatate that the-Prolog speedups
were measured in another architecture (Sequent Symmstrythie comparison can only
be indicative. However, the Sequents were very efficient@tiitogonal multiprocessors,
probably better than the Niagara in terms of obtaining sppedeven if obviously not in
raw speed) since the bus was comparatively faster in ralatith processor speed. This
can only make&-Prolog (and similar systems) have smaller speedups if run in pgrall
hardware. Therefore, their speedup could only get closeuts in current architectures.

parback andsegback behavior is quite similar in the case géortnd when only the
first answer is computed because there is not backtrackireg he

In the case otheckfilesandillumination, backtracking is needed even to generate the
first answer, and memoing plays a more important role. Théementation using parallel
backtracking is therefore much faster even in a single @smesince recomputation is
avoided. If we compute the speedup relative to the paraket@ion on one processor
(rowspb_rel;,.., andpb_rel,;) the speedups obtained pgrback follow the increment in
the number of processors more closely —with some superlsmzedup which is normal
when search does not follow, as in our case, the same ordegasrstial execution— which
can be traced to the increased amount of parallel backtrgcki contrast, the speedups of
segback do not increase so much since it performs essentially s¢iglibacktracking.

When all the answers are required, the differences arelgdler because there is much
backward execution. This behavior also appears, to a lesgent, ingsortnd. More in
detail, theparback speedups are not that good when looking for all the answersatnd
because the time for storing and combining answers is ndigilglg here.

Note that theparback speedups otheckfilesandillumination stabilize between 4 and
7 processors. This is so because they generate exactly Bepgals, and there is one
dangling goal to be finished. In the casecbickfilesve get superlinear speedup because
there are 8 lists of files to check. With 8 processors the firstv&r can be obtained without
traversing (on backtracking) any of these lists. This isthetcase with 7 processors and
so there is no superlinear behavior until we hit the 8 pramessark. Additionally, since
backtracking is done in parallel, the way the search tregptoeed (and therefore how fast
the first solution is found) can change between executions.

10 Conclusions

We have developed a parallel backtracking approach fopied@ent and-parallelism which
uses out-of-order backtracking and relies on answer meatioizto reuse and combine an-
swers. We have shown that the approach can bring interesitimglifications when com-
pared to previous approaches to the complex implementafitime backtracking mecha-
nism typical in these systems. We have also provided expatiahresults that show signif-
icantimprovements in the execution of non-deterministi@fiel calls due to the avoidance
of having to recompute answers and due to the fact that phgaléls can execute backward
in parallel, which was a limitation in previous similar ingphentations. This parallel system
may be used in applications with a constraint-and-genstaieture in which checking the
restrictions after the search is finished does not add sigmificomputation, and a simple
code transformation allows a sequential program to be ézddn parallel.
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