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(e-mail: pchico@clip.dia.fi.upm.es, {mcarro,herme }@fi.upm.es )

2 Samsung Research, USA.
(e-mail: amadeo.c@samsung.com )

3 IMDEA Software Institute, Spain.
(e-mail: {manuel.carro,manuel.hermenegildo }@imdea.org )

Abstract

Goal-level Independent and-parallelism (IAP) is exploited by scheduling for simultaneous execution
two or more goals which will not interfere with each other at run time. This can be done safely even if
such goals can produce multiple answers. The most successful IAP implementations to date have used
recomputation of answers and sequentially ordered backtracking. While in principle simplifying the
implementation, recomputation can be very inefficient if the granularity of the parallel goals is large
enough and they produce several answers, while sequentially ordered backtracking limits parallelism.
And, despite the expected simplification, the implementation of the classic schemes has proved to
involve complex engineering, with the consequent difficulty for system maintenance and extension,
while still frequently running into the well-known trappedgoal and garbage slot problems. This work
presents an alternative parallel backtracking model for IAP and its implementation. The model fea-
tures parallel out-of-order (i.e., non-chronological) backtracking and relies on answer memoization to
reuse and combine answers. We show that this approach can bring significant performance advantages.
Also, it can bring some simplification to the important engineering task involved in implementing the
backtracking mechanism of previous approaches.

KEYWORDS: Parallelism, Logic Programming, Memoization, Backtracking, Performance.

1 Introduction

Widely available multicore processors have brought renewed interest in languages and tools
to efficiently and transparently exploit parallel execution — i.e., tools to take care of the
difficult (Karp and Babb 1988) task of automatically uncovering parallelism in sequential
algorithms and in languages to succinctly express this parallelism. These languages can be
used to both write directly parallel applications and as targets for parallelizing compilers.

Declarative languages (and among them, logic programming languages) have tradition-
ally been considered attractive for both expressing and exploiting parallelism due to their
clean and simple semantics and their expressive power. A large amount of work has been
done in the area of parallel execution of logic programs (Gupta et al. 2001), where two main
sources of parallelism have been exploited: parallelism between goals of a resolvent (And-
Parallelism) and parallelism between the branches of the execution (Or-Parallelism). Sys-
tems efficiently exploiting Or-Parallelism include Aurora(Lusk et al. 1988) and MUSE (Ali and Karlsson 1990),

∗ Work partially funded by EU projects IST-215483S-Cubeand FET IST-231620HATS, MICINN projects TIN-
2008-05624DOVES, and CAM project S2009TIC-1465PROMETIDOS. Pablo Chico is also funded by an
MICINN FPU scholarship.
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while among those exploiting And-Parallelism, &-Prolog (Hermenegildo and Greene 1991)
and DDAS (Shen 1996) are among the best known ones. In particular, &-Prolog exploitsIn-
dependent And-Parallelism, where goals to be executed in parallel do not compete for bind-
ings to the same variables at run time and are launched following a nested fork-join struc-
ture. Other systems such as (&)ACE (Pontelli et al. 1995), AKL (Janson 1994), Andorra-
I (Santos-Costa 1993) and the Extended Andorra Model (EAM) (Santos Costa, V. et al. 1991;
Lopes et al. 2011) have approached a combination of both or- and and-parallelism. In this
paper, we will focus on independent and-parallelism.

While many IAP implementations obtained admirable performance results and achieved
efficient memory management, implementing synchronization and working around prob-
lems such astrapped goals(Section 5) andgarbage slotsin the execution stacks required
complex engineering: extensions to the WAM instruction set, new data structures, special
stack frames in the stack sets, and others (Hermenegildo 1986). Due to this complexity,
recent approaches have focused instead on simplicity, moving core components of the im-
plementation to the source level. In (Casas et al. 2008), a high-level implementation of goal-
level IAP was proposed that showed reasonable speedups despite the overhead added by the
high level of the implementation. Other recent proposals (Moura et al. 2008), with a dif-
ferent focus than the traditional approaches to parallelism in LP, concentrate on providing
machinery to take advantage of underlying thread-based OS building blocks.

A critical area in the context of IAP that has also received much attention is the implemen-
tation of backtracking. Since in IAP by definition goals do not affect each other, an obvious
approach is to generate all the solutions for these goals in parallel independently, and then
combine them (Conery 1987). However, this approach has several drawbacks. First, copying
solutions, at least naively, can imply very significant overhead. In addition, this approach
can perform an unbounded amount of unnecessary work if, e.g., only some of the solutions
are actually needed, and it can even be non-terminating if one of the goals does not fail
finitely. For these reasons the operational semantics typically implemented in IAP systems
performs an ordered, right-to-left backtracking. For example, if execution backtracks into a
parallel conjunction such asa & b & c, the rightmost goal (c) backtracks first. If it fails, then
b is backtracked over whilec is recomputed and so on, until a new solution is found or until
the parallel conjunction fails. The advantage of this approach is that it saves memory (since
no solutions need to be copied) and keeps close to the sequential semantics. However, it
also implies that many computations are redone and a large amount of backtracking work
can be essentially sequential.

Herein we propose an improved solution to backtracking in IAP aimed at reducing recom-
putation and increasing parallelism while preserving efficiency. It combinesmemoization of
answers to parallel goals(to avoid recomputation),out-of-order backtracking(to exploit
parallelism on backtracking), andincremental computation of answers, to reduce memory
consumption and avoid termination problems. The fact that in this approach the right-to-left
rule may not be followed during parallel backtracking meansthat answer generation order
can be affected (this of course does not affect the declarative semantics) but, as explained
later, it greatly simplifies implementation. The EAM also supports out-of-order execution
of goals. However, our approach differs from EAM in that the EAM is a more encom-
passing and complex approach, offering more parallelism atthe cost of more complexity
(and overhead) while our proposal constitutes a simpler andmore approachable solution to
implement.



3

In the following we present our proposal and an IAP implementation of the approach, and
we provide experimental data showing that the amount of parallelism exploited increases
due to the parallelism in backward execution, while keepingcompetitive performance for
first-answer queries. We also observe super-linear speedups, achievable thanks to memoiza-
tion of previous answers (which are recomputed in sequential SLD resolution).1

2 An Overview of IAP with Parallel Backtracking

In this section we provide a high-level view of the executionalgorithm we propose to intro-
duce some concepts which we will explain in more detail in later sections.

The IAP + parallel backtracking model we propose behaves in many respects as classical
IAP approaches, but it has as its main difference the use of speculative backward execution
(when possible) to generate additional solutions eagerly.This brings a number of additional
changes which have to be accommodated. We assume as usual in IAP a number ofagents,
which are normally each attached to their ownstack set, composed of heap, trail, stack,
and goal queue (and often referred in the following simply asa “stack”). Active agents are
executing code using their stack set, and they place any new parallel work they find in their
goal queue. Idle agents steal parallel work from the goal queues of other agents.2 We will
also assume that stack sets have a new memo area for storing solutions (explained further
later, see Figure 2).

Forward execution:as in classical IAP, when a parallel conjunction is first reached, its
goals are started in parallel. When a goal in the conjunctionfails without returning any
solution, the whole conjunction fails. And when all goals have found a solution, execu-
tion proceeds. However, and differently to classical IAP, if a solution has been found for
some goals, but not for all, the agents which did finish may speculatively perform backward
execution for the goals they executed (unless there is a needfor agents to execute work
which is not speculative, e.g., to generate the first answer to a goal). This in turn brings
the need to stash away the generated solutions in order to continue searching for more an-
swers (which are also saved). When all goals find a solution, those which were speculatively
executing are suspended (to preserve the property of no-slowdown w.r.t. sequential execu-
tion (Hermenegildo and Rossi 1995)), their state is saved tobe resumed later, and their first
answer is reinstalled.

Backward execution:we only perform backtracking on the goals of a parallel conjunction
which are on top of the stacks. If necessary, stack sections are reordered to move trapped
goals to the top of the stack. In order not to impose a rigid ordering, we allow backtracking
on these goals to proceed in an arbitrary order (i.e., not necessarily corresponding to the
lexical right-to-left order). This opens the possibility of performing backtracking in parallel,
which brings some additional issues to take care of:

• When some of the goals executing backtracking in parallel find a new answer, back-
tracking stops by suspending the rest of the goals and savingtheir state.

• The solution found is saved in the memoing area, in order to avoid recomputation.

1 For brevity we assume some familiarity with the WAM (Warren 1983; Ait-Kaci 1991) and the RAP-
WAM (Hermenegildo and Greene 1991).

2 For a more in-depth understanding of the memory model and scheduling used in traditional IAP approaches,
please refer to (Hermenegildo and Greene 1991; Shen and Hermenegildo 1996; Gupta et al. 2001).
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• Every new solution is combined with the previously available solutions. Some of
these will be recovered from the memoization memory and others may simply be
available if they are the last solution computed by some goaland thus the bindings
are active.

• If more solutions are needed, backward execution is performed in parallel again.
Goals which were suspended resume where they suspended.

All this brings the necessity of saving and resuming execution states, memoing and re-
covering answers quickly, combining previously existing solutions with newly found so-
lutions, assigning agents to speculative computations only if there are no non-speculative
computations available, and managing computations which change from speculative to non
speculative. Note that all parallel backtracking is speculative work, because we might need
just one more answer of the rightmost parallel goal, and thisis why backward execution is
given less priority than forward execution. Note also that at any point in time we only have
one active value for each variable. While performing parallel backtracking we can change
the bindings which will be used in forward execution, but before continuing with forward
execution, all parallel goals have to suspend to reinstall the bindings of the answer being
combined.

3 An Execution Example

We will illustrate our approach, and specially the interplay of memoization and parallel
backtracking in IAP execution with the following program:

main(X, Y, Z, T) :- a(X, Y) & b(Z, T).
a(X, Y) :- a1(X) & a2(Y).
b(X, Y) :- b1(X) & b2(Y).

We will assume thata1(X), a2(Y), b1(X) andb2(Y) have two answers each, which take 1
and 7 seconds, 2 and 10 seconds, 3 and 13 seconds, and 4 and 25 seconds, respectively. We
will also assume that there are no dependencies among the variables in the literals of these
clauses, and that the cost of preparing and starting up parallel goals is negligible. Finally,
we will assume that there are two agents available to executethese goals at the beginning
of the execution of the predicatemain/4. Figure 1 summarizes the evolution of the stack of
each agent throughout the execution ofmain/4 (abbreviated asm/4 in the figure).

Once the first agent starts the execution ofmain/4, a/2 is published for parallel execution
andb/2 is executed locally. The second agent stealsa/2, publishesa1/1 for parallel execution
and executesa2/1 locally, while the first agent marksb1/1 as parallel and executesb2/1. The
execution state can be seen in Figure 1(a). When the second agent finds the first answer for
a2/1, it marksa2/1 to be executed in a speculative manner. However, sincea1/1 andb1/1 are
still pending, the second agent will start executing one of them instead. We will assume it
starts executinga1/1. Once it finds an answer,a1/1 is marked to be executed speculatively.
Sincea2/1 is also marked as such, then the entire predicatea/2 can be configured to be
executed speculatively. However, the second agent will nowexecuteb1/1 since it is pending
and has higher priority than speculative execution (Figure1(b)).

Figure 1(c) shows the execution state when the first agent finds an answer forb2/1. In this
case, since there is no other parallel goal to execute, the first agent starts the execution of
b2/1 speculatively, until the second agent finishes the execution of b1/1. When that happens,
the first agent suspends the execution ofb2/1 and the first answer ofmain/4 is returned, as
shown in Figure 1(d).



5

Agent 2Agent 1

m/4

b/2

b2/1

a/2

a2/1

(a) Time = 0.

Agent 1 Agent 2

b2/1

b/2

m/4

b1/1

sp(a2/1)

sp(a1/1)

sp(a/2)

(b) Time = 3.

Agent 1 Agent 2

b/2

sp(a1/1)

sp(a/2)

sp(b2/1)

b1/1

m/4

sp(a2/1)

(c) Time = 4.

Agent 1 Agent 2

b1/1

a1/1

a2/1

a/2m/4

b/2

st(b2/1)

(d) Time = 6.

Agent 1 Agent 2

m/4

b2/1 a1/1

a2/1

a/2

b/2

(e) Time = 16.

Agent 1 Agent 2

m/4

b/2

b2/1

a/2

a2/1

(f) Time = 23.

Agent 1 Agent 2

m/4 a/2

a2/1

(g) Time = 29.

Agent 1 Agent 2

m/4

(h) Time = 36.

Fig. 1. Execution ofmain/4 with memoization of answers and parallel backtracking.

In order to calculate the next answer ofmain/4, both agents will backtrack overb2/1 and
b1/1, respectively. Note that they would not be able to backtrackover other subgoals because
they are currently trapped. Once the second agent finds the second answer ofb1/1, the first
agent suspends the execution ofb2/1 and returns the second answer ofmain/4, combining
all the existing answers of its literals.

In order to obtain the next answer ofmain/4, the first agent continues with the execution
of b2/1, and the second agent fails the execution ofb1/1 and starts computing the next
answer ofa1/1, since that goal has now been freed, as shown in Figure 1(e). Whenever the
answer ofa1/1 is completed, shown in Figure 1(f), the execution ofb2/1 is again suspended
and a set of new answers ofmain/4 involving the new answer fora2/1 can be returned, again
as a combination of the already computed answers of its subgoals. To obtain the rest of the
answers of predicatemain/4, the first agent resumes the execution ofb2/1 and the second
agent starts calculating a new answer ofa2/1 (Figure 1(g)). The first agent finds the answer
of b2/1, suspends the execution of the second agent, and returns thenew answers ofmain/4.
Finally, Figure 1(h) shows how the second agent continues with the execution ofa2/1 in
order to obtain the rest of the answers ofmain/4.

Note that in this example memoization of answers avoids having to recompute expensive
answers of parallel goals. Also note that all the answers foreach parallel literal could have
been found separately and then merged, producing a similar total execution time. However,
the computational time for the first answer would have been drastically increased.

4 Memoization vs. Recomputation

Classic IAP uses recomputation of answers: if we executea(X) & b(Y), the first answer of
each goal is generated in parallel. On backtracking,b(Y) generates additional answers (one
by one, sequentially) until it finitely fails. Then, a new answer for goala(X) is computed in
parallel with the recomputation of the first answer ofb(Y). Successive answers are computed
by backtracking again onb(Y), and later ona(X).

However, sincea(X) andb(Y) are independent, the answers of goalb(Y) will be the same
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in each recomputation. Consequently, it makes sense to store its bindings after every answer
is generated, and combine them with those froma(X) to avoid the recomputation ofb(Y).
Memoing answers does not require having the bindings for these answers on the stack; in
fact they should be stashed away and reinstalled when necessary. Therefore, when a new
answer is computed fora(X) the previously computed and memorized answers forb(Y) are
restored and combined.

4.1 Answer Memoization

In comparison with tabling (Tamaki and Sato 1986; Warren 1992; Chen and Warren 1996),
which also saves goal answers, our scheme shows a number of differences: we assume that
we start off with terminating programs (or that if the original program is non-terminating in
sequential Prolog, we do not need to terminate), and therefore we do not need to take care of
the cases tabling has to: detecting repeated calls,3 suspending / resuming consumers, main-
taining SCCs, etc. We do not keep stored answers after a parallel call finitely fails: answers
for a(X) & b(Y) are kept for only as long as the new bindings forX andY are reachable. In
fact, we can discardall stored answers as soon as the parallel conjunction continues after its
last answer. Additionally, we restrict the visibility of the stored answers to the parallel con-
junction: if we havea(X) & b(Y), a(Z), the calls toa(Z) do not have access to the answers for
a(X). While this may lead to underusing the saved bindings, it greatly simplifies the imple-
mentation and reduces the associated overhead. Therefore we will not use the memoization
machinery commonly found in tabling implementations (Ramakrishnan et al. 1995).

Instead, we save a combination of trail and heap terms which capture all the bindings
made by the execution of a goal, for which we need two slight changes: we push a choice-
point before the parallel goal execution, so that all bindings to variables which live before
the parallel goal execution will be recorded, and we modify the trail code to always trail
variables which are not in the agent’s WAM.4 This ensures that all variable bindings we
need to save are recorded on the trail.

Therefore what we need to save are the variables pointed fromthe trail segment corre-
sponding to the execution of the parallel goal (where the bindings to its free variables are
recorded) and the terms pointed to by these variables. Theseterms are only saved if they live
in the heap segment which starts after the execution of the parallel goal, since if they live
below that point they existed before the parallel goal was executed and they are unaffected
by backtracking. Note that bindings to variables which werecreatedwithin the execution of
the parallel goal and which are not reachable from the argument variables do not have to be
recorded, as they are not visible outside the scope of the parallel goal execution.5

Figure 2 shows an example.G is a parallel goal whose execution unifies:X with a list
existing before the execution ofG, Y with a list created byG, andZ, which was created
by G, with a list also created byG. Consequently, we save those variables appearing in the
trail created byG which are older than the execution ofG (X andY), and all the structures

3 Detecting repeated calls requires traversing the arguments of a goal, which can be arbitrarily more costly than
executing the goal itself: for example, consider taking a large list and returning just its first element, as in
first([X| ],X).

4 This introduces a slight overhead which we have measured at around 1%.
5 Another possible optimization is to share bindings corresponding to common parts of the search tree of a parallel

goal: if a new answer is generated by performing backtracking on, for example, the topmost choicepoint and the
rest of the bindings generated by the goal are not changed, strictly speaking only these different bindings have
to be saved to save the new answer, and not the whole section oftrail and heap.
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[x,y,z]

[a,b]

[1,2]

X

Y

Z

X

Y

TRAIL
AGENT

HEAP

G execution

[1,2]

ANSWER MEMO
AGENT

Fig. 2. Snapshot of agent’s stacks during answer memoization process.

hanging from them.[x,y,z] is not copied because is not affected by backtracking. The copy
operation adjusts pointers of variables in a way that is similar to what is done in tabling
implementations (Ramakrishnan et al. 1995). For example, if we save a variable pointing to
a subterm of[1,2], this variable would now point to a subterm of the copy of[1,2].

Note that this is at most the same amount of work as that of the execution of the goal, be-
cause it consists of stashing away the variables bound by thegoal plus the structurescreated
by the goal. The information related to the boundaries of thegoal and its answers is kept in a
centralized per-conjunctiondata structure, akin to aparcall frame(Hermenegildo and Greene 1991).
Similar techniques are also used for the local stack.

Reinstalling an answer for a goal boils down to copying back to the heap the terms that
were previously saved and using the trail entries to make thevariables in the initial call point
to the terms they were bound to when the goal had finished. Someof these variables point
to the terms just copied onto the heap and some will point to terms which existed previously
to the goal execution and which were therefore not saved. In our example,[1,2] is copied
onto the heap and unified withY andX is unified with[x,y,z], which was already living on
the heap.

As mentioned before, while memoization certainly has a cost, it can also provide by
itself substantial speedups since it avoids recomputations. Since it is performed only on
independentgoals, the number of different solutions to keep does not grow exponentially
with the number of goals in a conjunction, but rather only linearly. This is an interesting
case of synergy between two different concepts (independence and memoization), which in
principle are orthogonal, but which happen to have a very positive mutual interaction.

4.2 Combining Answers

When the last goal pending to generate an answer in a parallelconjunction produces a so-
lution, any sibling goals which were speculatively workingtowards producing additional
solutions have to suspend, reinstall the previously found answers, and combine them to
continue with forward execution. A similar behavior is necessary when backtracking is
performed over a parallel conjunction and one of the goals which are being reexecuted in
parallel finds a new solution. At this moment, the new answer is combined with all the pre-
vious answers of the rest of the parallel goals. For each parallel goal, if it was not suspended
when performing speculative backtracking, its last answeris already on the execution envi-
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ronment ready to be combined. Otherwise, its first answer is reinstalled on the heap before
continuing with forward execution.

When there is more than one possible answer combination (because some parallel goals
already found more than one answer), aghostchoice point is created. This choicepoint has
an “artificial” alternative which points to code which takescare of retrieving saved answers
and installing the bindings. On backtracking, this code will produce the combinations of an-
swers triggered by the newly found answer (i.e., combinations already produced are not re-
peated). Note that this new answer may have been produced by any goal in the conjunction,
but we proceed by combining from right to left. The invarianthere is that before producing
a new answer, all previous answer combinations have been produced, so we only need to fix
the bindings for the goal which produced the new answer (sayg) and successively installing
the bindings for the saved answers produced by the rest of thegoals.

Therefore, we start by installing one by one the answers previously produced by the
rightmost goal. When all solutions are exhausted, we move onto the next goal to the left,
install its next answer and then reinstall again one by one the answers of the rightmost goal.
When all the combinations of answers for these two goals are exhausted, we move on to the
third rightmost one, and so on —but we skip goalg, because we only need to combine its
last answer since the previous ones were already combined.

An additional optimization is to update the heap top pointerof theghostchoice point to
point to the current heap top after copying terms from the memoization area to the heap,
in order to protect these terms from backtracking for a possible future answer combination.
Consequently, when the second answer of the second rightmost parallel goal is combined
with all the answers of the rightmost goal, the bindings of the answers of the rightmost goal
do not need to be copied on the heap again and then we only need to untrail bindings from
the last combined answer and redo bindings of the answer being combined. Finally, once the
ghostchoice point is eliminated, all these terms that were copiedon the heap are released.

One particular race situation needs to be considered. When aparallel goal generates a
new solution, other parallel goals may also find new answers before being suspended, and
thus some answers may be lost in the answer combination. In order to address this, our
implementation maintains a pointer to the last combined answer of each parallel goal in
the parcall frame. Therefore, if, e.g., two parallel goals,a/1 andb/1, have computed three
answers each, but only two of them have been combined, the third answer ofa/1 would be
combined with the first two answers ofb/1, updating afterward its last combined answer
pointer to its third answer. Once this is done, the fact thatb/1 has uncombined answers
is detected before performing backtracking, and the third answer ofb/1 is combined with
all the computed answers ofa/1 and, then, the last combined answer ofb(Y) is updated to
point to its last answer. Finally, when no goal is left with uncombined answers, the answer
combination operation fails.

5 Trapped Goals and Backtracking Order

The classical, right-to-left backtracking order for IAP isknown to bring a number of chal-
lenges, among them the possibility oftrapped goals: a goal on which backtracking has to
be performed becomestrappedby another goal stacked on top of it. Normal backtracking
is therefore impossible. Consider the following example:

m(X,Y,Z) :- b(X,Y) & a(Z).
b(X,Y) :- a(X) & a(Y).
a(1). a(2).
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a(X)

a(Z)

m(X, Y, Z)

a(Y)

b(X, Y)

Agent 1 Agent 2 Agent 1 Agent 2

b(X, Y)

a(Y)

a(X)

a(Z)

m(X, Y, Z)

a(Z)

Fig. 3. Execution ofm/3.

m(X, Y)

b(Y)

c(Y)

Agent 2Agent 1

d

a(X)

Fig. 4. Execution ofm/2.

Figure 3 shows a possible state of the execution of predicatem/3 by two agents. When the
first agent starts computingm/3, b(X, Y) anda(Z) are scheduled to be executed in parallel.
Assume thata(Z) is executed locally by the first agent andb(X,Y) is executed by the second
agent. Then, the second agent schedulesa(X) anda(Y) to be executed in parallel, which
results ina(Y) being locally executed by the second agent anda(X) executed by the first
agent after computing an answer fora(Z). In order to obtain another answer form/3, right-
to-left backtracking requires computing additional answers for a(Z), a(Y), anda(X), in that
order. However,a(Z) cannot be directly backtracked over sincea(X) is stacked on top of it:
a(Z) is a trapped goal.

Several solutions have been proposed for this problem. One of the original proposals
usescontinuation markers(Hermenegildo 1986; Shen and Hermenegildo 1996) toskipover
stacked goals. This is, however, difficult to implement properly and needs to take care of a
large number of cases. It can also leave unused sections of memory (garbage slots) which
are either only reclaimed when finally backtracking over theparallel goals, or require quite
delicate memory management. A different solution (Casas etal. 2008) is to move the execu-
tion of the trapped goal to the top of the stack. This simplifies the implementation somewhat,
but it also leaves garbage slots in the stacks.

5.1 Out-of-Order Backtracking

Our approach does not follow the sequential backtracking order, to reduce the likelihood
of the appearance of trapped goals and garbage slots. The keyidea is to allow backtracking
(and therefore the order of solutions) to dynamically adaptto the configuration of the stacks.

As mentioned before, the obvious drawback of this approach is that it may alter solution
order with respect to sequential execution, and in an unpredictable way. However, we argue
that in many cases this may not be a high price to pay, specially if the programmer is
aware of it and can have a choice. Programs where solution order matters, typically because
of efficiency, are likely to have dependencies between goalswhich would anyway make
them not amenable for IAP. For independent goals we argue that allowing out-of-order
backtracking represents in some way a return to a simpler, more declarative semantics that
has the advantage of allowing higher efficiency in the implementation of parallelism.

The alternative we propose herein consists of always backtracking over the goal that is on
top of the stack, without taking into account the original goal execution order. For example,
in the case of backward execution over predicatem/3 in Figure 3, both agents may be able
to backtrack overa(X) anda(Y), without having to move the execution ofa(Z).
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5.2 First Answer Priority and Trapped goals

Out-of-order backtracking, combined with answer memoing not to lose answer combina-
tions, can avoid trapped goals if no priority is given to any of the parallel goals, because
there will always be a backtrackable goal on the stack top to continue the execution of the
program. However, as mentioned before, we do impose a lightweight notion of priority to
first answers to preserve no-slowdown: backward execution of parallel goals that have not
found any answer has more priority than backward execution of parallel goals which have
already found an answer. Note that even using this very lax notion of priority, the possibility
of trapped goals returns, as illustrated in the following example:

m(X,Y) :- a(X) & b(Y).
b(Y) :- c(Y) & d, e(Y).
a(1). a(2). c(1). c(2). d. e(2)

Figure 4 shows a possible state of the execution of predicatem/2 by two agents. The first
agent starts with the execution of predicatem/2 and publishesa/1 andb/1 to be executed
in parallel. The first agent starts with the execution ofb/1 and marks bothc/1 andd/0 for
parallel execution. The second agent then executesc/1 while the first agent is executing
d/0, and when the execution ofc/1 finishes then it computes an answer fora/1. Once the
execution of goalsc/1 andd/0 has finished,e/1 is executed. However, this execution will fail
becausec/1 already gave a different binding to variableY. If the first answer is given priority,
c/1 should be backtracked beforea/1, butc/1 is trapped by the execution ofa/1. While this
example shows that it is possible to have trapped goals with out-of-order backtracking, we
experimentally found that the percentage of trapped goals vs. remotely executed goals varies
between 20% and 60% under right-to-left backtracking and itis always 0% under out-of-
order backtracking, thus allowing for a simpler solution for the problem without degrading
the performance of parallel execution.

Our approach is to perform stack reordering to create a new execution state which is con-
sistent, i.e., which could have been generated by a sequential SLD execution. Consequently,
the parallel scheduler is greatly simplified since it does not have to manage trapped goals.
We cannot present the algorithm due to space limitations, but a high-level view follows:

1. Copy the choice point and trail section corresponding to the trapped goal to the top
of the stacks (their original allocations become garbage).

2. Move down the choice point and trail section to remove the generated garbage slots.
3. Update the trail pointers of relocated choice points to the reordered trail section.
4. Keep heap and local stack in the same location. Global and frame stack top pointers

of the trapped goal choice points are updated to point to the actual top of global and
frame stack. Consequently, the execution memory of the goals that were moved down
the stack is protected from backtracking.

6 The Scheduler for the Parallel Backtracking IAP Engine

Once we allow backward execution over any parallel goal on the top of the stacks, we
can perform backtracking over all of them in parallel. Consequently, each time we perform
backtracking over a parallel conjunction, each of the parallel goals of the parallel conjunc-
tion can start speculative backward execution.

As we mentioned earlier, the management of goals (when a goalis available and can start,
when it has to backtrack, when messages have to be broadcast,etc.) is encoded in Prolog



11

parcall back(LGoals, NGoals) :-
fork(PF,NGoals,LGoals,[Handler|LHandler]),
(

goal not executed(Handler) −>

call local goal(Handler,Goal)
;

true
),
look for available goal(LHandler),
join(PF).

look for available goal([]) :- !, true.
look for available goal([Handler|LHandler]) :-

(
goal available(Handler) −>

call local goal(Handler,Goal)
;

true
),
look for available goal(LHandler).

agent :- work, agent.
agent :- agent.

work :-
find parallel goal(Handler) −>

(
goal not executed(Handler) −>

save init execution(Handler),
call parallel goal(Handler)

;
move execution top(Handler),
fail

)
;

suspend,
work.

Fig. 5. Parallel backtracking Prolog code.

code which interacts with the internals of the emulator. Figure 5 shows a simplified version
of such a scheduler, which is executed when agents (a) look for new work to do and (b) have
to execute a parallel conjunction. Note that locks are not shown in the algorithm.

6.1 Looking for Work

Agents initially execute theagent/0 predicate, which callswork/0 in an endless loop to
search for a parallel goal to execute, via thefind parallel goal/1 primitive, which defines
the strategy of the scheduler. Available goals can be in fourstates: non-executed parallel
goals necessary for forward execution, backtrackable parallel goals necessary for forward
execution, non-executed parallel goals not necessary for forward execution (because they
were generated by goals performing speculative work), and backtrackable parallel goals
not necessary for forward execution. Different schedulingpolicies are possible in order to
impose preferences among these types of goals (to, e.g., decide which non-necessary goal
can be picked) but studying them is outside the scope of this paper.

Once the agent finds a parallel goal to execute, it is preparedto start execution in a
clean environment. For example, if the goal has to be backtracked over and it is trapped,
a primitive operationmove execution top/1 moves the execution segment of the goal to the
top of the stacks to ensure that the choice point to be backtracked over is always on the top
of the stack (using the algorithm of Section 5). Also, the memoization of the last answer
found is performed at this time, if the execution of the parallel goal was not suspended.

If find parallel goal/1 fails (i.e., no handler is returned), the agent suspends until some
other agent publishes more work.call parallel goal/1 saves some registers before starting
the execution of the parallel goal, such as the current trailand heap top, changes the state
of the handler once the execution has been completed, failed, or suspended, and saves some
registers after the execution of the parallel goal in order to manage trapped goals and to
release the execution of the publishing agent.
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6.2 Executing Parallel Conjunctions

The parallel conjunction operator&/2 is preprocessed and converted intoparcall back/2,
which is the entry point of the scheduler, and which receivesthe list of goals to execute
in parallel (LGoals) and the number of goals in the list.parcall back/2 invokes firstfork/4,
written in C, which creates ahandlerfor each parallel goal in the scope of the parcall frame
containing information related to that goal, makes goals available for other agents to pick
up, resumes suspended agents which can then steal some of thenew available goals, and
inserts a new choice point in order to release all the data structures on failure.

If the first parallel goal has not been executed yet, it is scheduled for local execution by
call local goal/2, which performs housekeeping similar to that ofcall parallel goal/1. It can
be already executed because this parallel goal, which is always executed locally, can fail
on backtracking, but the rest of the parallel goals could still be performing backtracking to
compute more answers. In this case, the choice point offork/4 will succeed on backtracking
to continue forward execution and to wait for the completionof the remotely executed
parallel goals to produce more answer combinations.

Then, look for available goal/1 executes locally parallel goals which have not already
been taken by another agent. Finally,join/1 waits for the completion of the execution of
the parallel goals, their failure, or their suspension before combining all the answers. Af-
ter all answers have been combined, the goals of the parallelconjunction are activated to
perform speculative backward execution.

7 Suspension of Speculative Goals

Stopping goals which are eagerly generating new solutions may be necessary for both cor-
rectness and performance reasons. The agent that determines that suspension is necessary
sends a suspension event to the rest of the agents that stole any of the sibling parallel goals
(accessible via the parcall frame). These events are checked in the WAM loop each time
a new predicate is called, using existing event-checking machinery shared with attributed-
variable handling (and therefore no additional overhead isadded). When the execution has
to suspend, the argument registers are saved on the heap, anda new choice point is inserted
onto the stack to protect the current execution state. This choice point contains only one
argument pointing to the saved registers in order to reinstall them on resumption. The al-
ternative to be executed on failure points to a special WAM instruction which reinstalls the
registers and jumps to the WAM code where the suspension was performed, after releasing
the heap section used to store the argument registers. Therefore, the result of failing over
this choice point is to resume the suspended execution at thepoint where it was suspended.

After this choice point is inserted, goal execution needs tojump back to the Prolog sched-
uler for parallel execution. In order to jump to the appropriate point in the Prolog scheduler
(aftercall parallel goal/1 or call local goal/2), the WAM frame pointer is saved in the handler
of the parallel goal before callingcall parallel goal/1 or call local goal/2. After suspension
takes place, it is reinstalled as the current frame pointer,the WAM’s next instructionpointer
is updated to be the one pointed to by this frame, and this WAM instruction is dispatched.
The result is that the scheduler continues its execution as if the parallel goal had succeeded.

Parallel goals to be suspended may in turn have other nested parallel calls. Suspension
events are recursively sent by agents following the chain ofdependencies saved in the par-
call frames, similarly to thefail messages in &-Prolog (Hermenegildo and Greene 1991).
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8 A Note on Deterministic Parallel Goals

The machinery we have presented can be greatly simplified when running deterministic
goals in parallel: answer memoization and answer combination are not needed, and the
scheduler (Section 6) can be simplified. Knowing ahead of execution which goals are de-
terministic can be used to statically select the best execution strategy. However, some opti-
mizations can be performed dynamically without compiler support (e.g., if it is not available
or imprecise). For example, themove execution top/1 operation may decide not to memo-
ize the previous answer if there are no choice points associated to the execution of the
parallel goal, because that means that at most one answer canbe generated. By applying
these dynamic optimizations, we have detected improvements of up to a factor of two in the
speedups of the execution of some deterministic benchmarks.

9 Comparing Performance of IAP Models

We present here a comparison between a previous high-level implementation of IAP (Casas et al. 2008)
(which we abbreviate asseqback) with our proposed implementation (parback). Both im-
plementations are similar in nature and have similar overheads (inherent to a high-level
implementation), with the obvious main difference being the support for parallel backtrack-
ing and answer memoization inparback. Both are implemented by modifying the standard
Ciao (Bueno et al. 2009; Hermenegildo et al. 2011) distribution. We will also comment on
the relation with the very efficient IAP implementation in (Hermenegildo and Greene 1991)
(abbreviated as&-Prolog) for deterministic benchmarks in order to evaluate the overhead
incurred by having part of the system expressed in Prolog.

We measured the performance results of bothparback andseqback on deterministic
benchmarks, to determine the possible overhead caused by adding the machinery to perform
parallel backtracking and answer memoization, and also of course on non-deterministic
benchmarks. The deterministic benchmarks used are the well-known Fibonacci series (fibo),
matrix multiplication (mmat) and QuickSort (qsort). fibogenerates the 22nd Fibonacci num-
ber switching to a sequential implementation from the 12th number downwards,mmatuses
50x50 matrices andqsort is the version which usesappend/3 sorting a list of 10000 num-
bers. The GC suffix means task granularity control (López-Garcı́a et al. 1996) is used for
lists of size 300 and smaller.

The selected nondeterministic benchmarks arecheckfiles, illumination, and qsort nd.
checkfilesreceives a list of files, each of which contains a list of file names which may
exist or not. These lists are checked in parallel to find nonexistent files which appear listed
in all the initial files; these are enumerated on backtracking. illuminationreceives anN×N

board informing of possible places for lights in a room. It tries to place a light in each of
the columns, but lights in consecutive columns have to be separated by a minimum dis-
tance. The eligible positions in each column are searched inparallel and position checking
is implemented with a pause of one second to represent task lengths.qsort nd is a Quick-
Sort algorithm where list elements have only a partial order. checkfilesandilluminationare
synthetic benchmarks which create 8 parallel goals and which exploit memoization heavily.
qsort nd is a more realistic benchmark which creates over one thousand parallel goals. All
the benchmarks were parallelized using CiaoPP (Hermenegildo et al. 2005) and the annota-
tion algorithms described in (Muthukumar et al. 1999; Cabeza 2004; Casas et al. 2007).

Table 1 shows the speedups obtained. Performance results for seqback and parback
were obtained by averaging ten different runs for each of thebenchmarks in a Sun Ultra-
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Benchmark Approach
Number of threads

1 2 3 4 5 6 7 8

Fibo

&-Prolog 0.98 1.93 - 3.70 - 5.65 - 7.34
seqback 0.95 1.89 2.80 3.70 4.61 5.36 6.23 6.96
parback 0.95 1.88 2.78 3.69 4.60 5.33 6.21 6.94
parbackdet 0.96 1.91 2.83 3.74 4.65 5.41 6.28 7.04

QSort

&-Prolog 1.00 1.92 - 3.03 - 3.89 - 4.65
seqback 0.50 0.98 1.38 1.74 2.05 2.27 2.57 2.67
parback 0.49 0.97 1.37 1.74 2.05 2.27 2.58 2.69
parbackdet 0.56 1.10 1.54 1.96 2.31 2.57 2.90 3.02
seqbackGC 0.97 1.77 2.42 3.02 3.37 3.77 3.98 4.15
parbackGC 0.97 1.76 2.41 3.00 3.34 3.74 3.94 4.12
parbackGCdet 0.97 1.78 2.44 3.04 3.41 3.79 3.99 4.21

MMat

&-Prolog 1.00 1.99 - 3.98 - 5.96 - 7.93
seqback 0.78 1.55 2.28 2.99 3.67 4.29 4.91 5.55
parback 0.76 1.52 2.25 2.95 3.60 4.22 4.83 5.45
parbackdet 0.80 1.60 2.38 3.01 3.79 4.55 5.19 5.87

CheckFiles

seqbackfirst 0.99 1.09 1.11 1.12 1.12 1.12 1.13 1.13
seqbackall 0.99 1.05 1.07 1.07 1.07 1.08 1.08 1.08
parbackfirst 3917 8612 10604 17111 17101 17116 17134 44222
pb relfirst 1.00 2.20 2.71 4.37 4.37 4.37 4.37 11.29
parbackall 12915 23409 30545 45818 46912 46955 46932 89571
pb relall 1.00 1.81 2.37 3.55 3.63 3.64 3.63 6.94

Illumination

seqbackfirst 1.00 1.37 1.55 1.56 1.56 1.61 1.67 1.67
seqbackall 1.00 1.16 1.21 1.24 1.24 1.25 1.25 1.27
parbackfirst 1120 1725 2223 3380 3410 4028 4120 6910
pb relfirst 1.00 1.54 1.98 3.02 3.04 3.60 3.68 6.17
parbackall 8760 16420 20987 31818 31912 31888 31934 65314
pb relall 1.00 1.87 2.40 3.63 3.64 3.64 3.65 7.46

QSortND

seqbackfirst 0.94 1.72 2.36 2.92 3.25 3.59 3.78 3.92
seqbackall 0.91 0.96 0.98 0.99 0.99 1.00 1.00 1.00
parbackfirst 0.94 1.72 2.35 2.91 3.24 3.57 3.76 3.91
parbackall 4.29 6.27 8.30 9.90 10.5 10.9 11.1 11.3
pb relall 1.00 1.46 1.93 2.31 2.45 2.54 2.59 2.64

Table 1. Comparison of speedups for several benchmarks and implementations.

Sparc T2000 (aNiagara) with 8 4-thread cores. The speedups shown in this table are cal-
culated with respect to the sequential execution of the original, unparallelized benchmark.
Therefore, the column tagged1 corresponds to the slowdown coming from executing a par-
allel program on a single processor. For&-Prolog we used the results in (Hermenegildo and Greene 1991).
To complete the comparison, we note that one of the most efficient Prolog systems, YAP
Prolog (?), very optimized for SPARC, is on these benchmarks between 2.3 and 2.7 faster
than the execution of the parallel versions of the programs on the parallel version of Ciao
using only one agent, but the parallel execution still outperforms YAP. Of course, YAP could
in addition take advantage of parallel execution.

For deterministic benchmarks,parbackdet refers to the implementation presented in this
paper with improvements based on determinacy information obtained from static analy-
sis (López-Garcı́a et al. 2005). For nondeterministic benchmarks we show a comparison
of the performance results obtained both to generate the first solution (seqbackfirst and
parbackfirst) and all the solutions (seqbackall and parbackall). Additionally, we also
show speedups relative to the execution in parallel with memoing in one agent (which
should be similar to that which could be obtained by executing sequentially with memo-
ing) in rowspb relfirst andpb relall.

The speedups obtained in both high-level implementations are very similar for the case
of deterministic benchmarks. Therefore, the machinery necessary to perform parallel back-
tracking does not seem to degrade the performance of deterministic programs.
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Static optimizations bring improved performance, but in this case they seem to be quite
residual, partly thanks to the granularity control. When comparing with&-Prolog we of
course suffer from the overhead of executing partly at the Prolog level (especially inmmat
andqsort without granularity control), but even in this case we thinkthat our current im-
plementation is competitive enough. It is important that tonote that the&-Prolog speedups
were measured in another architecture (Sequent Symmetry),so the comparison can only
be indicative. However, the Sequents were very efficient andorthogonal multiprocessors,
probably better than the Niagara in terms of obtaining speedups (even if obviously not in
raw speed) since the bus was comparatively faster in relation with processor speed. This
can only make&-Prolog (and similar systems) have smaller speedups if run in parallel
hardware. Therefore, their speedup could only get closer toours in current architectures.

parback andseqback behavior is quite similar in the case ofqsort nd when only the
first answer is computed because there is not backtracking here.

In the case ofcheckfilesand illumination, backtracking is needed even to generate the
first answer, and memoing plays a more important role. The implementation using parallel
backtracking is therefore much faster even in a single processor since recomputation is
avoided. If we compute the speedup relative to the parallel execution on one processor
(rowspb relfirst andpb relall) the speedups obtained byparback follow the increment in
the number of processors more closely —with some superlinear speedup which is normal
when search does not follow, as in our case, the same order as sequential execution— which
can be traced to the increased amount of parallel backtracking. In contrast, the speedups of
seqback do not increase so much since it performs essentially sequential backtracking.

When all the answers are required, the differences are stillclearer because there is much
backward execution. This behavior also appears, to a lesserextent, inqsort nd. More in
detail, theparback speedups are not that good when looking for all the answers ofqsort nd
because the time for storing and combining answers is not negligible here.

Note that theparback speedups ofcheckfilesand illumination stabilize between 4 and
7 processors. This is so because they generate exactly 8 parallel goals, and there is one
dangling goal to be finished. In the case ofcheckfileswe get superlinear speedup because
there are 8 lists of files to check. With 8 processors the first answer can be obtained without
traversing (on backtracking) any of these lists. This is notthe case with 7 processors and
so there is no superlinear behavior until we hit the 8 processor mark. Additionally, since
backtracking is done in parallel, the way the search tree is explored (and therefore how fast
the first solution is found) can change between executions.

10 Conclusions

We have developed a parallel backtracking approach for independent and-parallelism which
uses out-of-order backtracking and relies on answer memoization to reuse and combine an-
swers. We have shown that the approach can bring interestingsimplifications when com-
pared to previous approaches to the complex implementationof the backtracking mecha-
nism typical in these systems. We have also provided experimental results that show signif-
icant improvements in the execution of non-deterministic parallel calls due to the avoidance
of having to recompute answers and due to the fact that parallel goals can execute backward
in parallel, which was a limitation in previous similar implementations. This parallel system
may be used in applications with a constraint-and-generatestructure in which checking the
restrictions after the search is finished does not add significant computation, and a simple
code transformation allows a sequential program to be executed in parallel.
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