
Slide 0

Functional Notation and Lazy Evaluation

in Ciao

Amadeo Casas1 Daniel Cabeza2 Manuel Hermenegildo1,2

amadeo@cs.unm.edu ,
{dcabeza, herme }@fi.upm.es

1Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, Albuquerque, NM, USA.

2School of Computer Science, T. U. Madrid (UPM), Madrid, Spain

CLIP Group

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 1

Introduction

Logic Programming offers a number of features, such as nondeterminism and partially
instantiated data structures, that give it expressive power beyond that of functional
programming.

Functional Programming provides syntactic convenience, by having a syntactically
designated output argument.

Functional Programming also provides the ability to deal with infinite data structures by
means of lazy evaluation.

We present a design for an extensive functional layer for logic programs and its
implementation in the Ciao system.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 2

Why this is new

Adding functional features to LP systems is clearly not new:

Work by Bella, Levi, et al.

Naish: equations in NU-Prolog.

A good number of systems which integrate functions into some form of L.P.:
Oz, Mercury, HAL, Lambda-Prolog, . . .

Or perform a full integration of Functional and Logic Programming (e.g., Curry).

Our proposal and its implementation has peculiarities which make it interesting:

The system supports ISO-Prolog.

The Language is extensible (and restrictable).

Functional features added at the source (Prolog) level.

Using Ciao packages (no compiler or machinery modification).

Functions retain the power of predicates (it’s just notation).

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 3

Functional Notation in Ciao (I)

Function applications:

Any term preceded by the ˜/1 operator is a function application:

write(̃ arg(1, T)). arg(1, T, A), write(A).

The next declaration avoids the need to use the ˜/1 operator:

:- function arg/2. write(arg(1, T)).

It is possible to use a predicate argument other than the last as the return argument:

:- fun return functor(̃ , ,). ˜functor(̃ , f, 2).

The following declaration combines the previous two:

:- function functor(̃ , ,).
:- fun return functor(̃ , ,).
:- function functor/2.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 4

Functional Notation in Ciao (II)

Predefined evaluable functors: several functors are evaluable by default:

All the functors understood by is/2. Can be disabled by a declaration:

:- function arith(false). % reverted by using true.

Functors used for disjunctive and conditional expressions:

(Cond1 ? V1 | (Cond2 ? V2 | V3)).

Functional definitions:

fact(0) := 1. % Using body guards
fact(N) := N * fact(--N) :- N > 0.

fac(N) := N = 0 ? 1 % using conditional expressions
| N > 0 ? N * fac(--N).

The translation of functional clauses defining recursive predicates maintains the tail
recursion of the equivalent predicate.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 5

Functional Notation in Ciao (III)

Quoting functors: functors can be prevented from being evaluated:

pair(A,B) := ˆ(A-B).

Scoping: function applications evaluated in the scope of the outer execution. If they should
be evaluated in the inner scope, the goal containing the function application needs to be
escaped with the (̂ ˆ)/1 operator:

findall(X, (d(Y), ˆˆ(X = ˜f(Y)+1)), L).

Laziness: an expression is not evaluated as soon as it is assigned, but rather when the
evaluator is forced to produce the value of the expression:

:- lazy function nums_from/1.
nums_from(X) := [X | nums_from(X+1)].

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 6

Functional Notation in Ciao (IV)

Definition of real functions: functions not forced to provide a single solution for their result.
In order to declare a function as a real function:

:- funct name/N.

which adds pruning operators and Ciao assertions to add restrictions as determinacy and
modedness.

Functional notation really useful to write regular types in a very compact way:

color := red | blue | green.
list := [] | [_ | list].
list_of(T) := [] | [̃ T | list_of(T)].

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 7

Example of Functional Notation in Ciao

:- function(arith(false)).
der(x) := 1.
der(C) := 0 :- number(C).
der(A + B) := der(A) + der(B).
der(C * A) := C * der(A) :- number(C).
der(x ** N) := N * x ** ˜(N - 1) :- integer(N), N > 0.

der(x, 1).
der(C, 0) :-

number(C).
der(A + B, X + Y) :-

der(A, X), der(B, Y).
der(C * A, C * X) :-

number(C), der(A, X).
der(x ** N, N * x ** N1) :-

integer(N), N > 0, N1 is N - 1.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 8

Higher-Order

Not topic of this paper, but combines well with these syntactic extensions.

Adding functions to higher-order in Ciao:

Predicate abstraction ⇒ Function abstraction
{’’(X,Y) :- p(X,Z), q(Z,Y)} ⇒ {’’(X) := ˜q(̃ p(X))}

Predicate application ⇒ Function application
..., P(X,Y), ... ⇒ ..., Y = ˜P(X), ...

The integration is at the predicate level.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 9

Implementation Details

Functional features provided by two Ciao packages.

Packages in Ciao are libraries which define extensions to the language.

Packages are based in the redesigning of the traditional term expansions and operator
definitions to make them more well-behaved and local to the module.

Two packages: one for the bare function features without lazy evaluation, and an additional
one to provide the lazy evaluation features.

Basic functional features are translated using the well-known technique of adding a goal for
each function application.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 10

Lazy Functions Implementation

Translation of a lazy function into a predicate is done in two steps:

First, the function is converted into a predicate by the bare functions package.

The predicate is transformed to suspend its execution until the value of the output
variable is needed, by the use of the freeze/2 control primitive.

The translation will rename the original predicate to an internal name and add a bridge
predicate with the original name which invokes the internal predicate through a call to
freeze/1 .

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 11

Example of Lazy Functions

:- lazy function fiblist/0.
fiblist := [0, 1 | ˜zipWith(add, FibL, ˜tail(FibL))]

:- FibL = fiblist.

:- lazy fiblist/1.
fiblist([0, 1 | Rest]) :-

fiblist(FibL),
tail(FibL, T),
zipWith(add, FibL, T, Rest).

fiblist(X) :-
freeze(X, ’fiblist_$$lazy$$’(X)).

’fiblist_$$lazy$$’([0, 1 | Rest]) :-
fiblist(FibL),
tail(FibL, T),
zipWith(add, FibL, T, Rest).

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 12

Performance Measurements (I)

Lazy Evaluation Eager Evaluation
List Time Heap Time Heap
10 elements 0.030 1503.2 0.002 491.2

100 elements 0.276 10863.2 0.016 1211.2

1000 elements 3.584 104463.0 0.149 8411.2

2000 elements 6.105 208463.2 0.297 16411.2

5000 elements 17.836 520463.0 0.749 40411.2

10000 elements 33.698 1040463.0 1.277 80411.2

Table 1: Performance for nat/2 (time in ms. and heap sizes in bytes).

:- function nat/1.
nat(N) :=

take(N, nums_from(0)).

:- lazy function nums_from/1.
nums_from(X) :=

[X | nums_from(X+1)].

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 13

Performance Measurements (II)

Lazy Evaluation Eager Evaluation
List Time Heap Time Heap
10 elements 0.091 3680.0 0.032 1640.0

100 elements 0.946 37420.0 0.322 17090.0

1000 elements 13.303 459420.0 5.032 253330.0

5000 elements 58.369 2525990.0 31.291 1600530.0

15000 elements 229.756 8273340.0 107.193 5436780.0

20000 elements 311.833 11344800.0 146.160 7395100.0

Table 2: Performance for qsort/2 (time in ms. and heap sizes in bytes).

:- lazy function qsort/1.
qsort(X) := qsort_(X, []).

:- lazy function qsort_/2.
qsort_([], Acc) := Acc.
qsort_([], Acc) := Acc.
qsort_([X|T], Acc) := qsort_(S, [X|qsort_(G, Acc)])

:- (S, G) = partition(T, X).

:- lazy function partition/3.
partition([], _) := ([], []).
partition([X|T], Y) := (S, [X|G]) :-

Y < X,
!,
(S,G) = partition(T, Y).

partition([X|T], Y) := ([X|S], G) :-
!,
(S,G) = partition(T, Y).

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 14

Lazy Evaluation vs. Eager Evaluation

:- module(module1, [test/1], [functions, lazy, hiord, act mods]).
:- use_module(library(’ act mod s/w ebb ase d_l oc ate ’)) .

:- use_active_module(mo dul e2, [squares/2]).

:- function takeWhile/2.
takeWhile(P, [H|T]) := P(H) ? [H | takeWhile(P, T)]

| [].
:- function test/0.
test := takeWhile({ ’’(X) := X < 10000 }, squares).

:- module(module2, [squares/1], [functions, lazy, hiord]).

:- lazy function squares/0.
squares := map_lazy(take(1000000 , nums_from(0)), { ’’(X) := X * X }).

:- lazy function map_lazy/2.
map_lazy([], _) := [].
map_lazy([X|Xs], P) := [̃ P(X) | map_lazy(Xs, P)].

:- function take/2.
take(0, _) := [].
take(X, [H|T]) := [H | take(X-1, T)] :- X > 0.

:- lazy function nums_from/1.
nums_from(X) := [X | nums_from(X+1)].

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

Slide 15

Conclusions

We have presented a functional extension of Prolog, which includes the possibility of
evaluating functions lazily.

The proposed approach has been implemented in Ciao and is used now throughout the
libraries and other system code as well as in a number of applications written by the users
of the system.

The performance of the package has been tested with several examples. As expected,
evaluating functions lazily implies some time and memory overhead with respect to eager
evaluation.

The main advantage of lazy evaluation is to make it easy to work with infinite data
structures in the manner that is familiar to functional programmers.

Functional Notation and Lazy Evaluation in Ciao CICLOPS 2005

