
Slide 0

A Syntactic Approach to Combining
Functional Notation, Lazy Evaluation,

and Higher-Order in LP Systems

Amadeo Casas1 Daniel Cabeza2 Manuel Hermenegildo1,2

{amadeo, herme}@cs.unm.edu

{dcabeza, herme}@fi.upm.es

1Depts. of Comp. Science and Electr. and Comp. Eng.

Univ. of New Mexico, Albuquerque, NM, USA.

2School of Computer Science

T. U. Madrid (UPM), Madrid, Spain

CLIP Group

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 1

Introduction

LP offers features, such as nondeterminism, partially instantiated data structures,
and constraints providing high expressive power.

FP provides syntactic convenience (because of designated output argument).

FP also provides lazy evaluation: ability to deal with infinite data structures and
save execution steps.

LP provides more powerful (lazy) evaluation mechanism (delay declarations) but,
again, FP brings syntactic convenience.

Discuss the combination with higher order.

We present a syntactic functional layer (combining functions, laziness, and HO)
as implemented in the Ciao language
(but useful in general for LP-based systems).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 2

Is any of this new?

Adding functional features to LP systems clearly not new:

A good number of systems integrate functions into some form of LP:
NU-Prolog, Lambda-Prolog, HiLog/XSB, Oz, Mercury, HAL, . . .

Or perform a “native” integration of FP and LP (e.g., Babel, Curry, ...).

Ciao design is contemporary to these (~97). Its peculiarities make it interesting:

Functions can retain the power of predicates (it is just syntax!).
Functions inherit all other Ciao features (assertions, properties, records,
constraints, ...) + (analysis, optimization, verification, ACC, ...).

The system can support ISO-Prolog, and

functions, laziness, (and hiord) can be used as a extension of it (or not).

Also the implementation is different (library-based):

Exploits the Ciao extension/restriction facilities: Ciao packages concept.

Makes it independent from, and (partially) compositional with other extensions.

No compiler or abstract machine modification (all done at source level).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 3

Functional Notation in Ciao (I)

Function applications:

Any term preceded by the ~/1 operator is a function application:

write(~arg(1, T)). arg(1, T, A), write(A).

Declarations can be used to avoid the need to use the ~/1 operator:

:- fun eval arg/2. write(arg(1, T)).

Also possible to use arguments other than last for “return”:

:- fun return functor(~, ,). ~functor(~, f, 2).

The following declaration combines the previous two:

:- fun eval functor(~, ,).
:- fun return functor(~, ,).

:- fun eval functor/2.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 4

Functional Notation in Ciao (II)

Several functors are evaluable by default:

Special forms for disjunctive and conditional expressions: |/2 and ?/2 .

A | B | C

Cond1 ? V1

Cond1 ? V1 | V2

Precedence implies that: Cond1 ? V1 | Cond2 ? V2 | V3

is parsed as: Cond1 ? V1 | (Cond2 ? V2 | V3)

All the functors understood by is/2, if the following declaration is used:

:- fun_eval arith(true).

Using false it can be (selectively) disabled.

Functional definitions:

opposite(red) := green. ≡ opposite(red,green).

addlast(X,L) := ~append(L,[X]). ≡ addlast(X,L,R) :- append(L,[X],R).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 5

Functional Notation in Ciao (III)

Can also have a body (serves as a guard or as where):

fact(0) := 1.

fact(N) := N * ~fact(--N) :- N > 0.

The declaration :- fun_eval defined(true).
allows dropping the ~ within a function’s definition:

fact(0) := 1.

fact(N) := N * fact(--N) :- N > 0.

And, using conditional expressions:

fac(N) := N = 0 ? 1

| N > 0 ? N * fac(--N).

The translation:

Produces steadfast predicates (bindings after cuts).

Maintains tail recursion.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 6

Deriv and its Translation

der(x) := 1.

der(C) := 0 :- number(C).

der(A + B) := der(A) + der(B).

der(C * A) := C * der(A) :- number(C).

der(x ** N) := N * x ** ~(N - 1) :- integer(N), N > 0.

der(x, 1).

der(C, 0) :-

number(C).

der(A + B, X + Y) :-

der(A, X), der(B, Y).

der(C * A, C * X) :-

number(C), der(A, X).

der(x ** N, N * x ** N1) :-

integer(N), N > 0, N1 is N - 1.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 7

Examples – Sugar for Append

Some syntactic sugar for append:

:- fun_eval append/2.

mystring(X) := append("Hello",append(X,"world!")).

Some more:

:- op(200,xfy,[++]).

:- fun_eval ++ /2.

A ++ B := ~append(A,B).

mystring(X) := "Hello" ++ X ++ "world!".

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 8

Examples – Array Access Syntax

Assume multi-dimensional arrays such as (for 2x2): A = a(a(_,_),a(_,_)).

We can now define the array access function with some syntactic sugar:

:- pred @(Array,Index,Elem) :: array * list(int) * int

"@var{Elem} is the @var{Index}-th element of @var{Array}.".

:- op(45, xfx, [@]).

:- fun_eval ’@’/2 .

@(V,[I]) := ~arg(I,V).

@(V,[I|Js]) := @(~arg(I,V),Js).

And use it: ?- M = ~array([2,2]), M@[2,1] = 3, display(M).

(for this the op and function declarations must be loaded in the top level also!)

E.g., in a vector addition:

for(I,1,N) do V3@[I] = V1@[I] + V2@[I]

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 9

Functional Notation in Ciao (IV)

Quoting. Evaluable functors can be prevented from being evaluated:

pair(A,B) := ^(A-B).

Scoping. When innermost function application is not desired (e.g., for certain
meta-predicates) a different scope can be determined with the (^^)/1 operator:

findall(X, (d(Y), ^^(X = ~f(Y)+1)), L).

translates to: findall(X, (d(Y),f(Y,Z),T is Z+1,X=T), L).
as opposed to: f(Y,Z), T is Z+1, findall(X, (d(Y),X=T), L).

Laziness. Execution is suspended until the return value is needed:

:- lazy fun_eval nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

(Can be done easily with when, block, freeze, etc. but proposed notation more
compact for this special case. Also, :- lazy pred_name/M.)

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 10

Functional Notation in Ciao (V)

Functional notation really useful, e.g., to write regular types in a compact way:

color := red | blue | green.

list := [] | [_ | list].

list_of(T) := [] | [~T | list_of(T)].

Which translate to:

color(red). color(blue). color(green).

list([]).

list([_|T]) :- list(T).

list_of(_, []).

list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

And can then of course be used in Ciao assertions:

:- pred append/3 :: list * list * list.

:- pred color_value/2 :: list(color) * int.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 11

Functional Notation in Ciao (VI)

Definition of “real” functions: :- funct name/N.

adds pruning operators and Ciao assertions to add functional restrictions:
determinacy, modedness, etc.

E.g.:

:- funct nrev/1.

nrev([]) := [].

nrev([H|T]) := ~conc(nrev(T),[H]).

Is translated to (simplified):

:- pred nrev(A,B,C)

: (ground(A), ground(B), var(C))

=> (ground(A), ground(B), ground(C))

+ is_det,mut_exclusive,covered,no_fail.

nrev([], Y) :- !, Y = [].

nrev([H|L],R) :- !, nrev(L,RL), conc(RL,[H],R).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 12

Combining with Constraints, etc.

Combining with constraints, some syntactic sugar, assertions:

:- module(_,_,[assertions,fsyntax,clpq]).

:- fun_eval .=. /1.

:- op(700,fx,[.=.]).

:- fun_eval fact/1.

:- pred fact(+int,-int) + is_det.

:- pred fact(-int,-int) + non_det.

fact(.=. 0) := 1.

fact(N) := .=. N*fact(.=. N-1) :- N .>. 0.

Sample query:

?- 24 = ~fact(X).

X = 4

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 13

Combining Higher-Order with Functional Notation

HO not topic of the paper, but combines well with these syntactic extensions.

Combining function application (~) and HO:

Predicate application ⇒ Function application
..., P(X,Y), ... ⇒ ..., Y = ~P(X), ...

Function abstraction:

Predicate abstraction ⇒ Function abstraction
{’’(X,Y) :- p(X,Z), q(Z,Y)} ⇒ {’’(X) := ~q(~p(X))}

The integration is at the predicate level.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 14

Combining Higher-Order with Functional Notation

Some common examples:

:- meta_predicate map(_,pred(2),_).

map([], _) := [].

map([X|Xs], P) := [~P(X)|~map(Xs,P)].

:- meta_predicate foldl(_,_,pred(3),_).

foldl([], Seed, _Op) := Seed.

foldl([X|Xs], Seed, Op) := ~Op(X,~foldl(Xs,Seed,Op)).

More uses of map/3 (using functional notation):

?- L = ~map([1,2,3], (_(X,Y):- Y = f(X))).

L = [f(1),f(2),f(3)]

?- [f(1),f(2),f(3)] = ~map(L, (_(X,f(X)) :- true)).

L = [1,2,3]

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 15

Combining with Ciao’s Abstract Interp.-based Assertion Checking

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 16

Combining with Ciao’s Certificates (Abstraction Carrying Code)

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 17

Implementation Details

All syntactic effects are local to the modules that use these packages
(as usual in Ciao):

Packages in Ciao are libraries which define extensions to the language.

Packages are based on the redesign of the traditional term expansions and
operator definitions to make them more well-behaved and module-local.

Functional features provided by Ciao packages:

One provides the bare function features without lazy evaluation,

An additional one provides the lazy evaluation features.

Functional features are implemented by translation using the well-known
technique of adding a goal for each function application.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 18

Implementation Details

Translation of a lazy function into a predicate is done in two steps:

First, the function is converted into a predicate by the standard functions
package.

The predicate is then transformed to suspend its execution until the value of
the output variable is needed, by means of the freeze/2 or block family of
control primitives.

(For freeze/2 the translation will rename the original predicate to an internal
name and add a bridge predicate with the original name which invokes the
internal predicate through a call to freeze/1.)

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 19

Example of Lazy Functions and Translation (stylized)

:- lazy fun_eval fiblist/0.

fiblist := [0, 1 | ~zipWith(add, FibL, ~tail(FibL))]

:- FibL = fiblist.

:- lazy fiblist/1.

fiblist([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(add, FibL, T, Rest).

fiblist(X) :-

freeze(X, ’fiblist_$$lazy$$’(X)).

’fiblist_$$lazy$$’([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(add, FibL, T, Rest).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 20

Performance Measurements (I)

Lazy Evaluation Eager Evaluation

List Time Heap Time Heap

10 elements 0.030 1503.2 0.002 491.2

100 elements 0.276 10863.2 0.016 1211.2

1000 elements 3.584 104463.0 0.149 8411.2

2000 elements 6.105 208463.2 0.297 16411.2

5000 elements 17.836 520463.0 0.749 40411.2

10000 elements 33.698 1040463.0 1.277 80411.2

Table 1: Performance for nat/2 (time in ms. and heap sizes in bytes).

:- fun_eval nat/1.

nat(N) :=

take(N, nums_from(0)).

:- lazy fun_eval nums_from/1.

nums_from(X) :=

[X | nums_from(X+1)].

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 21

Performance Measurements (II)

Lazy Evaluation Eager Evaluation

List Time Heap Time Heap

10 elements 0.091 3680.0 0.032 1640.0

100 elements 0.946 37420.0 0.322 17090.0

1000 elements 13.303 459420.0 5.032 253330.0

5000 elements 58.369 2525990.0 31.291 1600530.0

15000 elements 229.756 8273340.0 107.193 5436780.0

20000 elements 311.833 11344800.0 146.160 7395100.0

Table 2: Performance for qsort/2 (time in ms. and heap sizes in bytes).

:- lazy fun_eval qsort/1.

qsort(X) := qsort_(X, []).

:- lazy fun_eval qsort_/2.

qsort_([], Acc) := Acc.

qsort_([], Acc) := Acc.

qsort_([X|T], Acc) := qsort_(S, [X|qsort_(G, Acc)])

:- (S, G) = partition(T, X).

:- lazy fun_eval partition/3.

partition([], _) := ([], []).

partition([X|T], Y) := (S, [X|G]) :-

Y < X,

!,

(S,G) = partition(T, Y).

partition([X|T], Y) := ([X|S], G) :-

!,

(S,G) = partition(T, Y).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 22

Lazy Evaluation vs. Eager Evaluation (I)

:- module(module1, [test/1], [fsyntax, lazy, hiord, actmods]).

:- use_module(library(’actmods/webbased_locate’)).

:- use_active_module(module2, [squares/2]).

:- fun_eval takeWhile/2.

takeWhile(P, [H|T]) := P(H) ? [H | takeWhile(P, T)]

| [].

:- fun_eval test/0.

test := takeWhile({ ’’(X) := X < 10000 }, squares).

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 23

Lazy Evaluation vs. Eager Evaluation (II)

:- module(module2, [squares/1], [fsyntax, lazy, hiord]).

:- lazy fun_eval squares/0.

squares := map_lazy(take(1000000, nums_from(0)), { ’’(X) := X * X }).

:- lazy fun_eval map_lazy/2.

map_lazy([], _) := [].

map_lazy([X|Xs], P) := [~P(X) | map_lazy(Xs, P)].

:- fun_eval take/2.

take(0, _) := [].

take(X, [H|T]) := [H | take(X-1, T)] :- X > 0.

:- lazy fun_eval nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

Slide 24

Conclusions

We have presented a functional extension of Prolog, which includes the possibility
of evaluating functions lazily.

The proposed approach has been implemented in Ciao and is used now
throughout the libraries and other system code as well as in a number of
applications written by the users of the system.

The performance of the package has been tested with several examples. As
expected, evaluating functions lazily implies some time and memory overhead
with respect to eager evaluation.

The main advantage of lazy evaluation is to make it easy to work with infinite data
structures in the manner that is familiar to functional programmers.

Current work w/Gopalan Nadathur’s team on HO-unification – λ-Prolog.

A Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24–26, 2006

