Slide 0

A Syntactic Approach to Combining
Functional Notation, Lazy Evaluation,
and Higher-Order in LP Systems

Amadeo Casas! Daniel Cabeza®? Manuel Hermenegildo!?

{amadeo, herme}@cs.unm.edu
{dcabeza, herme}@fi.upm.es

IDepts. of Comp. Science and Electr. and Comp. Eng.
Univ. of New Mexico, Albuguerque, NM, USA.

2School of Computer Science
T. U. Madrid (UPM), Madrid, Spain

CLIP Group

Slide 1

ntroduction

@ |LP offers features, such as nondeterminism, partially instantiated data structures,
and constraints providing high expressive power.

@ FP provides syntactic convenience (because of designated output argument).

@ FP also provides lazy evaluation: ability to deal with infinite data structures and
save execution steps.

@ LP provides more powerful (lazy) evaluation mechanism (delay declarations) but,
again, FP brings syntactic convenience.

@ Discuss the combination with higher order.

@ We present a syntactic functional layer (combining functions, laziness, and HO)
as implemented in the Ciao language
(but useful in general for LP-based systems).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 2

s any of this new?

@ Adding functional features to LP systems clearly not new:
@ A good number of systems integrate functions into some form of LP:
NU-Prolog, Lambda-Prolog, HiLog/XSB, Oz, Mercury, HAL, ...
@ Or perform a “native” integration of FP and LP (e.g., Babel, Curry, ...).

@ Ciao design is contemporary to these (797). Its peculiarities make it interesting:

@ Functions can retain the power of predicates (it is just syntax!).

@ Functions inherit all other Ciao features (assertions, properties, records,
constraints, ...) + (analysis, optimization, verification, ACC, ...).

@ The system can support ISO-Prolog, and
functions, laziness, (and hiord) can be used as a extension of it (or not).

@ Also the implementation is different (library-based):

@ Exploits the Ciao extension/restriction facilities: Ciao packages concepit.
@ Makes it independent from, and (partially) compositional with other extensions.
@ No compiler or abstract machine modification (all done at source level).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

-unctional Notation in Ciao (l)

Slide 3

@ Function applications:

@ Any term preceded by the /1 operator is a function application:

write(Targ(l, T)).

arg(1, T, A), write(A).

@ Declarations can be used to avoid the need to use the ~/1 operator:

:— fun_eval arg/2.

write(arg(l, T)).

@ Also possible to use arguments other than last for “return”:

:— fun_return functor(™,_,_).

“functor(~, f, 2).

@ The following declaration combines the previous two:

:— fun_eval functor(™, _,).

:— fun_return functor(™, _, _).
:— fun_ eval functor/2.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

-unctional Notation in Ciao (ll)

Slide 4

@ Several functors are evaluable by default:

@ Special forms for disjunctive and conditional expressions: || /2|and |?/2|.
@A | BI|C
@ Condl 7 V1
@ Condl ? V1 | V2
Precedence implies that: Condl ? V1 | Cond2 ? V2 | V3
is parsed as: Condl ? V1 | (Cond2 7 V2 | V3)

@ All the functors understood by is/2, if the following declaration is used:

:— fun_eval arith(true).

Using false it can be (selectively) disabled.

@ Functional definitions:
1= green.
“append (L, [X]). =

opposite(red)
addlast(X,L) :=

= opposite(red,green).

addlast(X,L,R) :- append(L, [X],R).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP

FLOPS’06, Fuji Susono, April 24-26, 2006

Slide 5

-unctional Notation in Ciao (lI)

@ Can also have a body (serves as a guard or as where):

fact(0) := 1.
fact(N) := N *x “fact(--N) :- N > 0.

@ The declaration :— fun_eval defined(true).
allows dropping the ~ within a function’s definition:
fact(0) := 1.

fact(N) := N *x fact(--N) :- N > 0.

And, using conditional expressions:
fac(N) :=N=071
| N >0 ? N *x fac(--N).
@ The translation:

@ Produces steadfast predicates (bindings after cuts).
@ Maintains tail recursion.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 6

deriv and its Translation

er(x) = 1.

er(C) =0 :— number (C) .
er(A + B) := der(A) + der(B).

er(C * A) := C * der(A) :— number (C) .
l

er(x *x N) := N *x x *x “(N - 1) :- integer(N), N > 0.

er(x, 1).
er(C, 0) :-
number (C) .
er(A + B, X +Y) :-
der(A, X), der(B, Y).
er(C x A, C x X) :-
number (C), der(A, X).
er(x **x N, N * x *x N1) :-
integer(N), N > 0, N1 is N - 1.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 7

-Xamples — Sugar for Append

@ Some syntactic sugar for append:

:— fun_eval append/2.

mystring(X) := append("Hello",append(X,"world!")).

@ Some more;:

:— op(200,xfy, [++]) .
:— fun_eval ++ /2.

A ++ B := "append(A,B).

mystring(X) := "Hello" ++ X ++ "world!".

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 8

-Xamples — Array Access Syntax

@ Assume multi-dimensional arrays such as (for 2x2): A = a(a(_,_),a(_,_)).

@ \We can now define the array access function with some syntactic sugar:

:— pred Q(Array,Index,Elem) :: array * list(int) * int
"Ovar{Elem} is the @var{Index}-th element of @var{Arrayl}.".

.- op(45, xfx, [@]).
:— fun_eval ’Q’/2 .

e(v, [I]) 1= Targ(I,V).
Q(Vv,[IJs]) := @(Targ(I,V),Js).

@ Anduseit. 7- M = Tarray([2,2]), M@[2,1] = 3, display(M).
(for this the op and function declarations must be loaded in the top level also!)

@ E.g., in a vector addition:
for(I,1,N) do V3@[I] = V1@[I] + V2@[I]

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 9

-unctional Notation in Ciao (V)

@ Quoting. Evaluable functors can be prevented from being evaluated:
pair(A,B) := “(A-B).

@ Scoping. When innermost function application is not desired (e.g., for certain
meta-predicates) a different scope can be determined with the (=~)/1 operator:

findall (X, (d(Y), ~~(X = "f(Y)+1)), L).

translates to: findall (X, (d(Y),f(Y,Z),T is Z+1,X=T), L).
as opposed to: f(Y,Z), T is Z+1, findall(X, (d(Y),X=T), L).

@ Laziness. Execution is suspended until the return value is needed:
:— lazy fun_eval nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

(Can be done easily with when, block, freeze, etc. but proposed notation more
compact for this special case. Also, : - lazy pred_name/M.)

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 10

-unctional Notation in Ciao (V)

@ Functional notation really useful, e.g., to write regular types in a compact way:

color := red | blue | green.
list := [J | [_ | 1list].
list_of(T) := [J | ['T | list_of(T)].

Which translate to:

color(red). color(blue). color(green).

list([]).
list([_|T]) :- 1list(T).

list_of(_, [1).
list_of (T, [X|Xs]) :- T(X), list_of (T, Xs).
And can then of course be used in Ciao assertions:

:— pred append/3 :: list * list * list.
:— pred color_value/2 :: list(color) * int.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 11
-unctional Notation in Ciao (VI)

@ Definition of “real” functions: :— funct name/N.

adds pruning operators and Ciao assertions to add functional restrictions:
determinacy, modedness, etc.

@ E.Q.:
:— funct nrev/1.
nrev([]) = [].
nrev([H|T]) := “conc(nrev(T),[H]).

Is translated to (simplified):

:— pred nrev(A,B,C)
(ground(A), ground(B), var(C))
=> (ground(A), ground(B), ground(C))
+ 1s_det,mut_exclusive,covered,no_fail.

nrev([1, Y) =1, Y=[].
nrev([H|IL],R) :- !, nrev(L,RL), conc(RL, [H],R).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 12

~ombining with Constraints, etc.

@ Combining with constraints, some syntactic sugar, assertions:

module(_,_, [assertions,fsyntax,clpql).

fun_eval .=. /1.
op(700,fx,[.=.]1).
fun_eval fact/1.

pred fact(+int,-int) + is_det.
:— pred fact(-int,-int) + non_det.

fact(.=. 0) := 1.
fact(N) := .=. Nxfact(.=. N-1) :-= N .>. 0.
@ Sample query:

?7- 24 = “fact(X).
X =4

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 13

~ombining Higher-Order with Functional Notation

@ HO not topic of the paper, but combines well with these syntactic extensions.

@ Combining function application () and HO:

@ Predicate application = Function application
., PX,Y), ... = ..., Y ="PX)),

@ Function abstraction:

@ Predicate abstraction = Function abstraction
{"&,Y) - pX,2), q(Z,V)} = {7’ &X) := "qCpEX)}

@ The integration is at the predicate level.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 14

~ombining Higher-Order with Functional Notation

@ Some common examples:

:— meta_predicate map(_,pred(2),_).
map([1,) := [].
map([X|Xs], P) := ["P(X) | "map(Xs,P)].

:— meta_predicate foldl(_,_,pred(3),_).
foldl([], Seed, _Op) := Seed.
foldl([X|Xs], Seed, Op) := "0p(X,~foldl(Xs,Seed,0p)).

@ More uses of map/3 (using functional notation):

?- L = "map([1,2,3], (_&X,Y):-Y =£X))).
L= [f(1),f(2),f(3)]

?7- [£(1),£(2),£(3)] = "map(L, (_(X,£(X)) :- true)).
L =1[1,2,3]

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 15

~ombining with Ciao’s Abstract Interp.-based Assertion Checking

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 16

~ombining with Ciao’s Certificates (Abstraction Carrying Code)

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 17

mplementation Details

@ All syntactic effects are local to the modules that use these packages
(as usual in Ciao):

@ Packages in Ciao are libraries which define extensions to the language.

@ Packages are based on the redesign of the traditional term expansions and
operator definitions to make them more well-behaved and module-local.

@ Functional features provided by Ciao packages:

@ One provides the bare function features without lazy evaluation,
@ An additional one provides the lazy evaluation features.

@ Functional features are implemented by translation using the well-known
technigue of adding a goal for each function application.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 18

mplementation Details

@ Translation of a lazy function into a predicate is done in two steps:

@ First, the function is converted into a predicate by the standard functions
package.

@ The predicate is then transformed to suspend its execution until the value of
the output variable is needed, by means of the freeze/2 or block family of
control primitives.

@ (For freeze/2 the translation will rename the original predicate to an internal
name and add a bridge predicate with the original name which invokes the
internal predicate through a call to freeze/1.)

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 19

-xample of Lazy Functions and Translation (stylized)

- lazy fun_eval fiblist/O.

iblist := [0, 1 | “zipWith(add, FibL, “tail(FibL))]

:— FibL = fiblist.

- lazy fiblist/1.
iblist ([0, 1 | Rest]) :-
fiblist (FibL),
tail (FibL, T),
zipWith(add, FibL, T, Rest).

iblist(X) :-

freeze(X, ’fiblist_$$lazys’ (X)) .

fiblist_$$1lazy$$’ ([0, 1 | Restl) :-
fiblist (FibL),
tail(FibL, T),
zipWith(add, FibL, T, Rest).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP

FLOPS’06, Fuji Susono, April 24-26, 2006

Slide 20

>erformance Measurements (1)

Lazy Evaluation | Eager Evaluation
List Time Heap | Time Heap
10 elements 0.030 1503.2 || 0.002 491.2
100 elements 0.276 10863.2 | 0.016 1211.2
1000 elements | 3.584 104463.0 || 0.149 8411.2
2000 elements | 6.105 208463.2 | 0.297 16411.2
5000 elements | 17.836 520463.0 | 0.749 40411.2
10000 elements || 33.698 | 1040463.0 | 1.277 80411.2

Table 1: Performance for nat/2 (time in ms. and heap sizes in bytes).

:— fun_eval nat/1. :— lazy fun_eval nums_from/1.
nat(N) := nums_from(X) :=
take (N, nums_from(0)) . [X | nums_from(X+1)].

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

>erformance Measurements (I1)

Lazy Evaluation | Eager Evaluation
List Time Heap | Time Heap
10 elements 0.091 3680.0 0.032 1640.0
100 elements 0.946 37420.0 0.322 17090.0
1000 elements 13.303 | 459420.0 5.032 253330.0
5000 elements 58.369 | 2525990.0 | 31.291| 1600530.0
15000 elements | 229.756 | 8273340.0 | 107.193 | 5436780.0
20000 elements || 311.833 | 11344800.0 | 146.160 | 7395100.0

Table 2: Performance for gsort/2 (time in ms. and heap sizes in bytes).

:— lazy fun_eval partition/3.

partition([], _) = (00, .

partition([XI|T], Y) := (8, [XIG]) :-
Y < X,

:= lazy fun_eval gsort/1.
gsort(X) := gsort_(X, [1).

:— lazy fun_eval gsort_/2.

gsort_([], Acc) := Acc.

gsort_([], Acc) := Acc.

gsort_([X|T], Acc) := gsort_(S, [Xlgsort_(G, Acc)])
:= (S, G) = partition(T, X).

',
(S,G) = partition(T, Y).

= ([XI8], G) :-
|

partition([XIT], Y)

(8,G) = partition(T, Y).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

azy Evaluation vs. Eager Evaluation ()

- module(modulel, [test/1], [fsyntax, lazy, hiord, actmods]).
- use_module(library(’actmods/webbased_locate’)).

- use_active_module(module2, [squares/2]).

- fun_eval takeWhile/2.

akeWhile(P, [HIT]) := P(H) 7 [H | takeWhile(P, T)]
| .

- fun_eval test/O0.

est := takeWhile({ ’’(X) := X < 10000 }, squares).

Slide 22

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

.azy Evaluation vs. Eager Evaluation (II)

Slide 23

- module(module2, [squares/1], [fsyntax, lazy, hiord]).

- lazy fun_eval squares/O0.
quares := map_lazy(take (1000000, nums_from(0)), { ’’(X)

- lazy fun_eval map_lazy/2.
ap_lazy (L[], _) = [].
ap_lazy([X[Xs], P) := ["P(X) | map_lazy(Xs, P)].

- fun_eval take/2.
ake(0,) = [].
ake(X, [HIT]) := [H | take(X-1, T)] :- X > 0.

- lazy fun_eval nums_from/1.
ums_from(X) := [X | nums_from(X+1)].

=X *x X }).

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

Slide 24

~onclusions

@ \We have presented a functional extension of Prolog, which includes the possibility
of evaluating functions lazily.

@ The proposed approach has been implemented in Ciao and is used now
throughout the libraries and other system code as well as in a number of
applications written by the users of the system.

@ The performance of the package has been tested with several examples. As
expected, evaluating functions lazily implies some time and memory overhead
with respect to eager evaluation.

@ The main advantage of lazy evaluation is to make it easy to work with infinite data
structures in the manner that is familiar to functional programmers.

@ Current work w/Gopalan Nadathur’'s team on HO-unification — A-Prolog.

. Syntactic Approach to Combining Functions, Lazy Evaluation, and HO in LP FLOPS’06, Fuji Susono, April 24—-26, 2006

