Towards a High-Level Implementation
of Flexible Parallelism Primitives
for Symbolic Languages

2

Amadeo Casas! Manuel Carro> Manuel Hermenegildo!

LUniversity of New Mexico (USA)
2Technical University of Madrid (Spain)

PASCO’07 - July 28t 2007

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th, 2007

1/1

Introduction

Introduction (I) - Motivation

e Parallelism (finally!) becoming mainstream thanks to multicore
architectures — even on laptops!

Declarative languages interesting for parallelization:

» Notion of control provides more flexibility.
» Amenability to semantics-preserving automatic parallelization.

@ And also well-suited to write symbolic computation algorithms:
» Program close to problem description.

@ Much previous work:
» Logic programming (LP) languages.
» Functional languages: Erlang, Sisal, etc.

Two objectives in this work:

» New, efficient, more flexible approach for exploiting parallelism in LP.
» Automatic parallelization of logic programs.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28”’, 2007 2/1

Introduction (Il) - Types of Parallelism in LP

e Two main types:
» Or-parallelism: explores in parallel alternative computation branches.
> And-parallelism: executes procedure calls in parallel.
* Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.
* Often marked with & operator: fork-join nested parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th, 2007 3/1

Introduction (Il) - Types of Parallelism in LP

e Two main types:
» Or-parallelism: explores in parallel alternative computation branches.
> And-parallelism: executes procedure calls in parallel.
* Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.
* Often marked with & operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

gsort([1, [1). gsort([1, [1).

gsort([X|L], R) :- gsort([X|L], R) :-
partition(L, X, SM, GT), partition(L, X, SM, GT),
gsort (GT, SrtGT), gsort (GT, SrtGT) &
gsort(SM, SrtSM), gsort (SM, SrtSM),
append (SrtSM, [X|SrtGT], R). append (SrtSM, [X|SrtGT], R).

o We will focus on and-parallelism.
» Need to detect independent tasks.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 287, 2007 3/1

Introduction

Introduction (I11) - Notion of Independence

o Correctness: same results as sequential execution.

o Efficiency: execution time < than seq. program (no slowdown),

assuming parallel execution has no overhead.

s1 Y = W+2; (+ (+W2) Y = W+2,
S X = Y+Z; Z) X =Y+Z,
(imperative) (functional) (CLP)
main :- pX) :- X = [1,2,3].
S1 p(X) 5
S q(X), q(X) :- X = [1, large computation.
write(X). qX) :- X = [1,2,3].

e Fundamental issue: p affects q (prunes its choices).
» q ahead of p is speculative.

e Independence: correctness + efficiency.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28”’, 2007

4/1

Introduction (IV) - Ciao

e Ciao, new generation multi-paradigm language.
» Supports ISO-Prolog fully (as a library).

e Predicates, functions (including laziness), constraints,
higher-order, objects, etc.

@ Global analyzer which infers many properties such as:

» Types, pointer aliasing, non-failure, determinacy, termination, data
sizes, cost, etc.

e Automatic verification of program assertions
(and bug detection if assertions are proved false).

o Parallel, concurrent and distributed execution primitives +
automatic parallelization and automatic granularity control.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 287, 2007 5/1

Automatic Parallelization

Automatic Parallelization (1) - CDGs
e Conditional dependency graph:

> Vertices: possible tasks (statements, calls, etc.).
» Edges: conditions needed for independence: variable sharing.

@ Local or global analysis to remove checks in the edges.
e Annotation process converts graph back to parallel expressions in

source.

foo(...) :- @

G—®

|cond(1 2)

icond(1-3)

icond(2-3)

Local/Global analysis

@ test(1-3) O

and simplification
(test(1-3) —>(gl,92) &¢
7 91,(92&g3

Alternative: g1, (g2 & g3

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . .

PASCO'07 - July 287, 2007

6/1

Automatic Parallelization

Automatic Parallelization (Il) - Flexible Parallelism Primitives (1)

@ More flexible constructions to represent parallelism:

» G &> H — schedules goal G for parallel execution and continues
executing the code after G &> H.

* His a handler which contains the state of goal G.
» H <& — waits for the goal associated with H to finish.

* Bindings made for the output variables of the parallel goal associated
to H are available (i.e., goal has produced a complete solution).

o Operator & written as:
A&B :— A& H, call(B), H <&.

e Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th, 2007 7/1

Automatic Parallelization

Automatic Parallelization (I11) - Flexible Parallelism Primitives (I1)

@ More parallelism can be exploited with these primitives:

pX,Y,Z2) :- pX,Y,Z2) :- pX,Y,Z2) :-
a(X,2), a(X,Z) & c(Y), c(Y) &> Hc,
b(X), b(X) & 4(Y,Z). a(X,2),
c(), b(X) &> Hb,
ay,2). p(X,Y,2) :- He <&,
c(Y) & (a(X,2),b(X)), a(y,2),
a(y,z). Hb <&.
(sequential) (restricted 1AP) (unrestricted 1AP)

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th, 2007 8/1

Shared-Memory Implementation

Shared-Memory Implementation

@ Versions of and-parallelism previously implementated: &-Prolog,
&-ACE, AKL, Andorra-I.

@ They rely on complex low-level machinery:
» Each agent: goal stack, parcall frames, markers, etc.

e Current implementation for shared-memory multiprocessors:
» Each agent: sequential Prolog machine + goal list + Prolog code.

@ Approach: rise components to the source language level:
» Prolog-level: goal publishing, goal searching and goal scheduling.
» C-level: low-level threading, locking, stack management, sharing of
memory and untrailing.
» Simpler machinery and more flexibility.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 287, 2007 9/1

Performance Results

Performance Results (I) - Restricted And-Parallelism

Number of processors

Benchmark |\~ ——7 2 3 7 5 6 7 8
AIAKL 1.00 | 0.94 | 1.76 | 1.80 | 1.80 | 1.79 | 1.52 | L.77 | 1.76
Ann 1.00 | 0.97 | 1.77 | 2.61 | 3.22 | 3.98 | 452 | 5.14 | 5.61
Boyer 1.00 | 017 | 0.33 | 049 | 0.60 | 0.70 | 0.81 | 0.89 | 0.94
BoyerGC 1.00 | 086 | 1.66 | 2.45 | 3.13 | 3.66 | 4.17 | 4.63 | 5.10
Deriv 1.00 | 016 | 033 | 045 | 057 | 0.68 | 0.80 | 0.90 | 0.99
DerivGC 1.00 | 0.77 | 1.40 | 2.05 | 2.66 | 3.24 | 3.66 | 413 | 4.57
FFT 1.00 | 030 | 0.48 | 0.59 | 0.67 | 0.75 | 0.77 | 0.80 | 0.82
FFTGC 1.00 | 097 | 1.72 | 2.16 | 2.65 | 2.77 | 2.94 | 3.06 | 3.19
Fibonacci 1.00 | 0.15 | 0.29 | 0.42 | 055 | 0.67 | 0.81 | 0.95 | 1.09
FibonacciGC || 1.00 | 0.99 | 1.94 | 2.88 | 3.81 | 4.75 | 560 | 6.63 | 7.52
Hamming 1.00 | 0.80 | 1.10 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43
Hanoi 1.00 | 0.46 | 0.83 | 1.19 | 1.50 | 1.75 | 1.86 | 2.21 | 2.44
HanoiDL 1.00 | 0.24 | 0.45 | 0.68 | 0.85 | 1.07 | 1.28 | 1.47 | 1.67
HanoiGC 1.00 | 098 | 1.80 | 2.33 | 2.89 | 3.32 | 3.70 | 3.80 | 4.07
MMatrix 1.00 | 0.76 | 1.46 | 2.11 | 2.82 | 3.46 | 4.02 | 459 | 5.18
QuickSort 1.00 | 057 | 1.08 | 1.52 | 1.90 | 2.25 | 2.56 | 2.861 | 2.98
QuickSortDL || 1.00 | 052 | 0.07 | 1.32 | 1.60 | 2.11 | 2.35 | 2.63 | 2.86
QuickSortGC || 1.00 | 0.98 | 1.78 | 2.30 | 2.85 | 3.18 | 3.44 | 3.62 | 3.68
Takeuchi 1.00 | 0.11 | 0.21 | 0.31 | 0.40 | 0.47 | 056 | 0.61 | 0.69
TakeuchiGC || 1.00 | 0.87 | 1.53 | 2.16 | 2.59 | 2.60 | 2.60 | 2.60 | 2.60

Casas, Carro, Hermenegildo (UNM, UPM)

Towards a High-Level Implementation. . .

PASCO'07 - July 287, 2007

10/1

Performance Results

Performance Results (I1) - Granularity Control

55 T T T T T T 6 T T T T T T
Boyer-Moore —+— Derivation —+—
Boyer-Moore with granularty control ---x--- Derivation with granularity control ~----

5

45

a

' Quicl'S
‘QuickSort with granularity contr
-

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th 2007 1/1

Performance Results

Performance Results (I11) - Unrestricted And-Parallelism

Number of processors

Benchm. And-P 1 5 3 i 5 5 = 5
FibFun Restr. 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Unrestr. 099 | 194 | 288 | 3.81 | 475 | 5.69 | 6.63 | 7.52
Takeuchi Restr. 0.87 | 1.53 | 2.16 | 259 | 2.60 | 2.60 | 2.60 | 2.60
Unrestr. 0.87 | 1.53 | 225 | 3.21 | 3.88 | 4.27 | 4.97 | 5.51
FET Restr. 097 | 1.72 | 2.16 | 2.65 | 2.77 | 294 | 3.06 | 3.19
Unrestr. 097 | 1.73 | 219 | 269 | 283 | 3.01 | 3.18 | 3.31
Hamming Restr. 089 | 1.19 | 143 | 143 | 143 | 143 | 143 | 1.43
Unrestr. 0.89 | 1.21 | 1.51 | 1.561 | 1.51 | 1.561 | 1.51 | 1.51
WMS2 Restr. 099 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01
Unrestr. 099 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28”’, 2007 12/1

Performance Results

Performance Results (IV) - Comparison Restr./Unrestr. Takeuchi

6

55

4.5

Casas, Carro,

T T
Takeuchi, Restricted version —+—

Takeuchi, Unrestricted version ---x---

Hermenegildo

(UNM, UPM)

Towards a High-Level Implementation. . .

PASCO'07 - July 287, 2007

13/1

Conclusions

Conclusions and Future Work

e New implementation approach for exploiting and-parallelism:

» Simpler machinery.
> More flexibility.

@ Preliminary results:

» Reasonable speedups are achievable.

» Additional overhead — granularity control.

» Also, advances in compilation and improved implementation should
(partly) recover efficiency lost due to overhead.

» Unrestricted and-parallelism provides better speedups.

e Currently working on improving implementation and developing
compile-time (automatic) parallelizers for this approach.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 287, 2007 14 /1

Appendix A

Example (Unrestricted Annotation)

@ @ | Indep | Dep | Joinable | Fork | And | Join | Pub |
0

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . .

Appendix A

Example (Unrestricted Annotation)

| Indep | Dep | Joinable | Fork | And [Join | Pub |
0
{a,c} | {b,d} {a} {c} {a} [{a,c}
pX,Y,Z2) :-
c(Y) &> Hc,
a(X,2),

Casas, Carro, Hermenegildo (UNM, UPM)

Towards a High-Level Implementation. . .

PASCO'07 - July 287, 2007 15 /1

Appendix A

Example (Unrestricted Annotation)

| Indep | Dep | Joinable | Fork | And [Join | Pub |
0

fa,ct | {bd} {a} feb | fa} 0 fa,c}

{b,c} {d} {c} (b} 0 {cJ | f{ach

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z) >
b(X) &> Hb,
He <&,

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 287, 2007 15/1

Appendix A

Example (Unrestricted Annotation)

| Indep | Dep | Joinable | Fork | And | Join | Pub |
0

(ac} | {bdy 6] | {2 0 (a.c}
{b,c} {d} {c} {b} 0 {c {a,c}
{b,d} 0 {b,d} 0 {d} {b {a, b, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),
b(X) &> Hb,
Hc <&,
a(Y,2),
Hb <&.

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th, 2007 15/1

Appendix B

Minimum Time to Execute a Parallel Expression (1)

fil
pX,Y,Z2) :-
a(X,Z) & c(Y), Tﬁl = max(T,, Tc) =F max(Tb7 Td)
b(X) & 4(Y,Z2).
)
p(X,Y,Z) :-
(a(X,Z2), b(X)) & c(Y), | Tho = max(T,+ Tp, Te) + Ty
d(y,2).

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th 2007 16 /1

Appendix B

Minimum Time to Execute a Parallel Expression (Il)

dep
p(X,Y,Z) :-
T =0
c(Y) &> Hc
=T
a(X,z2)
T3=T,+ T,
b(X) &> Hb
Ty =T3
Hc <&
T5 = max(T3, Tl =+ TC)
da(Y,z2)
Hb <&
T; = max(Te, T3 + Tb) = Tdep

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th 2007

17 /1

Appendix B

Minimum Time to Execute a Parallel Expression (l11)
Tfjl = max(a, c) + max(b, d)

t£j1(A,B,C,D,T) :- max(X,Y,X):- X .>=. Y. positive([]).
positive([A,B,C,D,T]), max(X,Y,Y):- X .<. Y. positive([X|Xs]]):-
max(A,C,MAC), X .>. 0,
max (B,D,MBD), positive(Xs).
T .=. MAC + MBD.

Tfj2 = max(a+b, c) + d

t£j2(A,B,C,D,T) :-
positive([A,B,C,D,T]),
AB .=. A + B,
max (AB,C,MaxABC) ,
T .=. D + MaxABC.

Tdep = max(a+b, d + max(a,c))

tdep(A,B,C,D,T):—
positive([A,B,C,D,T]),
AB .=. A + B,
max (A, C, MaxAC),
DAC .=. D + MaxAC,
max (AB, DAC, T).

v

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th 2007 18 /1

Appendix B

Minimum Time to Execute a Parallel Expression (1V)

In any fork-join parallelization always better than the other one?

?- t£j1(A,B,C,D,T1), ?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2), tfj2(A,B,C,D,T2),
T1 .<. T2. T2 .<. Ti1.
yes yes

Can fork-join parallelization be better than unrestricted parallelization?

?- t£j1(A,B,C,D,T1), | ?- t£j2(A,B,C,D,T1),

tdep(4,B,C,D,T2), tdep(A,B,C,D,T2),
T1 .<. T2. T1 .<. T2.
no no

o No combination of execution times can make the unrestricted
parallelization be worse than the restricted parallelization!

Casas, Carro, Hermenegildo (UNM, UPM) | Towards a High-Level Implementation. . . PASCO'07 - July 28th 2007

19/1

