
Towards a High-Level Implementation
of Flexible Parallelism Primitives

for Symbolic Languages

Amadeo Casas1 Manuel Carro2 Manuel Hermenegildo1,2

1University of New Mexico (USA)
2Technical University of Madrid (Spain)

PASCO’07 - July 28th, 2007

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 1 / 1

Introduction

Introduction (I) - Motivation

Parallelism (finally!) becoming mainstream thanks to multicore
architectures – even on laptops!

Declarative languages interesting for parallelization:
I Notion of control provides more flexibility.
I Amenability to semantics-preserving automatic parallelization.

And also well-suited to write symbolic computation algorithms:
I Program close to problem description.

Much previous work:
I Logic programming (LP) languages.
I Functional languages: Erlang, Sisal, etc.

Two objectives in this work:
I New, efficient, more flexible approach for exploiting parallelism in LP.
I Automatic parallelization of logic programs.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 2 / 1

Introduction

Introduction (II) - Types of Parallelism in LP

Two main types:
I Or-parallelism: explores in parallel alternative computation branches.
I And-parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with & operator: fork-join nested parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 3 / 1

Introduction

Introduction (II) - Types of Parallelism in LP

Two main types:
I Or-parallelism: explores in parallel alternative computation branches.
I And-parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with & operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

qsort([], []). qsort([], []).
qsort([X|L], R) :- qsort([X|L], R) :-

partition(L, X, SM, GT), partition(L, X, SM, GT),
qsort(GT, SrtGT), qsort(GT, SrtGT) &
qsort(SM, SrtSM), qsort(SM, SrtSM),
append(SrtSM, [X|SrtGT], R). append(SrtSM, [X|SrtGT], R).

We will focus on and-parallelism.
I Need to detect independent tasks.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 3 / 1

Introduction

Introduction (III) - Notion of Independence

Correctness: same results as sequential execution.

Efficiency: execution time ≤ than seq. program (no slowdown),
assuming parallel execution has no overhead.

s1 Y := W+2; (+ (+ W 2) Y = W+2,
s2 X := Y+Z; Z) X = Y+Z,

(imperative) (functional) (CLP)

main :- p(X) :- X = [1,2,3].
s1 p(X),
s2 q(X), q(X) :- X = [], large computation.

write(X). q(X) :- X = [1,2,3].

Fundamental issue: p affects q (prunes its choices).
I q ahead of p is speculative.

Independence: correctness + efficiency.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 4 / 1

Introduction

Introduction (IV) - Ciao

Ciao, new generation multi-paradigm language.
I Supports ISO-Prolog fully (as a library).

Predicates, functions (including laziness), constraints,
higher-order, objects, etc.

Global analyzer which infers many properties such as:
I Types, pointer aliasing, non-failure, determinacy, termination, data

sizes, cost, etc.

Automatic verification of program assertions
(and bug detection if assertions are proved false).

Parallel, concurrent and distributed execution primitives +
automatic parallelization and automatic granularity control.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 5 / 1

Automatic Parallelization

Automatic Parallelization (I) - CDGs

Conditional dependency graph:
I Vertices: possible tasks (statements, calls, etc.).
I Edges: conditions needed for independence: variable sharing.

Local or global analysis to remove checks in the edges.
Annotation process converts graph back to parallel expressions in
source.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

(test(1−3) −> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
"Annotation"

Local/Global analysis
and simplification

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 6 / 1

Automatic Parallelization

Automatic Parallelization (II) - Flexible Parallelism Primitives (I)

More flexible constructions to represent parallelism:
I G &> H — schedules goal G for parallel execution and continues

executing the code after G &> H.
F H is a handler which contains the state of goal G.

I H <& — waits for the goal associated with H to finish.
F Bindings made for the output variables of the parallel goal associated

to H are available (i.e., goal has produced a complete solution).

Operator & written as:
A & B :- A &> H, call(B), H <&.

Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 7 / 1

Automatic Parallelization

Automatic Parallelization (III) - Flexible Parallelism Primitives (II)

More parallelism can be exploited with these primitives:

b(X)

c(Y) d(Y,Z)

a(X,Z)

p(X,Y,Z) :- p(X,Y,Z) :- p(X,Y,Z) :-
a(X,Z), a(X,Z) & c(Y), c(Y) &> Hc,
b(X), b(X) & d(Y,Z). a(X,Z),
c(Y), b(X) &> Hb,
d(Y,Z). p(X,Y,Z) :- Hc <&,

c(Y) & (a(X,Z),b(X)), d(Y,Z),
d(Y,Z). Hb <&.

(sequential) (restricted IAP) (unrestricted IAP)

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 8 / 1

Shared-Memory Implementation

Shared-Memory Implementation

Versions of and-parallelism previously implementated: &-Prolog,
&-ACE, AKL, Andorra-I.

They rely on complex low-level machinery:
I Each agent: goal stack, parcall frames, markers, etc.

Current implementation for shared-memory multiprocessors:
I Each agent: sequential Prolog machine + goal list + Prolog code.

Approach: rise components to the source language level:
I Prolog-level: goal publishing, goal searching and goal scheduling.
I C-level: low-level threading, locking, stack management, sharing of

memory and untrailing.
I Simpler machinery and more flexibility.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 9 / 1

Performance Results

Performance Results (I) - Restricted And-Parallelism

Benchmark
Number of processors

Seq. 1 2 3 4 5 6 7 8

AIAKL 1.00 0.94 1.76 1.80 1.80 1.79 1.52 1.77 1.76
Ann 1.00 0.97 1.77 2.61 3.22 3.98 4.52 5.14 5.61
Boyer 1.00 0.17 0.33 0.49 0.60 0.70 0.81 0.89 0.94

BoyerGC 1.00 0.86 1.66 2.45 3.13 3.66 4.17 4.63 5.10
Deriv 1.00 0.16 0.33 0.45 0.57 0.68 0.80 0.90 0.99

DerivGC 1.00 0.77 1.40 2.05 2.66 3.24 3.66 4.13 4.57
FFT 1.00 0.30 0.48 0.59 0.67 0.75 0.77 0.80 0.82

FFTGC 1.00 0.97 1.72 2.16 2.65 2.77 2.94 3.06 3.19
Fibonacci 1.00 0.15 0.29 0.42 0.55 0.67 0.81 0.95 1.09

FibonacciGC 1.00 0.99 1.94 2.88 3.81 4.75 5.69 6.63 7.52
Hamming 1.00 0.89 1.19 1.43 1.43 1.43 1.43 1.43 1.43

Hanoi 1.00 0.46 0.83 1.19 1.50 1.75 1.86 2.21 2.44
HanoiDL 1.00 0.24 0.45 0.68 0.85 1.07 1.28 1.47 1.67
HanoiGC 1.00 0.98 1.80 2.33 2.89 3.32 3.70 3.80 4.07
MMatrix 1.00 0.76 1.46 2.11 2.82 3.46 4.02 4.59 5.18
QuickSort 1.00 0.57 1.08 1.52 1.90 2.25 2.56 2.81 2.98

QuickSortDL 1.00 0.52 0.97 1.32 1.69 2.11 2.35 2.63 2.86
QuickSortGC 1.00 0.98 1.78 2.30 2.85 3.18 3.44 3.62 3.68

Takeuchi 1.00 0.11 0.21 0.31 0.40 0.47 0.56 0.61 0.69
TakeuchiGC 1.00 0.87 1.53 2.16 2.59 2.60 2.60 2.60 2.60

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 10 / 1

Performance Results

Performance Results (II) - Granularity Control

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8

Boyer-Moore
Boyer-Moore with granularity control

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

Derivation
Derivation with granularity control

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fibonacci
Fibonacci with granularity control

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

QuickSort
QuickSort with granularity control

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 11 / 1

Performance Results

Performance Results (III) - Unrestricted And-Parallelism

Benchm. And-P
Number of processors

1 2 3 4 5 6 7 8

FibFun
Restr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unrestr. 0.99 1.94 2.88 3.81 4.75 5.69 6.63 7.52

Takeuchi
Restr. 0.87 1.53 2.16 2.59 2.60 2.60 2.60 2.60

Unrestr. 0.87 1.53 2.25 3.21 3.88 4.27 4.97 5.51

FFT
Restr. 0.97 1.72 2.16 2.65 2.77 2.94 3.06 3.19

Unrestr. 0.97 1.73 2.19 2.69 2.83 3.01 3.18 3.31

Hamming
Restr. 0.89 1.19 1.43 1.43 1.43 1.43 1.43 1.43

Unrestr. 0.89 1.21 1.51 1.51 1.51 1.51 1.51 1.51

WMS2
Restr. 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Unrestr. 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 12 / 1

Performance Results

Performance Results (IV) - Comparison Restr./Unrestr. Takeuchi

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

Takeuchi, Restricted version
Takeuchi, Unrestricted version

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 13 / 1

Conclusions

Conclusions and Future Work

New implementation approach for exploiting and-parallelism:
I Simpler machinery.
I More flexibility.

Preliminary results:
I Reasonable speedups are achievable.
I Additional overhead −→ granularity control.
I Also, advances in compilation and improved implementation should

(partly) recover efficiency lost due to overhead.
I Unrestricted and-parallelism provides better speedups.

Currently working on improving implementation and developing
compile-time (automatic) parallelizers for this approach.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 14 / 1

Appendix A

Example (Unrestricted Annotation)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep Joinable Fork And Join Pub

∅

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 15 / 1

Appendix A

Example (Unrestricted Annotation)

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep Dep Joinable Fork And Join Pub

∅
{a, c} {b, d} {a} {c} {a} ∅ {a, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 15 / 1

Appendix A

Example (Unrestricted Annotation)

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep Dep Joinable Fork And Join Pub

∅
{a, c} {b, d} {a} {c} {a} ∅ {a, c}
{b, c} {d} {c} {b} ∅ {c} {a, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),
b(X) &> Hb,
Hc <&,

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 15 / 1

Appendix A

Example (Unrestricted Annotation)

b(X)

c(Y) d(Y,Z)

a(X,Z)

Indep Dep Joinable Fork And Join Pub

∅
{a, c} {b, d} {a} {c} {a} ∅ {a, c}
{b, c} {d} {c} {b} ∅ {c} {a, c}
{b, d} ∅ {b, d} ∅ {d} {b} {a, b, c}

p(X,Y,Z) :-
c(Y) &> Hc,
a(X,Z),
b(X) &> Hb,
Hc <&,
d(Y,Z),
Hb <&.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 15 / 1

Appendix B

Minimum Time to Execute a Parallel Expression (I)

b(X)

c(Y) d(Y,Z)

a(X,Z)

fj1

p(X,Y,Z) :-
a(X,Z) & c(Y), Tfj1 = max(Ta,Tc) + max(Tb,Td)
b(X) & d(Y,Z).

fj2

p(X,Y,Z) :-
(a(X,Z), b(X)) & c(Y), Tfj2 = max(Ta + Tb,Tc) + Td

d(Y,Z).

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 16 / 1

Appendix B

Minimum Time to Execute a Parallel Expression (II)

dep

p(X,Y,Z) :-
T1 = 0

c(Y) &> Hc
T2 = T1

a(X,Z)
T3 = T2 + Ta

b(X) &> Hb
T4 = T3

Hc <&
T5 = max(T3,T1 + Tc)

d(Y,Z)
T6 = T5 + Td

Hb <&
T7 = max(T6,T3 + Tb) = Tdep

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 17 / 1

Appendix B

Minimum Time to Execute a Parallel Expression (III)

Tfj1 = max(a, c) + max(b, d)

tfj1(A,B,C,D,T) :- max(X,Y,X):- X .>=. Y. positive([]).

positive([A,B,C,D,T]), max(X,Y,Y):- X .<. Y. positive([X|Xs]]):-

max(A,C,MAC), X .>. 0,

max(B,D,MBD), positive(Xs).

T .=. MAC + MBD.

Tfj2 = max(a+b, c) + d

tfj2(A,B,C,D,T) :-

positive([A,B,C,D,T]),

AB .=. A + B,

max(AB,C,MaxABC),

T .=. D + MaxABC.

Tdep = max(a+b, d + max(a,c))

tdep(A,B,C,D,T):-

positive([A,B,C,D,T]),

AB .=. A + B,

max(A, C, MaxAC),

DAC .=. D + MaxAC,

max(AB, DAC, T).

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 18 / 1

Appendix B

Minimum Time to Execute a Parallel Expression (IV)

In any fork-join parallelization always better than the other one?

?- tfj1(A,B,C,D,T1), ?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2), tfj2(A,B,C,D,T2),

T1 .<. T2. T2 .<. T1.

yes yes

Can fork-join parallelization be better than unrestricted parallelization?

?- tfj1(A,B,C,D,T1), ?- tfj2(A,B,C,D,T1),

tdep(A,B,C,D,T2), tdep(A,B,C,D,T2),

T1 .<. T2. T1 .<. T2.

no no

No combination of execution times can make the unrestricted
parallelization be worse than the restricted parallelization!

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implementation. . . PASCO’07 - July 28th , 2007 19 / 1

