
Towards a High-Level Implementation of
Execution Primitives for Unrestricted,

Independent And-parallelism

Amadeo Casas1 Manuel Carro2 Manuel Hermenegildo1,2

1University of New Mexico (USA)
2Technical University of Madrid (Spain) and IMDEA-Software (Spain)

PADL’08 - January 8th

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 1 / 17

Introduction

Introduction and motivation

Parallelism (finally!) becoming mainstream thanks to multicore
architectures – even on laptops!

Declarative languages interesting for parallelization:
I Program close to problem description.
I Notion of control provides more flexibility.
I Amenability to semantics-preserving automatic parallelization.

Significant previous work in logic and functional programming.

Two objectives in this work:
I Raise large parts of the implementation to the Prolog level.
I Exploit unrestricted (non fork-join) and-parallelism.

(and take advantage of new automatic parallelization for LP).

Here, we concentrate on forward execution.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 2 / 17

Introduction

Background: main types of parallelism in LP

Or-parallelism: explores in parallel alternative computation
branches.
And-parallelism: executes literals in parallel.

I Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

I Often marked with &/2 operator: fork-join nested parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 3 / 17

Introduction

Background: main types of parallelism in LP

Or-parallelism: explores in parallel alternative computation
branches.
And-parallelism: executes literals in parallel.

I Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

I Often marked with &/2 operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

qsort([], []). qsort([], []).
qsort([X|L], R) :- qsort([X|L], R) :-

partition(L, X, SM, GT), partition(L, X, SM, GT),
qsort(GT, SrtGT), qsort(GT, SrtGT) &
qsort(SM, SrtSM), qsort(SM, SrtSM),
append(SrtSM, [X|SrtGT], R). append(SrtSM, [X|SrtGT], R).

We will focus on and-parallelism.
I Need to detect independent tasks.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 3 / 17

Introduction

Background: parallel execution and independence

Correctness: same results as sequential execution.
Efficiency: execution time ≤ than seq. program (no slowdown),
assuming parallel execution has no overhead.

s1 Y := W+2; (+ (+ W 2) Y = W+2,
s2 X := Y+Z; Z) X = Y+Z,

Imperative Functional CLP

main :- p(X) :- X = [1,2,3].
s1 p(X), (C)LP
s2 q(X), q(X) :- X = [], large computation.

write(X). q(X) :- X = [1,2,3].

Fundamental issue: p affects q (prunes its choices).
I q ahead of p is speculative.

Independence: correctness + efficiency.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 4 / 17

Automatic Parallelization

Background: CDG-based automatic parallelization

Conditional Dependency Graph: [TOPLAS’99, JLP’99]
I Vertices: possible sequential tasks (statements, calls, etc.)
I Edges: conditions needed for independence (e.g., variable sharing).

Local or global analysis to remove checks in the edges.

Annotation converts graph back to (now parallel) source code.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

(test(1−3) −> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
"Annotation"

Local/Global analysis
and simplification

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 5 / 17

Automatic Parallelization

A more flexible alternative for annotating parallel code (I)

Classical parallelism operator &/2: nested fork-join.

However, more flexible constructions can be used to denote
parallelism:

I G &> HG — schedules goal G for parallel execution and continues
executing the code after G &> HG.

F HG is a handler which contains / points to the state of goal G.

I HG <& — waits for the goal associated with HG to finish.
F The goal HG was associated to has produced a solution; bindings for the

output variables are available.

Optimized deterministic versions: &!>/2, <&!/1.

Operator &/2 can be written as:
A & B :- A &> H, call(B), H <&.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 6 / 17

Automatic Parallelization

A more flexible alternative for annotating parallel code (II)

More parallelism can be exploited
with these primitives.

Take the sequential code below
(dep. graph at the right) and
three possible parallelizations:

b(X)

c(Y) d(Y,Z)

a(X,Z)

p(X,Y,Z) :- p(X,Y,Z) :- p(X,Y,Z) :-
a(X,Z), a(X,Z) & c(Y), c(Y) &> Hc,
b(X), b(X) & d(Y,Z). a(X,Z),
c(Y), b(X) &> Hb,
d(Y,Z). p(X,Y,Z) :- Hc <&,

c(Y) & (a(X,Z),b(X)), d(Y,Z),
d(Y,Z). Hb <&.

Sequential Restricted IAP Unrestricted IAP

In this case: unrestricted parallelization at least as good
(time-wise) as any restricted one, assuming no overhead.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 7 / 17

Shared-Memory Implementation

Classical implementations of and-parallelism

Versions of and-parallelism previously implemented:
&-Prolog, &-ACE, AKL, Andorra-I,...

They rely on complex low-level machinery. Each agent:
I Goal stack: area onto which goals ready to execute in parallel are

pushed.
I Parcall frames:

F Created for each parallel conjunction.
F Hold data necessary to coordinate the execution of parallel goals.

I Markers: separate stack sections to ensure backtracking happens
following a logical order.

I And a good number of specific WAM instructions for &/2 etc.

Our objective:
alternative, easier to maintain implementation approach.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 8 / 17

Shared-Memory Implementation

Proposed solution

Fundamental idea: raise components to the source language
level:

I Prolog-level: goal publishing, goal searching, goal scheduling,
“marker” creation (through choice-points),...

I C-level: low-level threading, locking, untrailing,...

→ Simpler machinery and more flexibility.
→ Easily exploits unrestricted IAP.

Current implementation (for shared-memory multiprocessors):
I Each agent:

sequential Prolog machine + goal list + (mostly) Prolog code.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 9 / 17

Shared-Memory Implementation

Low-level support

Low-level parallelism primitives:
apll:push goal(+Goal,+Det,-Handler).

apll:find goal(-Handler).

apll:goal available(+Handler).

apll:retrieve goal(+Handler,-Goal).

apll:goal finished(+Handler).

apll:set goal finished(+Handler).

apll:waiting(+Handler).

Synchronization primitives:
apll:enter mutex(+Handler).

apll:enter mutex self.

apll:release mutex(+Handler).

apll:release mutex self.

apll:suspend.

apll:release(+Handler).

apll:release some suspended thread.
Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 10 / 17

Shared-Memory Implementation

Prolog-level code (I)

Thread creation:

create agents(0) :- !. agent :-

create agents(N) :- find goal and execute,

N > 0, agent.

conc:start thread(agent),

N1 is N - 1,

create agents(N1).

High-level goal publishing:

Goal &!> Handler :-

apll:push goal(Goal,det,Handler),

apll:release some suspended thread.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 11 / 17

Shared-Memory Implementation

Prolog-level code (II)

Performing goal joins:

Handler <&! :- perform other work(Handler) :-

apll:enter mutex self, apll:enter mutex self,

((

apll:goal available(Handler) -> apll:goal finished(Handler),

apll:exit mutex self, apll:exit mutex self

apll:retrieve goal(Handler,Goal), ;

call(Goal) apll:exit mutex self,

; find goal and execute,

apll:exit mutex self, perform other work(Handler)

perform other work(Handler)).

).

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 12 / 17

Shared-Memory Implementation

Prolog-level code (III)

Search for parallel goals:

find goal and execute :-

apll:find goal(Handler),

apll:retrieve goal(Handler,Goal),

call(Goal),

apll:enter mutex(Handler),

apll:set goal finished(Handler),

(

apll:waiting(Handler) ->

apll:release(Handler)

;

true

),

apll:exit mutex(Handler).

find goal and execute :-

apll:suspend.

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 13 / 17

Performance Results

(Preliminary) performance results
Sun Fire T2000 - 8 cores

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Boyer-Moore
Boyer-Moore with granularity control

(a) Boyer-Moore

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fibonacci
Fibonacci with granularity control

(b) Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

QuickSort
QuickSort with difference lists

QuickSort with granularity control

(c) Quicksort

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Takeuchi, Restricted version
Takeuchi, Unrestricted version

(d) Takeuchi

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 14 / 17

Conclusions

Conclusions and future work

New implementation approach for exploiting and-parallelism:
I Simpler machinery.
I Unrestricted and-parallelism.

Preliminary results:
I Reasonable speedups are achievable.
I Additional overhead makes it necessary to perform granularity control.

Unrestricted and-parallelism:
I Provides better observed speedups!

Currently working on:
I Limitations of current implementation: backtracking!
I Developing compile-time (automatic) parallelizers for this approach

[LOPSTR’07].

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 15 / 17

Appendices

(Preliminary) performance results with and w.o. granularity control

Benchmark
Number of processors

Seq. 1 2 3 4 5 6 7 8

AIAKL 1.00 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
Ann 1.00 0.98 1.86 2.65 3.37 4.07 4.65 5.22 5.90
Boyer 1.00 0.32 0.64 0.95 1.21 1.32 1.47 1.57 1.64

BoyerGC 1.00 0.90 1.74 2.57 3.15 3.85 4.39 4.78 5.20
Deriv 1.00 0.32 0.61 0.86 1.09 1.15 1.30 1.55 1.75

DerivGC 1.00 0.91 1.63 2.37 3.05 3.69 4.21 4.79 5.39
FFT 1.00 0.61 1.08 1.30 1.63 1.65 1.67 1.68 1.70

FFTGC 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
Fibonacci 1.00 0.30 0.60 0.94 1.25 1.58 1.86 2.22 2.50

FibonacciGC 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
Hanoi 1.00 0.67 1.31 1.82 2.32 2.75 3.20 3.70 4.07

HanoiDL 1.00 0.47 0.98 1.51 2.19 2.62 3.06 3.54 3.95
HanoiGC 1.00 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
MMatrix 1.00 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28

Palindrome 1.00 0.44 0.77 1.09 1.40 1.61 1.82 2.10 2.23
PalindromeGC 1.00 0.94 1.75 2.37 2.97 3.30 3.62 4.13 4.46

QuickSort 1.00 0.75 1.42 1.98 2.44 2.84 3.07 3.37 3.55
QuickSortDL 1.00 0.71 1.36 1.95 2.26 2.76 2.96 3.18 3.32
QuickSortGC 1.00 0.94 1.78 2.31 2.87 3.19 3.46 3.67 3.75

Takeuchi 1.00 0.23 0.46 0.68 0.91 1.12 1.32 1.49 1.72
TakeuchiGC 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 16 / 17

Appendices

Restricted vs. unrestricted and-parallelism (I)

Benchm. And-P
Number of processors

1 2 3 4 5 6 7 8

FibFunGC
Restricted 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unrestricted 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

TakeuchiGC
Restricted 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Unrestricted 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

FFTGC
Restricted 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Unrestricted 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

Hamming
Restricted 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52

Unrestricted 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

WMS2
Restricted 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Unrestricted 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Casas, Carro, Hermenegildo (UNM, UPM) Towards a High-Level Implemetation. . . PADL’08 - January 8th 17 / 17

	Introduction
	Automatic Parallelization
	Shared-Memory Implementation
	Performance Results
	Conclusions
	Appendices

