Towards High-Level Execution Primitives for
And-parallelism: Preliminary Results

Amadeo Casas! Manuel Carro> Manuel Hermenegildo!2

LUniversity of New Mexico (USA)
2Technical University of Madrid (Spain)

CICLOPS'07 - September 8t

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS’07 - September gth 1/1

Introduction

Introduction and motivation

Parallelism (finally!) becoming mainstream thanks to multicore
architectures — even on laptops!

Declarative languages interesting for parallelization:
» Program close to problem description.
» Notion of control provides more flexibility.
» Amenability to semantics-preserving automatic parallelization.

Significant previous work in logic and functional programming.

Two objectives in this work:
> New, efficient, and more flexible approach for exploiting (unrestricted)
(and-)parallelism in LP.
» Take advantage of new automatic parallelization for LP.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS'07 - September gth 2/1

Types of parallelism in LP

e Two main types:
> Or-parallelism: explores in parallel alternative computation branches.
> And-parallelism: executes procedure calls in parallel.
* Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.
* Often marked with &/2 operator: fork-join nested parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS’07 - September gth 3/1

Types of parallelism in LP

e Two main types:
> Or-parallelism: explores in parallel alternative computation branches.
> And-parallelism: executes procedure calls in parallel.
* Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.
* Often marked with &/2 operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

gsort([1, [1). gsort ([, [1).

gsort([X|L], R) :- gsort([X|L], R) :-
partition(L, X, SM, GT), partition(L, X, SM, GT),
gsort (GT, SrtGT), gsort (GT, SrtGT) &
gsort(SM, SrtSM), gsort(SM, SrtSM),
append (SrtSM, [X|SrtGT], R). append (SrtSM, [X|SrtGT], R).

v

o We will focus on and-parallelism.
» Need to detect independent tasks.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. . . CICLOPS’07 - September gth 3/1

Introduction

Background: parallel execution and independence

o Correctness: same results as sequential execution.

o Efficiency: execution time < than seq. program (no slowdown),
assuming parallel execution has no overhead.

Y = W+2,
X =Y+Z,
CLP

s Y = W+2; (+(+W2)
S X :=Y+Z;
Imperative
main :- pX)
S1 p(X),
$2 a(X), q(X)
write(X). q(X)

= [1, large computation.

e Fundamental issue: p affects q (prunes its choices).

> q ahead of p is speculative.

e Independence: correctness + efficiency.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. ..

CICLOPS'07 - September 8t/

4/1

Introduction

Related work and proposed solution

@ Versions of and-parallelism previously implementated:
&-Prolog, &-ACE, AKL, Andorra-I,...

@ They rely on complex low-level machinery:

» Each agent: new WAM instructions, goal stack, parcall frames,
markers, etc.

o Current implementation for shared-memory multiprocessors:

» Each agent: sequential Prolog machine + goal list + (mostly) Prolog
code.

@ Approach: rise components to the source language level:
» Prolog-level: goal publishing, goal searching, goal scheduling,
“marker” creation (through choice-points),...
» C-level: low-level threading, locking, stack management, sharing of
memory, untrailing,...

— Simpler machinery and more flexibility.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS’07 - September gth 5/1

Ciao and CiaoPP

e (Ciao: new generation multi-paradigm language.

> Supports ISO-Prolog (as a library).

> Predicates, functions (including laziness), constraints, higher-order,
objects, tabling, etc.

» Parallel, concurrent and distributed execution primitives.

e Preprocessor / environment (CiaoPP):

> Infers many properties such as types, pointer aliasing, non-failure,
determinacy, termination, data sizes, cost, etc.

» Performs automatic verification of program assertions
(and bug detection if assertions are proved false).

» Performs automatic parallelization and automatic granularity control.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS’07 - September gth 6/1

CDG-based automatic parallelization

e Conditional Dependency Graph: [TOPLAS’99, JLP’99]

> Vertices: possible sequential tasks (statements, calls, etc.)
» Edges: conditions needed for independence (e.g., variable sharing).

@ Local or global analysis to remove checks in the edges.
e Annotation converts graph back to (now parallel) source code.

icond(1-3)

O ey O

d(2-3
foo(...) :- @)

g1(...),
g(...), Local/Global analysis
g3 C...) and simplification

@ test(1- S)O
(test(1-3) >(gl 02) &¢

91, (g2&g3

"Annotation"
Alternative: g1, (g2 & g3

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS'07 - September gth 7/1

v

Flexible Parallelism Primitives

An alternative, more flexible source code annotation

o Classical parallelism operator &/2: nested fork-join.
@ However, more flexible constructions can be used to denote
parallelism:

» G &> Hg — schedules goal G for parallel execution and continues
executing the code after G &> Hg.

* Hg is a handler which contains / points to the state of goal G.
» Hg <& — waits for the goal associated with Hg to finish.

* The goal Hg was associated to has produced a solution; bindings for the
output variables are available.

@ Operator &/2 can be written as:
A& B :- A& H, call(B), H <&.

e Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS’07 - September gth 8/1

Flexible Parallelism Primitives

Expressing more parallelism
@ More parallelism can be exploited
with these primitives.

(dep. graph at the right) and
three possible parallelizations:

o Take the sequential code below

p(X,Y,2) :- | pX,Y,2) :- p(X,Y,2) :-
a(X,2), a(X,zZ) & c(Y), c(Y) &> Hc,
b(X), b(X) & 4(Y,Z). alX,z2),
c(Y), b(X) &> Hb,
awy,2). p(X,Y,2) :- He <&,
c(Y) & (a(X,2),b(X)), a(y,z),
a(y,z). Hb <&.
Sequential Restricted IAP Unrestricted IAP

@ In this case: unrestricted parallelization at least as good
(time-wise) as any restricted one, assuming no overhead.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. CICLOPS’07 - September gth 9/1

Shared-Memory Implementation

Low-level support

@ Low-level parallelism primitives:
apll:push_goal (+Goal,+Det,-Handler).
apll:find goal(-Handler).
apll:goal_available(+Handler) .
apll:retrieve_goal (+Handler,-Goal) .
apll:goal_finished(+Handler) .
apll:set_goal finished(+Handler) .
apll:waiting(+Handler).

@ Synchronization primitives:
apll:suspend.
apll:release(+Handler).
apll:release_some_suspended_thread.
apll:enter mutex(+Handler).
apll:enter mutex_self.

apll:release mutex(+Handler) .

apll:release mutex_self.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€Ke]ei Koy 20 01e gth 10/1

Prolog-level algorithms (1)

@ Thread creation:

create_agents(0) :- !. agent :-
create_agents(N) :- apll:enter mutex_self,
N> o, (
conc:start_thread(agent), find_goal_and_execute -> true
N1 is N - 1, ;
create_agents(N1) . apll:exit_mutex_self,
apll:suspend
agent.

e High-level goal publishing:

Goal &!'> Handler :-
apll:push_goal (Goal,det,Handler),
apll:release_some_suspended_thread.

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€Re]ei Koy 0 01e gth 1 /1

Shared-Memory Implementation

Prolog-level algorithms (1)

@ Performing goal joins:

Handler <&! :-
apll:enter mutex self,
(

apll:goal_available(Handler) ->
apll:retrieve_goal (Handler,Goal),
apll:exit mutex_self,

call(Goal)

apll:exit_mutex_self,
perform_other_work (Handler)

perform_other_work(Handler) :-
apll:enter mutex self,

(
apll:goal finished(Handler),
apll:exit_mutex_self,
5
(
find_goal_and_execute -> true
apll:exit mutex_self,
apll:suspend
),
perform other_work(Handler)
Do

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. ..

CICLOPS'07 - September 8t/

12/1

Prolog-level algorithms (l11)

@ Search for parallel goals:

find_goal_and_execute :-
apll:find _goal (Handler),
apll:exit_mutex_self,
apll:retrieve_goal (Handler,Goal),
call(Goal),
apll:enter mutex(Handler),
apll:set_goal_finished(Handler),
(
apll:waiting(Handler) ->
apll:release(Handler)
5
true
) s

apll:exit_mutex(Handler) .

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€/Ke]ei Koy AN 1= 001e gth 13/1

(Preliminary) Performance Results

(Preliminary) performance results for restricted and-parallelism (1)

Number of processors

Benchmark Seq. | 1 2 3 Z 5 6 7 8
AIAKL 1.00 | 0.97 | 1.77 | 1.66 | 1.67 | 1.67 | 1.67 | 1.67 | 1.67
Ann 1.00 | 0.98 | 1.86 | 2.65 | 3.37 | 4.07 | 465 | 5.22 | 5.90
Boyer 1.00 | 0.32 | 064 | 095 | 1.21 | 1.32 | 1.47 | 1.57 | 1.64
BoyerGC 1.00 | 0.90 | 1.74 | 257 | 3.15 | 3.85 | 439 | 478 | 5.20
Deriv 1.00 | 0.32 | 0.61 | 0.86 1.09 1.15 1.30 1.55 1.75
DerivGC 1.00 | 091 | 1.63 | 237 | 3.05 | 3.69 | 421 | 479 | 5.39
FFT 100 | 0.61 | 1.08 | 1.30 | 1.63 | 1.65 | 1.67 | 1.68 | 1.70
FFTGC 100 | 098 | 1.76 | 2.14 | 2.71 | 2.82 | 2.99 | 3.08 | 3.37
Fibonacci 1.00 | 0.30 | 0.60 | 0.94 | 1.25 | 1.58 | 1.86 | 2.22 | 2.50
FibonacciGC 1.00 | 0.99 | 1.95 | 2.89 | 3.84 | 478 | 5.71 | 6.63 | 7.57
Hanoi 1.00 | 0.67 | 1.31 | 1.82 | 2.32 | 2.75 | 3.20 | 3.70 | 4.07
HanoiDL 1.00 | 0.47 | 098 | 1.51 | 2.19 | 2.62 | 3.06 | 3.54 | 3.95
HanoiGC 1.00 | 0.89 | 1.72 | 2.43 | 3.32 | 3.77 | 417 | 4.41 | 4.67
MMatrix 1.00 | 091 | 1.74 | 255 | 3.32 | 4.18 | 4.83 | 5.55 | 6.28
Palindrome 1.00 | 0.44 | 0.77 | 1.09 | 1.40 | 1.61 | 1.82 | 2.10 | 2.23
PalindromeGC 1.00 | 0.94 1.75 | 237 | 297 | 330 | 3.62 | 4.13 | 4.46
QuickSort 100 | 0.75 | 1.42 | 1.98 | 2.44 | 2.84 | 3.07 | 3.37 | 3.55
QuickSortDL 1.00 | 0.71 1.36 195 | 226 | 2.76 | 2.96 | 3.18 | 3.32
QuickSortGC 1.00 | 0.94 | 1.78 | 2.31 | 2.87 | 3.19 | 3.46 | 3.67 | 3.75
Takeuchi 1.00 | 0.23 | 046 | 068 | 091 | 1.12 | 1.32 | 1.49 | 1.72
TakeuchiGC 1.00 | 0.88 | 1.61 | 2.16 | 2.62 | 2.63 | 2.63 | 2.63 | 2.63

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€Re)2iHor A1 =01 e gth 14 /1

(Preliminary) Performance Results

(Preliminary) performance results for

restricted and-parallelism (I1)

Boyer
Boyer-Moore with granularity control

astFourier Transform
Fast-Fourier Transform wilh grauiary contol -

(a) Boyer-Moore

1 2 3 a 5 6 7 8

(b) Fast-Fourier Transform

Fibon
Fibonacci with granularity control

uickSort ——
QuickSort with differénc lists -
Quisa o ‘granlarity, coatrol -+

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. ..

(c) Fibonacci

(d) Quicksort

CICLOPS'07 - September 8t/ 15/1

(Preliminary) Performance Results

Restricted vs. unrestricted and-parallelism (1)

Number of processors

Benchm. And-P 1 5 3 7 5 6 = 5
FibFunGC Restric.ted 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Unrestricted 099 | 195 | 289 | 3.84 | 478 | 5.71 | 6.63 | 7.57
TakeuchiGC Restric.ted 0.88 | 1.61 | 2.16 | 262 | 2.63 | 2.63 | 2.63 | 2.63
Unrestricted 0.88 | 1.62 | 2.39 | 3.33 | 4.04 | 447 | 5.19 | 5.72
FETGC Restric.ted 098 | 1.76 | 2.14 | 2.71 | 282 | 299 | 3.08 | 3.37
Unrestricted 098 | 1.82 | 2.31 | 3.01 | 3.12 | 3.26 | 3.39 | 3.63
Hamming Restric.ted 093 | 1.13 | 1.52 | 1.52 | 1.52 | 1.562 | 1.52 | 1.52
Unrestricted 093 | 1.15 | 164 | 164 | 1.64 | 1.64 | 1.64 | 1.64
WMS2 Restric.ted 099 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01
Unrestricted 099 | 110 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€Re)2iHor A1 =01 e gth 16 /1

(Preliminary) Performance Results

Restricted vs. unrestricted and-parallelism (I1)

a
FFT. Resiricted version —+— Hamming! Restricted version
FFT, Unrestricted version - e HAMMING, Unrastricted vegaion
0s
1 2 s 4 s B 7 5 1 2 s 4 5 6 7 s
8 6
FibFun, Restricted version Takeuch! Restricted version
FibFun, Unrestricted version Takeuchi, Unrestricted version
55
7L 4
sk
s 1 ast x 9
5L i | 4
al 4
st 4 3
L 1 4
1
o o0s
1 2 3 a s 6 7 0 1 2 3 7 s 6 7 8

(g) FibFun (h) Takeuchi

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€Ke]ei Koy 20 01e gth 17 /1

Conclusions

Conclusions and future work

New implementation approach for exploiting and-parallelism:

> Simpler machinery.
> More flexibility.

Preliminary results:

» Reasonable speedups are achievable.
» Additional overhead makes it necessary to perform granularity control.

Unrestricted and-parallelism:
» Provides better observed speedups!

Currently working on:

» Improving implementation.
» Developing compile-time (automatic) parallelizers for this approach
[LOPSTR'07].

Casas, Carro, Hermenegildo (UNM, UPM) |Towards High-Level Execution Primitives. .. SN@ [€Re)2iHor A1 =01 e gth 18 /1

	Introduction
	Automatic Parallelization
	Flexible Parallelism Primitives
	Shared-Memory Implementation
	(Preliminary) Performance Results
	Conclusions

