
QoS-Based Services Selecting and Optimizing

Algorithms on Grid

Qing Zhu, Shan Wang, Guorong Li, Guangqiang Liu, and Xiaoyong Du

School of Information, Renmin University of China, Beijing 100872, P.R. China
Key Laboratory of Data Engineering and Knowledge Engineering

(Renmin University of China), Beijing 100872, P.R. China
zq@ruc.edu.cn

Abstract. QoS-Based Services Selecting and Optimizing Composition
between the peers play an increasingly important role to ensure interop-
erability on Grid environment. However, the prohibitive cost of select-
ing, matching, mapping and composing algorithm has now become a key
bottleneck hindering the deployment of a wide variety of Grid services.
In this paper, we present QoS-Based Services Selecting and Optimizing
Composition on Grid. First, it checks requesters’ semantic in order to
form candidate service graph. Second, it designs service selecting and
mapping algorithms for optimizing the model. Third, it creates an exe-
cuted plan of optimum composition on Grid. We conducted experiments
to simulate and evaluate our approach.

Keywords: Information Grid, SOA, Service Composition, Selecting
Algorithm.

1 Introduction

Grid has been developed to support for solving large-scale problems not only
in science, but also in engineering and commerce. Grid supports for the sharing
and coordinated use of diverse resources in dynamic, we call distributed virtual
organizations.

The complexity of service composition in semantic Grid [3] includes three
main factors: (1) different disciplines have different problems, each dependent on
different aspects of domain-specific knowledge; (2) new services can be flexibly
composed from available service components based on the user’s function re-
quirement and quality-of-service (QoS), and (3) both the underlying computing
resources and the information input for the process are dynamic. So it’s impor-
tant how to understand precisely meaning of requirement and how to solve a
QoS engineering problem since the service selection must select the best services
to compose an efficient complex service with QoS assurance.

However QoS-based service composition presents significant challenges and
requires addressing a number of critical issues such as discovering and identi-
fying relevant services, formulating semantics, selecting algorithm and creating
composition plans using current context, goals, constraints and costs, binding to
and invoking composition instances and checking their validity.
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In this paper, a key contribution is a dynamic composition model based on
semantics[4], graph theory and service selecting algorithm. Candidate Service
Generator is a key component of the dynamic composition framework and selects
an optimum composition by considering requesters’ Quality of Services (QoS).
The design of QoS-Based Services Selecting and Optimizing Algorithms is a key
improvement to existing Grid computing and runtime services to support the
execution of applications.

The rest of the paper is organized as follows. Section 2 describes an overview
of system architecture and presents the semantic interpreting according to the
user’s requirement and QoS-based criterion. Section 3 presents key technology of
selecting and mapping algorithms. Section 4 presents simulation and evaluation.
Section 5 presents related work. Finally, the paper summarizes and concludes in
Section 6.

2 System Architecture

To achieve both flexibility and simplicity, we propose architecture for QoS-Based
Services Selecting and Optimizing Composition in Grid Environment. The sys-
tem is called GridSC (Grid Service Composition System), which can be seen as
a middle control layer in an active grid environment that offers a generic service
abstraction and automates mapping of processing resources to grid services.

The architecture of GridSC system consists of four components running in
two different phases that are semantic Interpreter phase and composition plan
generate phase. Grid Service Composition system includes other four key compo-
nents: Semantic Interpreter, Candidate Service Generator, Prediction Combiner
and Plan Execution as shown in Fig 1. Candidate Service Generator, Prediction
Combiner and Plan Execution belong to composition plan generate phase.

Semantic Interpreter receives client’s request of services, and formally describe
service composition specification according to the service interface. In the mean-
time, semantic interpreter understands and translates the semantic meaning of
client’s request, then extracts semantics information.

Candidate Service Generator identifies the location and capabilities of pro-
cessing resources to build a candidate service resource graph that describes the
physical network topology. It translates the service specification onto the physical
resource graph while taking into account all service-specific constraints and the
lists of peers’ resource. Finally, it provides common, reusable service candidates
to prediction combiner.

Prediction Combiner includes prediction evaluating and service selecting al-
gorithms which needs to select and map a specific service and service level along
an optimal path in the execution plan. The selection is based on a user’s QoS
requirements and Multiple QoS constraints. It provides a new service plan that
involves several basic service components through QoS-based services selecting
and optimizing algorithms.

Plan execution reserves and allocates appropriate physical resources as deter-
mined by the service execution plan and resource lists on globe peers. Once the
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Fig. 1. Service Composition System Architecture

service has been deployed, Plan execution is the final task that maps the execu-
tion plan and combines all required components to provide an operational ser-
vice composition for users. If the available resources are changed, plan execution
adopts a proactive approach (e.g. failure recovery, service plan reconstruction)
to maintain the quality of composed service during runtime.

From the view of the point, service specification is the foundation of service
composition which can describe semantic explanation of user requisition and
create requiting goal. Each service owner retains control over the services that
they make available to others. They determine how the service is realized and
set the policy for accessing the service. It is the key problem that consists of
a new service composition QoS-based by using available web services on Grid
environment. This paper focuses on the service semantic interpreter and services
selecting and optimizing composition algorithms part.

2.1 Semantic Interpreter

The semantic interpreter is critical aspect with respect to service composition
which is supported semantic translation, service probe, service selection, com-
position and monitoring. Automating these steps in Grid service usage life cycle
is the aim of semantic Grid services composition. However, the semantic inter-
preter is the first step of understanding the meaning of service requirement on
Grid.

In Grid services domain, semantics represented by the semantic metadata
can be classified into the following types, namely, Functional Semantics, Data
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Semantics, QoS Semantics and Execution Semantics. These different types of
semantics can be used to represent the capabilities, requirements, effects and
execution pattern of a Grid service. The semantic interpreter focuses to for-
malization expression as focused on the functional semantics. Research on Grid
services composition on the other hand is based on the findings and results
from the semantic Grid research to apply for services that perform some action
producing an effect.

The Semantic Interpreter defines the components required by a service and
describes how components are interrelated and constrained after user request-
ing. Lexical and syntactic information is the easiest to represent and process in a
parser. But it is not sufficient to resolve all the ambiguities in understanding lan-
guage of machine; and by its nature, it cannot determine what a sentence means.
Therefore, we use Semantic Interpreter that can extract semantics information
from Client’s Request or interface.

Semantic information allows rich descriptions of Grid services and processes
that can be used by computers for automatic processing in various applications.
At the meanwhile, the deployment of ontology help understand a well-defined
set of common data elements or vocabulary that can support communication
across multiple channels, accelerate the flow of information, and meet customer
needs.

When user provide m key Requirement Services, semantic interpreter ab-
stracts m keywords, R1, R2, ..., Rm and the Requirement function Ψ (R1, R2, ...,
Rm). Semantic Requirement Function Ψ (R1, R2, ..., Rm) is a Boolean function
with parameters of key services. The two legal Boolean operations are defined
as below: Ri AND Rj : Both keywords Ri and Rj are contained in the answer;
Ri OR Rj : Either keyword Ri or Rj is contained in the answer. To handle any
of these cases, the semantic interpreter must generate a Composition Candidate
Graph that states a logical proposition. Now, let us introduce the formational
notions associated with Semantic Requirement Services.

Definition 1. Semantic Requirement is represented:
Ψ(R1, R2, ..., Rm)= {Vt, Vn, Rule, Select-Sentence},
There are four important components in a formalization description. Where:
1. Terminal symbols Vt={AND, OR, Ri } ; Ri : the description of i-th Service

Requirement;
2. Nonterminals Vn ={Keyservice, Select-Sentence, Segment };
3. Start Symbol: Select-Sentence;
4. Productions or Rule consisted of :
Select-Sentence → Segment,
Segment → Keyservice AND Segment,
Segment → Keyservice OR Segment,
Segment → Keyservice,
Keyservice → R1|R2|R3|· · ·|Ri|· · ·;

First, the Semantic Interpreter parses user’s service request to a set of select
keywords and computes the final states once a keyword selects. Just as above
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described, it receives m (m>0) keywords R1, R2, ..., Rm and a Boolean function
Ψ (R1, R2, ..., Rm) as one whole select command at the start of the user Re-
quirement Services session. Second, Semantic Interpreter translates them into a
sequence of effective keywords and does group some or all of them according to
the AND/OR semantics included in Boolean function. The groups of keywords
are further constructed to Parser Trees. The semantic interpreter uses syntactic
rules to generate parse trees and translates those trees into composition candi-
date service graphs.

2.2 Candidate Service Graph

Grid computing can provide ubiquitous resource and service availability. Grid is
defined to be a dynamic and open environment where the availability and state
of these services and resources are constantly changing. Therefore, Grid applica-
tions are similarly complex, dynamic and heterogeneous. The primary focus of
the service composition model presented in this paper is to evaluate and select a
specific service to find an optimal path in the execution plan. Prediction Com-
biner produces Composition execution plans from the pool of available services
to satisfy QoS-based defined composition objectives, policies and constraints.

In GridSC system, the user’s functional requirements are given in the form of a
composition function graph by the semantic interpreter. The function graph con-
sists of required service functions F1, · · ·, Fk that are connected by dependency
links and commutation links. The dependency link indicates that the output of
one function is used as the input by its successor.

Definition 2. Composition Function Graph is defined as a directed weighted
graph G= (F, E, C), where, the user’s functional requirements F= {F1,F2,· · ·,
Fm} represents the set of |F| nodes, E= {e1,e2,· · ·,en}, represents the set of
|E| edges, a weight function C= {C1,C2,· · ·,Ct} is defined represents the set of
QoS-based constraints condition, ei=( Fi, Fj , C) ∈ E , represents the function
relation that function Fj is a direct successor of state Fi by constraints Cm.

In the model, composition objectives, and composition policies and constraints
({Ci}) can be dynamically defined as simple semantic information statements.
The available service pool is represented as a candidate service graph CSGraph
(S, E), where the nodes represents services, S= {si}, in the pool and the links,
E= {si, sj}, can be modeled as possible interaction. GridSC system can discover
and locate the service resources to produced a candidate service graph is present
in Figure 2.

Definition 3. Candidate Service Graph is a state graph CSGraph = (S, E),
where S represents the set of |S| peers, denoted by composite services Si, 1≤ j ≤
| S |, and E represents the set of |E| overlay links, denoted by ej , 1≤ j ≤ | E |.
Definition 4. Composite Service Si = {si1, si2,· · ·, sim}, represents the set of |
Si | compound state of service S= {S1, S2, · · ·, Sk}; denoted by sij ; sij : represents
basic service; Si is matching with the service function set Fi in Candidate Service
Graph CSGraph.
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Definition 5. Overlay Links E= {e1, e2,· · ·, et} represents the set of | E | edges;
ei=< sij, skm, C >: if valid (service sij and (condition C)) then activation (skm).

Let’s give an example. The four viable service compositions are selected from
Candidate Service Graph on Fig 3.

s21

s22

s23

s31
s11

s12

s13

s01

Fig. 2. Candidate Service Graph Fig. 3. Service request compositions

Service descriptions are augmented with semantic information in the form of
keywords and context information. This semantic information along with QoS-
based polices and constraints are used to select applicable services (s0) and
interactions (eij where Valid (eij , Ck) = True). Candidate composition plans
can be represented as paths in this graph G (S, E). Execution plans may be
evaluated and ranked based on different QoS-based cost factors. In the candidate
service graph, G(S, E), the available services are vertices and interaction are
edges. The edges are created at runtime using a relational join operation. Service
Composition can be defined as finding a path from initial to final in G0 (S, E).

2.3 Execution Plan of Composition

Execution Plan of Service Composition is presented while the QoS-based Services
Selecting and Optimizing Algorithms are discussed. We make precise some of the
informal arguments and descriptions that we’ll meet the terms and conceptions
followed in this paper.

Definition 6. Service Consistency Relation (si>sj). Give two service compo-
nents Si , Sj∈S in Candidate Service Graph CSGraph (S, E), if Composite Ser-
vice Si, Sj are each matching with Service function Fi, Fj∈F, in Composition
Function graph G(F, E), and ∃e∈E , e=(Fi,Fj ,C),and In(Fj)=1 Valid (Service
Si and Sj) = True, and Output(si)⊇ Input(sj), then the relation of service si

and sj is called Service Consistency Relation,denoted by si>sj.

Definition 7. Service Mapping is defined as Composition Function Model G=
(F, E) is mapping into Candidate Service Graph CSGraph = (S, E), and the set
of Candidate Service Si is matching with Function Fi in order to satisfy user’s
requirements.



162 Q. Zhu et al.

Definition 8. Execution Planning is defined as the path, denoted as P={p1,p2,
· · ·,pm}, in the Candidate Service Graph CSGraph (S, E),which are selected the
basic services to produce Execution Planning of service composition.

We give the example of service composition, from Function Model graph of
services mapping into Candidate Service Graph, and service Execution Planning
P0,P1,· · ·,Pn. Fig 4.

Fig. 4. Composition Mapping

The Semantic Interpreter specifies a composition request as a set of con-
straints, keywords, input service and output services. Candidate Service Gen-
erator discovers the participating services, Si, generate the set of associated
interactions Ei, and the composition graph Gi on Candidate Service according
to the keyword set and constraint set. In the service selection step, the services
in the current service pool are parsed to generate service set S by Prediction
Combiner. A relational join operation is then used to construct the set of ad-hoc
interactions, E, by matching interfaces, and to create service graph G(S, E). Cost
associated with each Cij is calculated and evaluated by Prediction Combiner.
Candidate composition Execution plans can now be generated as paths in G be-
tween initial and final using graph path algorithms. The composition Execution
plans can be ranked based on costs. These costs could reflect QoS-based factors,
operational environments and/or user defined factors. Constraints can belong to
different categories and can control aspects of both services and compositions.
New services can be flexibly composed from available service components based
on the user’s function and quality-of-service (QoS) requirements.

2.4 QoS Criteria for Composite Services

In GridSC system, a QoS-based approach to service composition is the challenge,
which maximizes the QoS of composite service executions by taking into account
the constraints and preferences of the users. Traditionally, QoS[2] problem has
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been studied within different domains such as network layers and multimedia
systems. However, we are faced with new challenges in QoS-based service com-
position because it requires an integrated solution considering multi-dimensional
requirements (i.e., function, resource and QoS requirements) at the same time.
On the other hand, the QoS of the resulting composite service executions is
a determinant factor to ensure customer satisfaction, and different users may
have different requirements and preferences regarding QoS. Moreover, the can-
didate service graph could be a state graph instead of a linear path in order to
accommodate parallel execution of services.

In the following, we describe key tasks involved in generic quality criteria
for basic services: (1) Execution price (2) Execution duration (3) Availability
(4) Successful execution rate (5) Reputation Each basic service may provide
different service levels; each level is associated with a QoS vector parameters QoS
= (Q1,· · ·,Qn), for example: Q1=Q.price, Q2= Q.duration, Q3=Q.availability,
Q4=Q.succeed-rate, Q5=Q.reputation. The quality criteria defined above in the
context of basic Grid services, are also used to evaluate the QoS of composite
services. If service composition satisfies all the user constraints for that task, it
has the maximal score. If there are several services with maximal score, one of
them is selected randomly. If no service satisfies the user constraints for a given
task, an execution exception will be raised and the system will propose the user
to relax these constraints.

3 Selection Algorithm of Service Composition

In this section, we present the service selection algorithms used by the Prediction
Combiner for service composition with two or more QoS constraints. We use two
algorithms: the SA algorithm and the Heuristic algorithm to solve the problem.

First, we present the QoS[9] quality criteria in the context of basic services,
indicate its granularity and provide rules to compute its value for a given ser-
vice. Second, we assume that the same service definition is used by all basic
service candidates for a specific service component on Candidate Service Graph.
So we are concerned about the compatibility issue among services and focus on
the QoS service selection problem.

3.1 Advanced Simulated Annealing (Advanced-SA) Algorithms

Currently, we have implemented the following more general optimization algo-
rithms in our prototype.

Simulated Annealing (SA): The simulated annealing heuristic is based on the
physical process of ”annealing”. We use the temperature reduction ratio R as a
parameter to control the cost/optimality trade-off.

SA is a search technique based on physical process of annealing, which is the
thermal process of obtaining low-energy crystalline states of a solid. The temper-
ature is increased to melt solid. If the temperature is slowly decreased, particles
of the melted solid arrange themselves locally, in a stable ”ground” state of a
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solid. SA theory states that if temperature is slowed sufficiently slowly, the solid
will reach thermal equilibrium, which is an optimal state. By analog, the ther-
mal equilibrium is an optimal task-machine mapping (optimization goal), the
temperature is the total completion time of a mapping (cost function), and
the change of temperature is the process of mapping change. If the next temper-
ature is higher, which means a worse selecting and mapping, the next state is
accepted with certain exponential probability. The acceptance of ”worse” state
provides a way to escape local optimality which occurs often in service selecting.

3.2 Max-Min Exhaustive Algorithm

Max-min Exhaustive Algorithm (Max-min): This algorithm always yields the
actual optimal configuration, but the optimization cost grows rapidly with the
problem size. The Max-min heuristic selects a ”best” (with minimum completion
time) machine for each task. Then, from all tasks, send the one with minimum
completion time for execution. The idea is to send a task to the machine which
is available earliest and executes the task fastest, but send the task with maxi-
mum completion time for execution. This strategy is useful in a situation where
completion time for tasks varies significantly.

3.3 Heuristic Greedy Algorithm (HG)

A greedy algorithm means if it builds up a solution in small steps, choosing a
decision at each step myopically to optimize some underlying criterion. There
are many different greedy algorithms for the different problems. In this paper,
we designed Heuristic Greedy Algorithm (HG) to optimize the cost of execution
time.

Currently, we have implemented the more general optimization algorithms
in our prototype. The algorithms discussed above are suitable under different
circumstances. Therefore, for each physical mapping problem, the most appro-
priate algorithm needs to be selected. Therefore, we propose that the Prediction
Combiner should be able to choose the best optimization technique to solve the
problems.

4 Simulation and Evaluation

In this section, we will evaluate performance of different parameters on Max-min
Exhaustive Algorithm (Max-min), Heuristic Greedy algorithm and Advanced
Simulated Annealing (Advanced-SA) Algorithms. Service composition process-
ing time includes three parts (1) Create candidate service graph time: according
to user’s requirement. (2) Selecting time: executing selecting algorithm to better
service. (3) Execution plan time: realizing physical mapping. Our experiments
mainly evaluate (2) selecting time, which actually is the major part of service
composition processing time.
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Fig. 5. Heuristic Greedy algorithm

In the following experiments, we assume an equal-degree random graph topol-
ogy for the 1-8 services of service composition candidate graph. For simplicity,
we only consider one process plan with the two service composition algorithms.
We produced random numbers of QoS vector parameters, QoS = (Q1,· · ·,Qn),
for example price, duration, availability, succeed-rate, and reputation. The num-
ber of service class and candidates in each service class involved in the process
plan range from 5 to 40.

We run our system experiments using the simulation Grid environment on
several Pentium(R)4 CPU 2.4GHZ PC with 1GB of RAM. We implement sim-
ulation experiment in C++ and both use other development tool.
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Fig. 6 shows the selecting time with the number of service nodes increasing
from 5 to 40. This experiment runs two algorithms: Heuristic Greedy algorithm
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and Max-min Exhaustive Algorithm. Fig.7 shows the selecting time with the
number of service nodes increasing from 5 to 40. This experiment runs two
algorithms: Heuristic Greedy algorithm and Advanced Simulated Annealing
(Advanced-SA) Algorithms. This experiment shows Heuristic Greedy algorithm
is efficient QoS-Based Services Selecting and Optimizing Algorithms about this
service composition on Grid.

5 Related Work

Many projects have studied the service composition problem. SpiderNet[1] is the
service composition middleware by both user’s need for advanced application
services and newly emerging computing environments such as smart rooms and
peer-to-peer networks. SpiderNet only researched QoS-Assured Service Compo-
sition in Managed Service Overlay Networks and no semantic issue has been
addressed. The SWORD project [12] and eFlow project [11] proposed a devel-
oper toolkit for the web service composition. It uses a rule-based expert system
to check whether a composite service can be realized by existing services and
generate the execution plan given the functional requirements for the composed
application. SWORD only addressed the on-line and no QoS issue has been
addressed. Our main contribution is to use semantic knowledge to interpreter
user requirement of service composition, to take QoS-driven composition goal
into account to find best quality composition by using selecting algorithms on
Grid.

6 Conclusion

In this paper, we study the problem of QoS-Based Services Selecting and Opti-
mizing Algorithms on Grid. Two problem Algorithms are proposed: Advanced
Simulated Annealing (Advanced-SA) Algorithms, and Heuristic Greedy Algo-
rithm (HG) Algorithms. Semantic Interpreter, Candidate Service Generator,
Prediction Combiner and Plan Execution, four components consist GridSC (Grid
Service Composition System) system on the Grid environment that offers service
composition middle control layer. In the paper we discussed client QoS require-
ment and QoS constraint. We have presented two algorithms, both optimal and
heuristic, to compose and select services QoS-based constraints as well as to
achieve the maximum utility.
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