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Abstract. In Service-Oriented Architectures (SOAs), software systems
are decomposed into independent units, namely services, that interact
with one another through message exchanges. To promote reuse and
evolvability, these interactions are explicitly described right from the
early phases of the development lifecycle. Up to now, emphasis has been
placed on capturing structural aspects of service interactions. Gradually
though, the description of behavioral dependencies between service in-
teractions is gaining increasing attention as a means to push forward the
SOA vision. This paper deals with the description of these behavioral
dependencies during the analysis and design phases. The paper outlines
a set of requirements that a language for modeling service interactions at
this level should fulfill, and proposes a language whose design is driven
by these requirements.

1 Introduction

As the first generation of web service technology based on XML, SOAP, and
WSDL, reaches a certain level of maturity and adoption, a second generation
based on richer service descriptions is gestating. Whereas in first-generation web
services, service descriptions are usually equated to sets of operations and mes-
sage types, in the second generation the description of behavioral dependen-
cies between service interactions (e.g. the order in which messages must be ex-
changed) plays a central role.

Two standardization initiatives, BPEL [1] and WS-CDL [3], have promoted
the description of behavioral aspects of service interactions. However, these pro-
posals focus on the implementation phase of the service development lifecycle.
Indeed, although WS-CDL claims to be at a higher level than BPEL, they both
rely on procedural programming constructs such as variable assignment and in-
struction sequencing. One can argue that during analysis and design, capturing
constraints on possible interactions is more relevant than prescribing interac-
tion procedures. Furthermore, while BPEL focuses on describing interactions
from a local perspective, i.e. from the perspective of a specific service, WS-CDL
emphasizes global descriptions (also called choreographies).



Previous proposals have defined extensions of well-known behavior modeling
paradigms (e.g. Activity Diagrams) to capture message exchanges in the style
of service interactions. This is the case for example of BPMN [19] and BPSS (or
ebBP) [6]. However, these languages do not treat service interactions as first-
class citizens but rather as extensions to a core language centered around the
notion of actions and dependencies between actions. In particular, service inter-
actions in these languages are not composable, meaning that it is not possible
to aggregate several interactions and treat them as a single interaction to which
it is possible to apply the same operators as for elementary interactions. It is
thus questionable whether these languages meet the requirements of a language
for service interaction modeling. Also, these languages do not provide a uni-
fied framework for capturing interactions both from a local and from a global
viewpoint.

In prior work, we have captured suitability (i.e. fit-to-purpose) requirements
for service interaction languages and documented them in the form of 13 pat-
terns [2]. In this paper, we formulate additional requirements for a service inter-
action modeling language and use these as the basis for a language proposal. The
main contribution of the paper is thus a language, namely “Let’s Dance”, for
modeling behavioral dependencies between service interactions. The language is
targeted at business analysts and software architects involved in the initial phases
of the service development lifecycle. Accordingly, it abstracts away from imple-
mentation details and avoids reliance on imperative programming constructs.
At the same time, models defined in the proposed language contain information
that can be leveraged upon during the implementation and operations phases,
for example to generate BPEL templates or to ensure, through monitoring or
log analysis, that a given service implementation conforms to the requirements
expressed in the models.

The paper is structured as follows. In Section 2 the requirements for a ser-
vice behavior modeling language are formulated. Section 3 gives an overview
of the Let’s Dance language. In Section 4 the suitability of the language is il-
lustrated through scenarios corresponding to some of the interaction patterns
of [2]. Section 5 introduces the meta model of the language as well as its infor-
mal semantics. Finally, Section 6 concludes and gives an outlook on future work.
A detailed evaluation of the language with respect to the service interaction
patterns is given in appendix.

2 Requirements and Related Work

The intended scope of the Let’s Dance language is to capture models of service
interactions from a behavioral perspective. The language is targeted at the analy-
sis and design phases of the systems development lifecycle. As such, it should be
sufficiently abstract (i.e. conceptual), meaning that it should allow modelers to
focus on the essence of their service interaction analysis and design problems,
abstracting away from implementation details. Accordingly, we aim at defining a
language that is as free as possible from programming constructs such as explicit



variable assignment. Examples of what the language should not force modelers
to do include:

— Having to intersperse variable assignment actions for book-keeping purposes,
e.g. using variables as counters or as “flags” to indicate that a state has been
reached, or as “buffers” to store the result of intermediate computations.

— Having to introduce unnecessary ordering or synchronization constraints, i.e.
sequentializing interactions that could otherwise be performed in any order
or in parallel.

A major use case of the language is to define models of service interactions
that can be refined into implementations, or compared against the behavior
exhibited by an existing implementation. Thus, the language should have an
unambiguous semantics and it should be possible to compare the semantics of
a model with the behavior exhibited by an implementation. In addition, it is
desirable to reason about the models defined in the language, e.g. to verify or test
certain properties through static analysis or simulation. One way to achieve these
requirements is to endow the language with a formal and executable semantics.

Another major purpose of the language is to facilitate communication be-
tween analysts, designers, and other stakeholders involved in the development
of service-oriented systems. Users of the language, including non-technical users,
will need to understand, critique, modify or suggest modifications to models or
parts thereof. The language must hence be comprehensible. This comprehensi-
bility can be achieved by: (i) attaching a graphical syntax to the language to
better exploit the perceptual capabilities of users, and (ii) allowing models to be
captured at different levels of detail and from different viewpoints. In particular,
the language should allow interactions to be decomposed into other interactions
so that users can choose the level of details at which they wish to view an in-
teraction model. Also, users should be able to design and view models from a
local and from a global perspective. In the global (or choreography) perspective,
interactions are described from the perspective of a collection of services (ab-
stracted as roles). This is useful when communicating about how services should
behave in order to seamlessly interact with one another. On the other hand,
local models focus on the perspective of either an existing or a “to be” service,
capturing only those interactions that involve that particular service. A possible
usage scenario is one where global models are produced by analysts to agree on
major interaction scenarios, while local models are produced during system de-
sign and handed on to implementers. To ensure proper handovers between these
users, it is necessary to have a mapping from global to local models and/or to
be able to check that a local model is consistent with a global one. In other
scenarios, reverse mappings from local to global models may also be useful.

Finally, the language must be ezpressive and suitable. Given the intended
scope, expressiveness refers to the ability to capture any set of service inter-
actions and their associated behavioral dependencies. Suitability on the other
hand, refers to the ability to capture common scenarios in an intuitive manner.
Languages such as Colored Petri nets [13] or Live Sequence Charts [7] allow
one to capture any service interaction scenario (in computational terms, they



are Turing complete). However, they are not necessarily suitable for the task
at hand: modeling certain common interaction scenarios would require the use
of programming constructs. So while expressiveness is certainly important and
we plan to investigate this in the future, our initial language design has been
driven by suitability. Suitability is arguably a subjective property and is ulti-
mately determined by the users and the use cases. We have chosen to take the
service interaction patterns proposed in [2] as a way of evaluating suitability.
These patterns have been derived from insights into real-scale B2B transaction
processing, use cases gathered by standardization committees (e.g. BPEL and
WS-CDL) during their requirements analysis phase, and scenarios identified in
industry standards (e.g. xCBL choreographies and RosettaNet PIPs [18]). The
proposed patterns, as such, are not complete but aim at consolidating recurrent
scenarios, abstracting them in a way that provides reusable knowledge to service
developers. Since the patterns are abstractions of recurrent scenarios, they can
be used to assess the suitability of a given language for service behavior descrip-
tion. Accordingly, a driving requirement of our language design is that it should
provide direct support for these patterns. Section 4 and the appendix shows
how each of these patterns are captured in Let’s Dance.

Existing languages for capturing service interaction behavior include WS-
CDL [3], BPEL [1], BPMN [19], UML Activity Diagrams [16] (and variants
thereof as defined in related initiatives such as BPSS [6] or EDOC [15]). WS-
CDL and BPEL are aimed at the detailed design and implementation stages
of the development lifecycle. They both extensively rely on programming lan-
guage constructs such as sequence, “repeat until” and “while” loops, and vari-
able assignment. Capturing service interaction patterns related to multi-party
or streamed interactions in these languages requires extensive use of variables
for record-keeping purposes.? Also, BPEL does not allow one to represent global
views. Moreover, these languages do not have a graphical syntax, although differ-
ent tools assign them various graphical representations. UML activity diagrams
and BPMN do have a prescribed graphical representations and are targeted at
analysts and designers. However, in these languages interactions are not treated
as first-class citizens. Elementary interactions (i.e. message exchanges) can be
represented through “message flows” and “object flows” respectively. However,
these constructs are not composable: It is not possible to represent an interac-
tion that is composed of other interactions. And as in the case of BPEL and
WS-CDL, UML and BPMN do not provide constructs to capture multi-party
and streamed interactions and these would need to be encoded using loops and
variable manipulation for record-keeping.

Another family of languages that have been proposed for capturing service
interactions are the so-called “semantic web service” description languages. This
family of languages includes OWL-S [14] and WSMO [17]. The basic idea of these
languages is to use logical statements to capture and manipulate service-related
information. In these languages, a service is described as a set of facts and rules
covering three broad aspects:

3 See sample code available at www.serviceinteraction.com.



— Capability: what can the service do?

— Non-functional properties: conditions of usage, contractual terms, contextual
constraints, etc.

— Interface: preconditions, post-conditions and/or effects of each interaction in
which the service can engage. Interface descriptions are akin to local models
in Let’s Dance, although they cover both structural and behavioral aspects.

While semantic web service descriptions are suitable in view of applying auto-
mated reasoning techniques (e.g. automated planning) over service descriptions,
their suitability for use at the level of domain analysis and systems design is ques-
tionable. Domain analysts do not typically describe services down to the level of
details required for non-trivial automated reasoning. Thus, semantic web service
description languages can be seen as possible target languages for Let’s Dance.
For example, Let’s Dance local models could be used to generate templates of
WSMO descriptions, which after refinement, could be given to automated rea-
soning engines to determine if a service can be combined with other services to
achieve a given goal.

In [4], Finite State Machines (FSMs) are put forward as a suitable language
for modeling service interactions. However, while state machines lead to simple
models for highly sequential scenarios, they may lead to complex, spaghetti-like
models when used to capture scenarios with parallelism and cancellation (e.g.
scenarios where a given interaction may occur at any time during the execution
of another set of interactions).

Foster et al [10] suggest the use of Message Sequence Charts (MSCs) for
describing global service interaction models. These global models are converted
into local models expressed as FSMs for analysis purposes. It should be noted
that MSCs are a notation for describing behavior scenarios as opposed to full
behavior specifications. In particular, basic MSCs do not allow one to capture
conditional branches, parallel branches, and iterations. Extensions to MSCs to
capture complex behavior have been defined, but in realistic cases they lead to
cluttered diagrams since MSCs are based on lifelines which are fundamentally
targeted at capturing sequencing rather than branching.

3 Language Overview

Due to the variety of constructs that can be used to build models, the identifica-
tion of the best way to depict a given issue is nearly impossible. We have used the
cognitive dimensions for visual programming environments introduced in [11] as
a guideline for optimizing the choice of constructs for the visual syntax of Let’s
Dance. Note that this optimization can only be done along one dimension and
there are usually trade-offs between the different optima of each dimension [5].
For the design of a graphical modeling language, important dimensions to con-
sider, among those presented in [11], are abstraction gradient, consistency and
diffuseness. The abstraction gradient covers the minimum and maximum levels of
abstraction that must be captured and the possibility to encapsulate fragments
of a certain model. In a language for service behavior modeling there are two



levels of abstraction: the global model is the higher level while the local model
is the lower one. Closer inspection shows that these levels can themselves be
described at different levels of abstraction and this can be achieved by ensuring
composability. The consistency or harmony of a language testifies how much of
a language has to be learnt by a user in order to infer the rest. This inference
should be easy for a language fulfilling the above requirements, since the same
constructs ought to be used for describing local and global models. Finally, the
dimension of diffuseness reflects how many symbols or graphic entities are re-
quired to express a given issue. This dimension is determined by the need to
support local and global models and by the concepts involved in each of these
models.

Service interactions can be described in terms of message exchanges. A mes-
sage exchange consists of a message sending and a message receipt. Thus, at the
lowest level of abstraction, a language for modeling service behavior must pro-
vide these two constructs. To optimize the abstraction gradient and consistency
dimensions discussed above, we choose a notation wherein the visual juxtapo-
sition of the symbols for sending and receiving messages leads to the symbol
for elementary interactions (i.e. message exchanges). Interactions can then be
related and composed to form choreographies. Communication actions are rep-
resented by the non-regular pentagons shown in the left-hand side of Figure 1. As
illustrated in this figure, we distinguish between a message sending that requires
an acknowledgment and one that does not. Similarly, we distinguish between
message receipt actions that provide acknowledgment and those that do not.*

send without acknowledge
A (at) [ Bw® A (al) [ Bw®

M1 _——— message M1 message M1

send with acknowledge

A(al) AN | B®Y A(al) [E)
M1

message M1 message M1

Fig. 1. Communication Actions and Interactions

A communication action is performed by an actor playing a role. This infor-
mation is specified at the top corner of the pentagon denoting a communication
action. Roles are written in uppercase and the actor playing this role (specifically,
the “actor reference”) is written in lowercase between brackets. The symbol for
sending and receiving messages are combined to form elementary interactions by

4 At the modeling level, we are only concerned with capturing whether an acknowl-
edgment is needed or not. The protocol used for acknowledging is an implementation
concern.



juxtaposing the respective symbols (see right-hand side of Figure 1). Again, we
distinguish between elementary interactions with and without acknowledgment.

A(a1) I B (b1) if condition X fulfilled (b1)
A(al B (b1 A(al) B (b1)
@) [Bon " | |
message M1 message M1
BN |
|
repeat until x messages sent (b1) v
B (b1) | cen BN | [ cen B (b1) [ cen
message M2 message M2 message M2

Fig. 2. Relationships between interactions

Interactions can be inter-related using the constructs depicted in Figure 2.
The relationship on the left-hand side is called “precedes” and is depicted by a
directed edge: the source interaction can only occur after the target interaction
has occurred. That is, after the receipt of a message “M1” by “B”, “B” is able to
send a message “M2” to “C”. The rectangle surrounding these two interactions
denotes a composite interaction, which can be related with other interactions
with any type of relationship. The sub-interactions of a composite interaction
may, but need not be related. If there is no relationship between them, they can
occur in any order or in parallel.

The relationship at the center of the figure is called “inhibits”, depicted by a
crossed directed edge. It denotes that after the source interaction has occurred,
the target interaction can no longer occur. That is, after “B” has received a
message “M1” from “A”, it may not send a message “M2” to “C”. The latter
interaction can be repeated until “x” messages have been sent, which is indicated
by the header on top of the interaction. The actor executing the repetition
instruction is noted in brackets. Additional to the “Until” construct, Let’s Dance
provides two more constructs to denote the repetition of an interaction, namely
“For each” and “While”.

Finally, the relationship on the right-hand side of the figure, called “weak-
precedes”, denotes that “B” is not able to send a message “M2” until “A” has
sent a message “M1” or until this interaction has been inhibited. That is, the
target interaction can only occur after the source interaction has reached a final
status, which may be “completed” or “skipped” (i.e. “inhibited”). In the exam-
ple, the upper interaction has a guard assigned, which is denoted by the header
on top of the interaction. Guards allow for the definition under which condi-
tion a given interaction can be executed and can be assigned to any interaction,
whereby the actor evaluating a guard has to be named explicitly.



All these constructs will be exemplified in the following section, where we
evaluate the suitability of Let’s Dance with respect to the interaction patterns

of [2].

4 Interaction Patterns in Let’s Dance

The service interaction patterns introduced in [2] have been put forward as an
instrument for benchmarking languages for service behavior modeling. In [2], so-
lutions to the patterns in BPEL are sketched (the full solutions can be found in
www.serviceinteraction.com). These patterns are divided in four categories:
single-transmission bilateral interaction patterns, single-transmission multilat-
eral interaction patterns, multi-transmission interaction patterns and routing
patterns.

We have assessed the suitability of Let’s Dance by modeling sample scenarios
corresponding to all 13 patterns. This section only considers representative pat-
terns of each of the four categories. A discussion on how Let’s Dance addresses
the remaining patterns is given in appendix. Using the nomenclature and num-
bering of [2] we have chosen the following patterns: Send/Receive (pattern 3),
Racing incoming messages (pattern 4), One-to-many send/receive (pattern 7),
Multi-responses (pattern 8) and Relayed Request (pattern 12). For each of the
patterns, its description and a model corresponding to one of the sample scenar-
ios given in [2] are provided. Each scenario is then modeled in Let’s Dance and
the resulting models are informally discussed.

Send/Receive. The Send/Receive pattern is described as follows [2]: “A party
X engages in two causally related interactions: in the first interaction X sends a
message to another party Y (the request), while in the second one X receives a
message from Y (the response).” The example for this pattern depicted in Fig-
ure 3 shows a payment service sending a payment to a retail service provider. The
retail service provider sends a response indicating whether the payment details
are valid or not. The interaction at the top shows the sending of the payment
details by an actor playing the role “payment service” to an actor playing the
role “retail service”. These actors are referred to as “pl” and “s1” respectively.
This interaction requires an acknowledgment (this is a design choice). The inter-
action at the bottom depicts the sending of the response. Again, this interaction
requires acknowledgment. Both interactions are related via a precedes relation-
ship, meaning that the lower interaction can only start if the upper interaction
has been completed. In this case, the upper interaction is completed if the pay-
ment service has received the acknowledgment from the retail service. The local
model for the actors participating in a given choreography would include every
interaction where the party in question is participating. Thus, in the depicted
example the local models for the participating parties “payment service” and
“retail service” would be equivalent to the global model. Subsequently, we only
show global models.
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Fig. 3. Send/Receive (Pattern 3)

Racing incoming messages. In Figure 4 an example for the racing incoming mes-
sages pattern is depicted. This pattern is defined as follows [2]: “A party expects
to receive one among a set of messages. These messages may be structurally
different (i.e. different types) and may come from different categories of part-
ners. The way a message is processed depends on its type and/or the category of
partner from which it comes.” The figure depicts the scenario of a manufactur-
ing process, which “involves remote subcontractors and uses a pull-strategy to
streamline its operations. Each step in the manufacturing process is undertaken
by a subcontractor. A subcontractor signals intention to execute a step when it
becomes available through a request. At the same time, progress is monitored by
a quality assurance service. The service randomly issues quality check requests
in addition to the pre-established quality checkpoints in the process. When a
quality check request arrives, it is processed in full before processing any new
quality check request or subcontractor intention. Similarly, when a subcontractor
intention arrives, it is processed in full before processing any other check request
or subcontractor intention. Thus, there are points in the process where quality
checks and subcontractor intentions compete.” Figure 4 describes this point in
the choreography. The two interactions at the top of the figure show the possible
receipt of two different types of messages by the manufacturer: “manufacturing
request” and “quality check request”. These interactions are connected via a
two-way inhibits relationship. In the figure an undirected crossed edge is used as
abbreviation for two directed crossed edges. This indicates, that after one of the
two messages has been received, the other one can no longer be received. With
skipping one of these elementary interactions, the following elementary interac-
tion will also be skipped, since the according prerequisite will never be fulfilled.
The “manufacturing request” interaction precedes a “manufacturing approval”
interaction while a “quality check request” interaction precedes a “quality check
response” interaction.

One-to-many send/receive. The one-to-many send/receive pattern goes as fol-
lows [2]: “A party sends a request to several other parties, which may all be
identical or logically related. Responses are expected within a given timeframe.
However, some responses may not arrive within the timeframe and some parties
may even not respond at all. The interaction may complete successfully or not
depending on the set of responses gathered.” The example for this pattern de-
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Fig. 4. Racing incoming messages (Pattern 4)

picted in Figure 5 shows a scenario, where “an insurance company outsources
some aspects of its claims validation to its external search brokers. Brokers are
typically small agencies and have variable demands. For efficiency, the insurance
company sends search requests to all the brokers, and accepts the first three
responses to undertake the search.” The depicted interaction shows the repe-
tition of the sending of the search requests by the insurance company to the
search brokers and the according responses. The actors playing the roles of the
insurance company and the search brokers are referred to as “i1” and “B1”. As
introduced in Section 3, “i1” is named actor reference. “B1” is denoting a set of
actor references, indicated by starting with a capital letter instead of a small let-
ter for a single actor reference. The rectangle surrounding the two interactions is
depicting a repeated composite interaction, whereby the repetition instruction
and an additional stop-condition for the number of concurrent executions are
noted in small rectangles on top of the composite interaction. Both, the repeti-
tion instruction and the stop-condition are executed and evaluated respectively
by the actor referred to as “i1” and playing the role “Insurance”. The repetition
instruction denotes, that the message has to be sent to all actors that are referred
to in the set of actor references “B1”. This set of actor references is bound by
the actor executing the repetition instruction. All iterations are executed con-
current, which is noted in brackets after the repetition instruction. The whole
repeated interaction is initializing a variable “responses”, which is indicated by
the content of the small rectangle below the repeated interaction. This variable
is increased by the lower interaction, showing the receipt of the responses from
the brokers. The value of this variable is part of the stop-condition, denoting the
iteration is stopped if this variable has the value 3. The usage of this variable
does not contradict the postulation of omitting variables, noted in the require-
ments section. This variable is necessary from a business point of view, since
even responses that have been gathered need not necessarily change the value,
e.g. if the response does not contain the requested information.

Multi-responses. The pattern multi-responses is defined in [2] as follows: “A
party X sends a request to another party Y. Subsequently, X receives any number
of responses from Y until no further responses are required. The trigger of no
further responses can arise from a temporal condition or message content, and
can arise from either X or Ys side. Responses are no longer expected from Y after
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Fig. 5. One-to-many send/receive (Pattern 7)

one or a combination of the following events: (i) X sends a notification to stop; (ii)
a relative or absolute deadline indicated by X; (iii) an interval of inactivity during
which X does not receive any response from Y; (iv) a message from Y indicating
to X that no further responses will follow. From this point on, no further messages
from Y will be accepted by X.” The example for this pattern depicted in Figure 6
shows a goods deliverer who is providing an urgent transportation service. “For
optimization of travel, it subscribes to a local traffic reporting service provides its
destination nodes (goods dispatch and customer locations) and obtains regular
feeds on traffic bottlenecks, until it indicates that no feeds are required.” The
top left interaction depicts the subscription of the traffic service by the goods
deliverer. After the completion of this interaction the two remaining interactions
of the choreography are enabled. The interaction on the right-hand side shows the
receipt of traffic information by the goods deliverer. This interaction is repeated
sequentially until the iteration of the interaction is interrupted, since the stop
condition will is always false. Accordingly, the stop-condition is evaluated by the
actor referred to as “t1” and playing the role “Traffic service”. The interruption
of the repetition occurs, if the third interaction is completed, which shows the
sending of an unsubscribe message from the goods deliverer to the traffic service.
This interaction is thus connected via a inhibits relationship with the repeated
interaction.

Relayed request. According to [2], the relayed request pattern is defined as fol-
lows: “Party A makes a request to party B which delegates the request to other
parties (P1, ..., Pn). Parties P1, ..., Pn then continue interactions with party A
while party B observes a view of the interactions including faults. The interact-
ing parties are aware of this ‘view’ (as part of the condition to interact).” The
example depicted for this pattern shows a government agency that outsources
supportive work for managing regulatory provisions. Clients send requests to
the government agency concerned by the regulation and the government agency
forwards the request to the service providers. The government agency selects the
service providers and the way they interact with the clients, e.g. key points of
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Fig. 6. Multi-responses (Pattern 8)

processing and key reports to be sent to the government agency. The above in-
teraction shows the sending of a request from a client to the government agency.
This interaction is connected via a precedes relationship with a repeated inter-
action, which is iterated concurrently for all service providers bound to a set
of actor references “S1”. The binding of this set of actor references, which is
part of the repetition instruction, is executed by an actor referred to as “gl”
and playing the role “Government”. The government agency is delegating the
request to each actor assigned to the set of actor references “S1” concurrently.
This instruction for the number of executions is noted in a small rectangle on
top of the repeated interaction. In this case there is no additional stop-condition
for the “For each”-repetition, since it would equal to the maximum number of
iterations expressed by the repetition instruction. During each iteration, the re-
maining two interactions are enabled after the service provider has received the
request. The interaction on the right-hand side shows the sending of a response
from the service provider to the client, while the interaction on the left side
depicts the sending of a report to the government agency.

The solutions to the interaction patterns presented above and those given
in appendix indicate that the Let’s Dance language can deal with most relevant
aspects necessary to model service choreographies. The following section presents
a meta-model and an informal semantics of the language. In separate work [9]
we have defined a formal semantics of the language by translation to w-calculus.
We do not present details of this formalization here for space reasons.

5 Meta-model and informal semantics

Figure 8 provides an abstract syntax of the Let’s Dance in the form of a meta-
model captured in the Object-Role Modeling (ORM) notation [12]. The basic
concept of the meta-model is that of a Communication Action, which is per-
formed by an Actor (not shown in the diagram) designated by exactly one Actor
Reference. An Actor Reference (or more specifically the actor it refers to) plays
at least one Role and one Role is played by at least one Actor Reference. Commu-
nication Actions have exactly one type, which can be either Message Sending or
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Fig. 7. Relayed Request (Pattern 12)

Message Receipt. These are the two basic communication primitives supported
in service oriented architectures. Naturally, the party that performs the mes-
sage sending is called the “sender” while the party that performs the message
receipt is the “receiver”. A Communication Action may require or may provide
an acknowledgment. A Message Sending marked as “requiring acknowledgment”
means that the sender expects to receive an ”acknowledge” message from the
receiver. In the case of a Message Receipt the receiver will send an “acknowl-
edge” message after receiving a message if the Message Receipt is marked as
“providing acknowledgment”.

Communication Actions can write Variables and can be combined to form
Interactions. Thereby a Message Sending action requiring acknowledgment (not
requiring acknowledgment) can only be combined with a Message Receipt action
providing acknowledgment (not providing acknowledgment).

An Interaction is a unit of information exchange and has exactly one type,
which can be either Elementary (one-to-one) Interaction or Composite Inter-
action. If an Interaction is composed of other Interactions, we talk about the
“sub-interactions” of a “super-interaction”. Composite Interactions are a super-
interaction of at least one Interaction and one Interaction can be the sub-
interaction of at most one Composite Interaction. An Elementary Interaction
involves two Communication Actions (one send and one receive) and corresponds
to the logical exchange of a message from one party to another, that is, a party
sends a message that the other party may receive. The sender can only perceive
that the message was received if the interaction requires acknowledgment.

An Interaction has exactly one “Type of Repeated Interaction”, which can
be either None, Sequential for each, Concurrent for each, While or Until. Thus,
the subtype Repeated Interaction has three specializations: For each, While and
Until. The first one can refer to a Iteration Expression, which can be Actor-based
(and thus consist of at least one Actor Reference) or Variable-based (and thus
consist of at least one Variable). Additionally the Iteration Expression can have
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at most one Set expression assigned, which allows for the elaboration of the
repetition instruction. Let’s Dance does not impose any particular expression
language for describing set expressions and conditions. Arguably, domain ana-
lysts would want to specify these in natural language and let developers refine
them into an executable expression language.

Every repeated interaction has exactly one (stop) condition assigned. If this
condition evaluates to true, it implies that the iteration must stop (in case of
“Until” and “For each”) or must continue (in case of “While”). A condition has
at most one Conditional expression assigned, which allows for the elaboration of
the repetition instruction. Moreover Conditions can also be assigned to each type
of Interaction, denoting a guard for the Interaction, whereby each Interaction
has at most one guard. The associated Conditional expression allows for the
elaboration of the guard instruction. A Condition is evaluated by at least one
Actor Reference and can consist of multiple Variables and Actor References.

Actor References are bound during the execution of at least one Commu-
nication Action and in a given scenario each Communication Action can alter
bindings executed earlier. This enables the passing of information where spe-
cific messages should be sent to, e.g. in a buyer-seller-shipper scenario, where
the buyer is binding the actor reference of the shipper in order to nominate
a transport service. If the nominated shipper is not available, the seller might
alter the binding of the actor reference and choose another transport service.
For Composite Interactions this leads to the possibility to change the recipient
of messages during the execution of an Interaction. During execution, the in-
formation about the binding has to be sent with every message following the
Interaction during which execution a specific Actor Reference has been bound,
until the Communication Action is reached, which is executed by the bound
Actor Reference.

Since a Condition is evaluated by at least one Actor Reference, it is possi-
ble to describe dependencies between Communication Actions and Interactions
occurring earlier. Thus Conditions have to be evaluated before executing the
respective Communication Action. For a condition evaluated by an actor send-
ing a message, this means before initiating the send action and for a condition
evaluated by an actor receiving a message before the completion of the receipt
action (in other words before the consumption of the message), since in the lat-
ter case it may be necessary for the receiving party to be aware of the content
of the message in order to evaluate a stated Condition. For an Actor Reference
to be able to evaluate a Condition at all, the necessary information has to be
available. This can only be ensured, if the information needed for the evaluation
of a Condition is sent with every message following the Communication Action
which initialized a certain Variable or Actor Reference, until the information
reached the specified Communication Action and Interaction respectively that
has the Condition assigned.

Any two interactions may be related by a “precedes”, a “weak-precedes” or
an “inhibits” relation. These relationships are defined as follows: an interaction
X is said to precede another interaction Y, if Y can not occur before X has



been completed. If two interactions X and Y are connected with a weak-precedes
relationship, then Y can not occur after X has been completed or after X has been
skipped (i.e., seen from a global perspective, X will never occur). The inhibits
relationship is defined as follows: an interaction X is said to inhibit another
interaction Y, if Y can not occur any more after X has been completed. Moreover,
the inhibits relationship is able not only to prevent the target interaction to be
started, but also to interrupt it (and all of its sub-interactions), if it has already
been started. These Relationships apply solely during the current execution of
the least common super-interaction of the considered interactions. For example,
if A and B are sub-interactions of interaction C and they are related through a
precedes relationship, then during each execution of C, B can only occur after
A has been completed.

The subtype Timer of an Interaction allows one to enforce time limits on other
interactions. It is started by exactly one actor (reference). A Timer is defined as
a composition of two Elementary Interactions with a fixed party “Clock”. The
first Elementary Interaction is the arming of the Timer by sending a Message to
the Clock (and the Clock receiving the Message), while the second Elementary
Interaction is the sending of a Message from the Clock in order to indicate that
the specified time period has expired. The latter of these messages is only sent
if a condition is evaluated to true, which compares the elapsed time since the
arming of the Timer with the period specified in the first Message. Since a Timer
is a subtype of Interaction it can be related to other Interactions arbitrarily.

6 Conclusion and future research directions

In this paper, we have motivated the need for a service behavior modeling lan-
guage, spelled out a number of associated requirements, and proposed an initial
version of a language (Let’s Dance) that fulfills the most crucial of these require-
ments, namely abstraction, comprehensibility, and suitability. Unlike existing
service behavior description languages such as BPEL and WS-CDL, which focus
on supporting the implementation phase, the proposed language is not based on
imperative programming constructs such as variable assignment, if-then-else and
switch statements, sequence, and while loops. Also, the language supports the
description of both local and global views of service interactions (i.e. behavioral
interfaces and choreographies respectively).

The suitability of the language has been demonstrated on the basis of sce-
narios corresponding to 13 patterns of service interaction previously identified.
The paper also presented an abstract syntax of the language in the form of a
static meta-model, as well as an informal semantics. For a formal execution se-
mantics of Let’s Dance, defined in terms of a translation to w-calculus, we refer
to [9]. This work also discusses the issue of reachability analysis of Let’s Dance
choreographies (i.e. detecting interactions in a choreography that will never be
executed). A more in-depth discussion on desirable properties of Let’s Dance
choreographies is provided in [20]. In particular, this latter reference discusses
the issue of local enforceability of Let’s Dance choreographies, which is a pre-



requisite to generating local models from choreographies. It turns out that not
all choreographies defined as flows of interactions (the paradigm adopted in Let’s
Dance) can be mapped into local models that satisfy the following conditions:
(i) the local models contain only interactions described in the choreography; and
(ii) they collectively enforce all the constraints in the choreography. Proposals
around WS-CDL skirt this issue. Instead, they assume the existence of a state
(i.e. a set of variables) shared by all participants. Participants synchronize with
one another to maintain the shared state up-to-date. Thus, certain interactions
take place between services for the sole purpose of synchronizing their local view
on the shared state and these interactions are not defined in the choreography.
In the worst case, this leads to situations where a business analyst signs off on a
choreography, and later it turns out that to execute this choreography a service
provided by one organization must interact with a service provided by a com-
petitor, unknowingly of the analyst. Thus, it is desirable to provide tool support
to analyze choreographies to determine whether or not they are enforceable by
some set of local models.

In [8], we present a tool that implements algorithms for static analysis of
Let’s Dance choreographies (including reachability and enforceability analysis)
and for generation of local models. Ongoing work is concentrating on defining a
translation from Let’s Dance local models into BPEL code.
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A Mapping of Patterns

In the following the 13 interaction patterns from [2] are modeled with the pro-
posed language. For each of the patterns the examples given in [2] are included.
Each example is modeled with the proposed language and an explanation of the
respective figure in natural language is given.



A.1 Single-transmission bilateral interaction patterns
Pattern 1: Send

— Description: A party sends a message to another party.
— Example: An alerting service sends a reminder of an anniversary to a regis-
tered user.

send without acknowledge

reminderof N N reminder of reminder of reminder of
anniversary anniversary anniversary anniversary
send with acknowledge

reminder of reminder of reminder of reminder of
anniversary anniversary anniversary anniversary

Fig. 9. Pattern 1: Send

— Diagram (Fig. 9): The depicted diagram shows the two different types of
sending a message. The above part of the figure shows the sending with-
out acknowledgement. On the left-hand side the connected communication
actions are depicted, while on the right-hand side the juxtaposition of the
symbols forming an elementary interaction is depicted. The lower part of the
figure shows the constructs for the sending of a message with acknowledge.
Thereby the acknowledgement message is not depicted. The abbreviation
depicted asides is a rectangle, which has two arrows in the middle.

Pattern 2: Receive

— Description: A party receives a message from another party.

— Example: A purchasing service receives a notification of delivery delay from
a shipping service.

— Diagram (Fig. 10): Compared with the figure for sending a message, the
receipt of a message is just a mirror-inverted depiction of the modeling con-
structs.

Pattern 3: Send/receive

— Description: A party X engages in two causally related interactions: in the
first interaction X sends a message to another party Y (the request), while
in the second one X receives a message from Y (the response).

— Example: A payment service sends a payment to a retail service provider
who either sends back a message indicating that the payment details are
invalid, or a receipt.



receive without acknowledge

notificationof -~ notification of notification of notification of
delivery delay delivery delay delivery delay delivery delay
receive with acknowledge

ification of notification of notification of notification of
delivery delay delivery delay delivery dela; delivery delay

Fig. 10. Pattern 2: Receive

Retail
service (r1)

Payment
service (p1)

payment

Retail
service (r1)

Payment
service (p1)
response
(valid/invalid

Fig. 11. Pattern 3: Send/receive

— Diagram (Fig. 11): Both messages, the sending of the payment as well as

the response message, which content is determining weather the payment
details were valid or not, are sent with acknowledgement. This is indicated
by the respective symbols. For denoting that a communication action is
executed by a specific role, the name of this role is noted starting with a
capital letter inside a small rectangle at the top of the respective symbol
for the communication action. The actor reference playing this role is noted
in brackets after the nomination of the role. In the depicted example “pl”
is playing the role of a “Payment service” and “r1” is playing the role of a
“Retail service”. The directed edge between the two interactions symbolizes
the precedes relationship between them, since the payment service has to
receive the message in order to decide weather the payment details are valid
or not.

A.2 Single-transmission multilateral interaction patterns

Pattern 4: Racing incoming messages

— Description: A party expects to receive one among a set of messages. These

messages may be structurally different (i.e. different types) and may come
from different categories of partners. The way a message is processed depends
on its type and/or the category of partner from which it comes.



— Example 1: A manufacturing process involves remote subcontractors and
uses a pull-strategy to streamline its operations. Each step in the manu-
facturing process is undertaken by a subcontractor. A subcontractor signals
intention to execute a step when it becomes available through a request. At
the same time, progress is monitored by a quality assurance service. The ser-
vice randomly issues quality check requests in addition to the pre-established
quality checkpoints in the process. When a quality check request arrives, it
is processed in full before processing any new quality check request or sub-
contractor intention. Similarly, when a subcontractor intention arrives, it is
processed in full before processing any other check request or subcontractor
intention. Thus, there are points in the process where quality checks and
subcontractor intentions compete.

Quality

Manufacturer
assurance (q1)

(m1)
manufacturing

Subcontractor Manufacturer
(s1) (m1)
quality check

request

request

Manufacturer Subcontractor
(m1) (s1)
manufacturing
approval

Manufacturer
(m1)
quality check
response

Quality
assurance (q1)

Fig. 12. Pattern 4: Racing incoming messages - Example 1

Diagram 1 (Fig. 12): The above two interactions show the receipt of two
different types of messages by the manufacturer: “manufacturing request”
and “quality check request”. These interactions are connected via a two-
way inhibits relationship. In the figure an undirected crossed edge is used as
abbreviation for two directed crossed edges. This indicates, that after one of
the two messages has been received, the other one can no longer be received.
With skipping one of these elementary interactions, the following elementary
interaction will also be skipped, since the according prerequisite will never be
fulfilled. The “manufacturing request” interaction precedes a “manufacturing
approval” interaction while a “quality check request” interaction precedes a
“quality check response” interaction.

Example 2: The escalation service of an insurance company’s call center
may receive storm alerts from a weather monitoring service (which typically
herald surges in demand), notifications of long waiting times from the queue
management service, or notifications of low resourcing levels from the call
center’s HR manager. The receipt of any of these three types of messages by
the escalation service triggers an escalation process (different processes apply
to the various types of notifications). While an escalation process is running,
subsequent storm alerts, queue saturation or low resourcing notifications are
made available to the call center manager but will not trigger new escalations.
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Fig. 13. Pattern 4: Racing incoming messages - Example 2

— Diagram 2 (Fig. 13): The whole choreography for racing incoming messages
consists of two composite interactions. The composite interaction depicted
above shows the three types of possible incoming messages which are all re-
ceived by an actor referred to as “el” and playing the role of the escalation
service. The messages are received from actors playing the role “Weather ser-
vice” (“storm alert”), “Queue service” (“notification of long waiting times”)
and “HR manager” (“notification of low resourcing levels”). Each of these
interactions is connected via a precedes relationship with the messages for
triggering the corresponding escalation processes. Moreover each of them is
connected via a inhibits relationship with the remaining two of these three
interactions, denoting that after the receipt of one of the messages the other
messages can not be received anymore. This can either be indicated by a
crossed directed edge or, like it is depicted in the example, by using the ab-
breviation for reciprocally connected interactions. The composite interaction
is connected with a precedes relationship with another composite interaction,
which can be repeated until no further messages arrive. This is denoted by
the content of the small rectangle at the top of the rectangle, containing
the interaction to be repeated. The stop-condition is evaluated by the actor



referred to as “el” and playing the role of the escalation service. At top of
this interaction the constellation for the three possible incoming messages
is depicted like in the above composite interaction. Each of the three inter-
actions is connected with an interaction that denotes the forwarding of the
received message to the HR manager.

Pattern 5: One-to-many send

— Description: A party sends messages to several parties. The messages all
have the same type (although their contents may be different).

— Example 1: A purchasing service sends a call for tender to all known trading
parties that provide a given type of product or service.

for each element in T1 (concurrent) (p1)

Purchasing Trading party
service (p1) (T

call for tender

Fig. 14. Pattern 5: One-to-many send - Example 1

— Diagram 1 (Fig. 14): The diagram shows a composite interaction that con-
sists of one elementary interaction being repeated for a set of trading partners
“T1”, which is denoted by the content of the small rectangle on top of the
repeated interaction. Therefore the actor referred to as “pl” and playing the
role “Purchasing service” has to execute the repetition instruction and there-
with to bind the set of actor references “T'1”. The according stop-condition
is false and is thus omitted in the depicted example. The fact of “T1” being a
set of actor references and not a single actor reference is indicated by noting
the name with a starting capital letter. The purchasing service is sending a
call for tender to these trading partners. The communication action consti-
tuting the actual receipt of the tender is executed by the actors bound to
the set of actor references “T1”.

— Example 2: An accreditation authority sends a notification to all registered
candidates who have passed a certification test. Each of these notifications
contains information that is specific to the recipient (e.g. test results).

— Diagram 2 (Fig. 15): Like in the first example for this pattern, there is
one composite interaction repeating an elementary interaction. Here, the
repeated interaction denotes the message sending to a set of candidates,
which is referred to as “C1”. The repetition is executed concurrent for this
set of candidates, whereby this set of actor references has to be bound by
the actor referred to as “al” and playing the role “Accreditation”.

Pattern 6: One-from-many receive



for each element C1 (concurrent) (a1)

Accreditation Candidates
(a1) (C1)
test result

Fig. 15. Pattern 5: One-to-many send - Example 2

— Description: A party receives a number of logically related messages that
arise from autonomous events occurring at different parties. The arrival of
messages needs to be timely enough for their correlation as a single logical
request. The interaction may complete successfully or not depending on the
set of messages gathered.

— Example 1: Multi-part order. A printer operating in a high-demand market
allows a streamlining of job preparation whereby documents belonging to
the same job can be supplied directly by different parties (as with legislative
documents by governments requiring quick turnaround). The first notifica-
tion carries the job requirements including the delivery time and location.
This and subsequent messages provide document content. Several interac-
tions take place between the printer and the primary partner to mark-off
the production steps, e.g. typesetting preview and payment. The printer’s
policy has a deadline for collection of all source documents in order to meet
production deadlines. If the sources are not available by this deadline, the
interaction fails, otherwise it succeeds.

repeat until document complete (u1) ‘

Printer (p1) Users (u1) Printer (p1)
document 41/ \

content \\ /‘

Fig. 16. Pattern 6: One-from-many receive - Example 1

— Diagram 1 (Fig. 16): The receipt of multiple messages that contain document
content is depicted as a repeated interaction, which is iterated until the
document is complete. The stop-condition for the concurrent iteration is
evaluated by the actor referred to as “ul” and playing the role “User”.
The different parts of the document have to be gathered within a certain
timeframe, which is defined by the printer starting a timer. The repeated
interaction and the timer are connected with a two-way inhibits relationship.
Thus, in case of the timer expiring before all document parts can be gathered,
the repeated interaction is interrupted. In case of all document parts being



gathered before the timer expires, the repeated interaction is completed and
the timer is interrupted.

— Example 2: Batched requests. A group buying service receives requests for
buying different types of items. When a request for buying a given type of
product is received, and if there are no other pending requests for this type
of item, the service waits for other requests for the same type of item. If at
least three requests have been received within five days, a “group request”
is created and an order handling process is started. If on the other hand
less than three requests are received within the five days timeframe, the re-
quests are discarded and a fault notification is sent back to the corresponding
requestors.

repeat until number of requests = 3 (s1) ‘

Seller (s1) ‘ Buyer (b1)

Seller (s1)
/
request )
./

number of requests ‘

Seller (s1) ‘ Buyer (b1) Seller (s1) Buyer (b1)

fault

group request notification

Fig. 17. Pattern 6: One-from-many receive - Example 2

— Diagram 2 (Fig. 17): In the figure the above composite interaction depicts
the incoming requests for buying a given product. Each incoming request in-
creases the variable “number of request”, which is initialized by starting the
composite interaction and and tested within the condition of the compos-
ite interaction, i.e. before each receipt of a request. The timer with the five
days deadline is started by the actor referred to as “s1” and playing the role
“Seller”. The same actor is evaluating the stop-condition for the repetition.
If three requests are received within five days, the below interaction on the
left side is enabled and the timer is interrupted. The enabled interaction is
depicting the sending of the group request and is disabling the interaction
for sending a failure notification. If the timer expires before three requests
have been received, the repeated interaction for receiving requests is inter-
rupted and the interaction for sending a failure notification is enabled. For
connecting the repeated interaction and the timer and the two interactions
at the bottom respectively, a two-way inhibits relationship is used.

— Example 3: Event filtering prior to persistence. Investment consultants sub-
scribe to a stock market watch service which broadcasts significant trading
events. This allows the consultants to provide timely recommendations to
their customers for changes in share portfolios. Events are correlated into



composite events per fund manager. Because investment consultants are typ-
ically small enterprises (or smaller units of large enterprises), they cannot
afford large databases in order to persist the high-volumes of incoming events
prior to correlation. Rather they apply correlation rules as the events become
available. If the individual events successfully correlate within the relevant
timeframe into a significant composite event, an escalation is triggered. Oth-
erwise the events are ignored.

repeat until number of events = X (c1) ‘
Consultant Watch Consultant

(c1) service (w1) (c1)
individual
event / I_\\“
N

l number of events ‘

|

’ Customer

(s1)

Consultant
(c1)

escalation

Fig. 18. Pattern 6: One-from-many receive - Example 3

— Diagram 3 (Fig. 18): The only difference in this example compared to the
second example of this pattern is the missing of an interaction that is exe-
cuted in case of the timer expiring before the composite interaction can be
completed. Thus, the timer can be connected via a inhibits relationship with
the elementary interaction below, showing the sending of a group event after
“X” individual events have been received.

Pattern 7: One-to-many send/receive

— Description: A party sends a request to several other parties, which may
all be identical or logically related. Responses are expected within a given
timeframe. However, some responses may not arrive within the timeframe
and some parties may even not respond at all. The interaction may complete
successfully or not depending on the set of responses gathered.

— Example 1: RosettaNet Partner Interface Process (PIP) 3A3 “Request Price
and Availability” (http://www.rosettanet.org/PIP3A2). In this process, a
buyer identifies a number of potential suppliers and sends a request for “price
and availability” to each of them. Responses from all of these suppliers are
then gathered and analysed. The number of potential suppliers is not known
at design time.

— Diagram 1 (Fig. 19): The whole choreography consists of a repeated interac-
tion, that is repeated for each element in a set of actor references “S1”. The
repetition instruction is executed by the actor referred to as “b1” and play-
ing the role “Buyer”. The stop-condition is omitted in the depicted example,



for each element in S1 (concurrent) (b1) ‘

Buyer (1) | | seller (s1)
request for
price and
availability
Buyer (b1) [ Seller (1)
response

Fig. 19. Pattern 7: One-to-many send/receive - Example 1

because the request should be sent to all elements in “S1”. The repeated
interaction has two elementary sub-interactions that are connected with a
precedes relationship. The Interaction noted above shows the sending of a
request for price and availability to a set of suppliers. The lower interaction
depicts the receipt of the responses by the buyer.

— Example 2: An insurance company outsources some aspects of its claims
validation to its external search brokers. Brokers are typically small agen-
cies and have variable demands. For efficiency, the insurance company sends
search requests to all the brokers, and accepts the first three responses to
undertake the search.

for each element in B1 (concurrent) (i1)

stop if number of responses = 3 (i1)

Insurance ‘ Broker (B1)

request

|

Insurance ’
(i)

response

Broker (B1)

number of responses

number of responses ‘

Fig. 20. Pattern 7: One-to-many send /receive - Example 2

— Diagram 2 (Fig. 20): The depicted interaction shows the repetition of the
sending of the search requests by the insurance company to the search bro-
kers and the according responses. The actors playing the roles of the insur-
ance company and the search brokers are referred to as “i1” and “B1”. The
rectangle surrounding the interaction is depicting the repetition of the inter-
action, whereby the repetition instruction and the condition for the number



of concurrent executions are noted in small rectangles on top of the repeated
interaction. Both, the repetition instruction and the stop-condition are exe-
cuted and evaluated respectively by the actor referred to as “i1” and playing
the role “Insurance”. The repetition instruction denotes, that the message
has to be sent to all actors that are part of the set of actor references “B1”.
This set of actor references is bound by the actor executing the repetition in-
struction. All iterations are executed concurrent, which is noted in brackets
after the repetition instruction. The whole repeated interaction is initializ-
ing a variable “responses”, which is indicated by the content of the small
rectangle below the repeated interaction. This variable is increased by the
lower interaction, showing the receipt of the responses from the brokers. The
value of this variable is part of the stop-condition, denoting the iteration is
stopped if this variable has the value 3.

A.3 Multi-transmission interaction patterns
Pattern 8: Multi-responses

— Description: A party X sends a request to another party Y. Subsequently,
X receives any number of responses from Y until no further responses are
required. The trigger of no further responses can arise from a temporal con-
dition or message content, and can arise from either X or Y’s side. Responses
are no longer expected from Y after one or a combination of the following
events: (i) X sends a notification to stop; (ii) a relative or absolute deadline
indicated by X; (iii) an interval of inactivity during which X does not receive
any response from Y; (iv) a message from Y indicating to X that no further
responses will follow. From this point on, no further messages from Y will
be accepted by X.

— Example 1: Order forecasting. As part of order forecasting, a buyer sends
a request to a seller providing point-of-sale data, events impacting on order
forecast, e.g. new products, stores opening/close, inventory strategy data
and current inventory position (on hand, in transit, on order). The seller
provides response data as various investigations make that data available.
The investigations relate to subcontractors in manufacturing and delivery,
market studies (historical demand data), and logistical delivery data (capac-
ity related, lead times, delivery operations schedules).

— Diagram 1 (Fig. 21): The upper interaction on the left-hand side shows the
sending of a request from the buyer to a seller referred to as “s1”. This inter-
action is connected via a precedes relationship with a repeated interaction,
that shows the sending of the request for data to a set of subcontractors
by the seller and the subsequent gathering of necessary data for perform-
ing the forecast. Therefore the set of actor references “C1”, which refers to
the subcontractors, has to be bound while executing the repetition instruc-
tion. This is performed by the actor referred to as “s1” and playing the role
“Seller”. The same actor is evaluating the stop-condition, which is stated in
the second rectangle on top of the repeated interaction. If the stop-condition



for each element in C1 (concurrent) (s1) ‘

stop if data complete (s1) l

Buyer (b1) Seller (s1) Seller (s1) Subcontractor (C1)
request request for
(including data) > data

Buyer (b1) Seller (s1) Seller (s1) Subcontractor (C1)
response =
(forecast) data

Fig. 21. Pattern 8: Multi-responses - Example 1

has been fulfilled, the seller is sending the final response to the buyer that
initiated the process.

— Example 2: News refresh. A goods deliverer provides an urgent transporta-
tion service on behalf of suppliers to customers in a city. For optimization
of travel, it subscribes to a local traffic reporting service provides its desti-
nation nodes (goods dispatch and customer locations) and obtains regular
feeds on traffic bottlenecks, until it indicates that no feeds are required.

repeat until FALSE (t1)

Goods Traffic
deliverer (g1) service (t1)

Goods
deliverer (g1)
traffic
information

Traffic
service (t1)

subscribe

Goods Traffic
deliverer (1) service (t1) ‘

unsubscribe ‘

Fig. 22. Pattern 8: Multi-responses - Example 2

— Diagram 2 (Fig. 22): The interaction on top of the left-hand side shows the
subscription of the traffic service by the goods deliverer and is connected via a
precedes relationship with the lower elementary interaction. This interaction
depicts the unsubscription of the traffic service and is connected with a
inhibits relationship with the repeated interaction, which is denoting the
receipt of traffic information by the good deliverer. If the goods deliverer is
sending a “unsubscribe” message and this message has been received by the
traffic service, the repeated interaction is interrupted and the choreography
is completed.

Pattern 9: Contingent requests



— Description: A party X makes a request to another party Y. If X does not
receive a response within a certain timeframe, X alternatively sends a request
to another party Z, and so on.

— Example 1: An online service supports document submissions to academic
conferences, tenders and grant/funding schemes. Applicants span different
geographic boundaries for the different applications. Large bottlenecks are
experienced near deadlines of especially high-volume applications. Propos-
als can be directly uploaded wherein further interactions are required to
entry and validation of proposal details. Alternatively, different servers are
available in different geographic localities for queue/forward of proposals to
the central repository. The validation steps of proposals take place once the
proposal has been forwarded (a notification is sent to the applicant to trig-
ger this). In first instance, the system attempts to submit the proposal for
direct upload to the central repository, but if this service is unavailable or
overloaded, it will try the “nearest” queuing service, and so on with other
queuing services.

Applicant
(a1)
upload

Server (s1)

Applicant
(a1)

notification
Queuin,
Server (s1) l service (81) ‘ Server (s1) ‘

forward ‘,/ L )
N

Server (s1) for each element in Q1 (sequential) (s1) |

Queuing
Server (s1) service (Q1)
acknowledge
forward

Fig. 23. Pattern 9: Contingent requests - Example 1

— Diagram 1 (Fig. 23): The elementary interaction on top shows the upload
of the document to the server by the applicant. This interaction enables a
repeated interaction and the notification of the applicant, indicating that the
document was validated. The repeated interaction denotes the sending of the
document to a set of queuing services (including the central repository) and
the receipt of an acknowledgement. The set of queuing services “Q1” is bound
as part of the repetition instruction, whereby the according stop-condition is
omitted. The repetition instruction is executed by an actor referred to as “s1”
and playing the role “Server”. Each iteration of the composite interaction
starts with the forward of the proposal and the start of the timer by the
server, indicating how long the server will wait for the acknowledgement



that the document has been forwarded. If the acknowledgement has been
received within the specified timeframe, the timer is interrupted as well as
the whole repeated interaction. Otherwise the timer interrupts the waiting
for acknowledgement and the forwarding is repeated.

— Example 2: A travel agency allows contingent reservations of flights in partic-
ular situations - urgent requests and busy flight paths. Customers nominate
the preference of flight carriers. In order of preference, reservations are sought
in short-timeframes. If a reservation is secured, the interaction ends.

for each elementin F1 (sequential) (a1) ‘

Agency (a1) Flight Carrier (F1) ‘ Agency (a1) ‘

reservation — )
N

Agency (al) ‘ Flight Carrier (F1)

reservation

secured

Fig. 24. Pattern 9: Contingent requests - Example 2

— Diagram 2 (Fig. 24): The depicted example is similar to the previous one.
The main difference is the missing crossing of the repeated interaction. The
repeated interaction of the diagram shows the reservation requests that are
sent to each one of the nominated set of flight carriers. After the timer has
expired, one iteration is finished and the request is sent to the next flight
carrier. Each of the reservations sent is a prerequisite for a reservation to be
secured and thus the interaction for sending a reservation is connected with
a precedes relationship with the interaction for receiving a notification that a
reservation has been secured. If this interaction is completed, the repetition
is interrupted and the choreography ended.

Pattern 10: Atomic multicast notification

— Description: A party sends notifications to several parties such that a certain
number of parties are required to accept the notification within a certain
timeframe. For example, all parties or just one party are required to accept
the notification. In general, the constraint for successful notification applies
over a range between a minimum and maximum number.

— Example 1: Classical atomicity. A business venture service supports the
process of business license applications for various small business endeav-
ors (e.g. opening a restaurant). After the steps of obtaining and verifying
application details, relevant agencies involved in the approval or registration
of the application are notified. All of them must receive notification as there
are inter-dependent aspects of the application leading to crossconsultation.



There may also be competing applications for the same business (down to
the same location). Therefore, all agencies should receive the notification in
a timely fashion. In this example, the minimum and maximum equal the
number of all agencies notified.

for each element in P1 (concurrent) (a1)

Agency Applicant
(a1) (P1)
notification
Agency
@1)
gn
Agency Applicant o //
(a1) (P1)
nofification
received

Applicants notified

Applicants notified

Fig. 25. Pattern 10: Atomic multicast notification - Example 1

— Diagram 1 (Fig. 25): The depicted example consists of a timer and a re-
peated composite interaction. The repeated interaction is initializing a vari-
able “Applicants notified” and consists of two elementary interactions that
are connected with a precedes relationship. The upper elementary interac-
tion depicts the sending of the notifications to a set of applicants. Therefore
the actor referred to as “al” and playing the role “Agency” has to bind
the set of actor references “P1”, because this actor is the one executing
the repetition instruction. The lower interaction shows the receipt of the
acknowledgement and increases the variable “Applicants notified”. In this
example the variable is not used, since the number of applicants that have
to be notified equals to all elements of “P1”. If this number would differ,
the variable would be used in a stop-condition that had to be added. If the
timer expires before all acknowledgements have been gathered, the timer
interrupts the repeated composite interaction. If all acknowledgements are
gathered within the specified timeframe, the timer is interrupted.

— Example 2: Competing through atomicity. A legal firm has automated its
property conveyance process for various loan types. The process utilizes a
number of search brokers who have the same level of service agreements
with the firm (service level agreements, e.g. cots model and timeliness of
response obligations). Each of the brokers competes for conveyance applica-
tions. Therefore, only one of the notified brokers is selected, namely the first
to accept the request. The minimum and maximum both are one.

— Diagram 2 (Fig. 26): In this example the repeated composite interaction can
not be interrupted by a timer. Thus, the initiating party will wait until the
first accept request arrives, no matter how long this takes. The sending of
the request to all elements of a set of search brokers “S1” is executed by a



for each element in S1 (concurrent) (1) ‘

(1) broker (S1)
request

Legal firm ’ Search
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) broker (S1)
|"accept
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Fig. 26. Pattern 10: Atomic multicast notification - Example 2

actor referred to as “11” and playing the role “Legal firm”. As soon as the
first accept has been received, the repeated interaction is inhibited and the
choreography is ended.

Example 3: Nesting. A travel agent allows the booking of both international
and domestic travel requirements as part of comprehensive travel packag-
ing. Customers nominate their preferred flight carriers as well as domestic
requirements such as hotel accommodation, local travel bookings/hire and
reservations to key attractions. In this example, each node in the interna-
tional flight path can be seen as atomic group, and within a group, the flight
carrier, booking agencies for local hotels, travel, care hire and so on, iden-
tify the services contacted. The different groups can have different minimum
and maximum constraints depending on the domestic requirements of the
customer. However, all atomic groups need to succeed in order for the inter-
action as a whole to succeed. (It should be noted that an extension of this
example could see further levels of nesting within the atomic groups).

for each node in flight path (sequential) (c1) ‘

for each requirement (sequential) (c1) ‘

for each element (sequential) (c1) ‘
Customer (c1) ‘ Agency (a1) ‘ Customer (c1) ‘
requirement \\
Customer (c1) ‘ Agency (a1)
confirmation

Fig. 27. Pattern 10: Atomic multicast notification - Example 3



— Diagram 3 (Fig. 27): The whole choreography consists of three nested re-
peated interaction, whereby the inner repeated interaction consists of two
elementary sub-interactions that are connected with a precedes relationship.
The outer interaction denotes the repetition for each node in the flight path,
executed by an actor referred to as “c1” and playing the role customer. For
each node, the repetition of the middle repeated interaction is started, which
denotes the different requirements like accommodation, local travel booking
or car. Finally, for each of these requirements, the inner repetition iterates
over the preferred providers of these requirements. For each of the possible
providers, the customer sends a message to the agency and starts a timer.
If the timer expires before a confirmation is received, the timer inhibits the
confirmation and the customer is able to send a new message to the agency.
As soon as the customer receives the first confirmation of a possible provider,
the timer and the inner repeated interaction are interrupted and the next
requirement is considered.

A.4 Routing patterns
Pattern 11: Request with referral

— Description: Party A sends a request to party B indicating that any follow-up
response should be sent to a number of other parties (P1, P2, , Pn) depending
on the evaluation of certain conditions. While faults are sent by default to
these parties, they could alternatively be sent to another nominated party
(which may be party A).

— Example 1: Referral to single party: As part of a purchase order processing,
a supplier sends a shipment request to a transport service. Subsequently, the
transport service reports shipment status (e.g. as per RosettaNet’s PIP 3B1)
directly to the customer who then correlates these with its initial purchase
order.

Supplier (s1) ‘

shipment
request

‘ Transport (t1)

Transport (t1) ‘

shipment
status

‘ Customer (c1)

bind (c1)

Fig. 28. Pattern 11: Request with referral - Example 1

Diagram 1 (Fig. 28): The interaction depicted on the left side of the figure
shows the sending of a shipment request from a supplier to a transport ser-
vice. The actor referred to as “s1” and playing the role “Supplier” is binding
the actor reference “cl”, indicated by the content of the small rectangle at
the bottom of the respective communication action. This interaction is con-
nected with a precedes relationship with the interaction on the right-hand
side, depicting the communication between the transport service and the
customer. For indicating, that the bound actor reference should execute the



communication action for receiving the shipment status, the actor reference
is defined as playing the role “Customer” during this communication action.
Since the supplier bound this actor reference, the supplier is able to define
where the shipment status should be sent to.

— Example 2: Referral to multiple parties: After processing its inventory re-
stocking for a week, a supermarket’s warehouse contacts a supplier for order
and dispatch of goods, notifying it of the different transport services avail-
able (different services specialize in transport of different sorts of goods). The
supplier directly interacts with these transport services regarding the sched-
uled dispatch times (arranged by the supermarket). Faults related to order
fulfillment are sent by the supplier to the warehouse, while faults related to
delivery are sent by the corresponding transport services to the warehouse.

Warehouse ‘ Supplier (s1)
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Fig. 29. Pattern 11: Request with referral - Example 2

— Diagram 2 (Fig. 29): The above elementary interaction shows the sending
of the information about available transport services from the warehouse
to the supplier. The actor referred to as “w*” and playing the role “Ware-
house” is binding a set of actor references “T1”, for which elements the
enabled composite interaction noted below is repeated. In this composite
interaction “T'1” is playing the role “Transport”. The supplier is sending the
dispatch times to each of the transport services that have been noted by
the warehouse. Additionally the supplier is starting a timer. The sending of
the dispatch times enables the receipt of a confirmation of the order fulfil-
ment by the supplier. If this confirmation is not received within a certain
timeframe, this interaction is interrupted and the interaction, which informs



the warehouse about an order fulfilment fault, is enabled. In case of the
confirmation message being received within a given timeframe, the timer is
interrupted and the two elementary interactions at the bottom of the com-
posite interaction are enabled. These two messages show the two possibilities
that can happen after a transport service has confirmed the dispatch time:
if the delivery can be executed without any problems, the transport service
is sending an confirmation to the warehouse, otherwise the message about a
delivery fault is sent. Thus, the two interactions are connected via a two-way
inhibits relationship.

Pattern 12: Relayed request

— Description: Party A makes a request to party B which delegates the request
to other parties (P1, , Pn). Parties P1, , Pn then continue interactions with
party A while party B observes a “view” of the interactions including faults.
The interacting parties are aware of this “view” (as part of the condition to
interact).

— Example: Some supportive work of managing regulatory provisions out-
sourced by government agencies to external agencies fits this pattern. Party
A is a client seeking some outcome pending regulation, e.g. obtaining par-
ticular land tenure. Party B is the government authority concerned with the
regulation. e.g. lands department. Parties P1, , Pn are outsourced service
providers from the government authority’s regulation process, e.g. brokers
who validate applications and external land management experts who can
provide independent audit of applications. The government authority stip-
ulates that interactions between the client and outsourced service providers
associated with key points of processing, such as the start and end of activ-
ities, and key reports, be sent to it.

Government

Client (c1) @1

request

for each element in S1 (concurrent) (g1) \L

Government Service
(g1 rovider (S1

delegate
request
Government Service Service
(@) ‘/ | roviter &1, | Clent (1) / provider (S1)
report \ response \

Fig. 30. Pattern 12: Relayed request - Example 1



— Diagram (Fig. 30): The above elementary interaction shows the sending of
a request from a client to an actor referred to as “gl” and playing the
role “Government”. This interaction enables the lower composite interaction,
depicting the delegation of the request to multiple service providers. These
service providers are nominated by the government agency and thus the
actor referred to as “gl” has to bind the set of actor references “S1”. This
is indicated by the content of the small rectangle on top of the repeated
interaction. After the delegation of the request has been completed, the two
remaining elementary interactions are enabled. They depict the sending of
the response to the client and the sending of a report to the government
agency.

Pattern 13: Dynamic routing

— Description: A request is required to be routed to several parties based on
a routing condition. The routing order is flexible and more than one party
can be activated to receive a request. When the parties that were issued
the request have completed, the next set of parties are passed the request.
Routing can be subject to dynamic conditions based on data contained in
the original request or obtained in one of the “intermediate steps”.

— Example 1: Flexible order fulfillment. After processing an order, the sales
department sends a request to the finance department to process the invoic-
ing and payment receipt for the order. This request contains a reference to
the customer’s procurement service and possibly also to a shipping service
nominated by the customer. After arranging invoicing and payment by in-
teracting directly with the customer, the finance service forwards the order
to the warehouse service. If the order is marked “for pick-up”, the warehouse
eventually sends a notification of availability for pick-up to the customer’s
procurement service. Otherwise, the warehouse issues a request to a shipping
service which may be either the company’s default shipping service, or the
one originally nominated by the customer. The shipping service eventually
sends a shipping notification directly to the customer.

— Diagram 1 (Fig. 31): The top elementary interaction shows the sending of a
request from the sales department to the finance department. The actor re-
ferred to as “s1” and playing the role “Sales” is binding two actor references
“cl” and “h1”. They refer to actors playing the roles of the procurement
service and the shipping service of the customer respectively. The respec-
tive roles are named “Customer” and “Shipping”. This interaction enables
the execution of invoicing and payment between finance department and the
procurement service of the customer. If this interaction is completed, the
interaction for forwarding the order to the warehouse is enabled. This in-
teraction is connected with two precedes relationships with two elementary
interactions which themselves are connected with a two-way inhibits rela-
tionship. These racing messages depict the two options after the forwarding
of the order to the warehouse: if the order is marked “for pick-up”, the ware-
house is sending a notification to the customer, whereby the receipt of the
message is executed by the actor reference bound by the sales department.
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Fig. 31. Pattern 13: Dynamic routing - Example 1

Otherwise the warehouse is sending a request to the customer, whereby the
receipt of the request is performed by the actor reference “h1”. This in-
teraction enables a final notification, sent from the shipping service to the
customer.

Example 2: Proposal reviews. A project proposal initiated by a project co-
ordinator is required to be passed through its work-package coordinators in
any order, one at a time. For each route, all coordinators get copies of the
document, however only one, i.e. the first expressing interest, is allowed to
do the update. A coordinator updates the document and makes it available
for the next coordinators’ “read only” copy, out of which one gets “write”
access. After an update, a problem may be flagged which requires the pro-
posal to be routed back to the project coordinator. This over-rides the next
step of the routing, and a modification of the routing may be issued by the
project coordinator.

Diagram 2 (Fig. 32): The above composite interaction depicts the sending of
the project proposal to all work-package coordinators, whose role is named
“Coordinator”. This sending is executed by the project coordinator, whereby
the set of actor references referring to the set of work-package coordinators
“C1” is bound by the actor referred to as “pl” and playing the role “Project
coordinator”. After the completion of this interaction the two remaining in-
teractions are enabled, whereby only one of them can occur, since they are
connected via a two-way inhibits relationship. The left interaction occurs if a
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Fig. 32. Pattern 13: Dynamic routing - Example 2

problem occurs after updating the proposal. Then the work-package coordi-
nator who has executed the update and being referred to as “c2” is sending
the updated proposal to the project coordinator. If the update could be
executed without any problems, the work-package coordinator who has exe-
cuted the update is sending the updated proposal to all other work-package
coordinators. Therefore he has to bind again the set of actor references “C1”.

Example 3: Legal case preparation. A legal case preparation service is uti-
lized by law courts to reduce the number of hearing re-schedules. This is a
costly problem for the courts and defers justice for litigants due to insuffi-
cient information to embark on hearings, decreed by judges typically within
the first moments of a hearing. As part of improved preparation, the clerk of
the court examines a scheduled hearing, obtains all relevant documents into
a formal draft, and determines the relevant legal or administrative actors
required to provide examine the draft for verification and additional input
of the draft. The clerk determines the first set of actors (defense and prose-
cution lawyers, and courts jurisdictionally related to the case) to review the
draft. After these, expert opinion is canvassed based on issues raised in the
investigation, e.g. different departmental solicitors in different categories of
expertise.

Diagram 3 (Fig. 33): The depicted repeated interaction consists of two ele-
mentary interactions that are connected via a precedes relationship. The first
elementary interaction shows the sending of a request from the clerk to the
expert, whereby the clerk is referred to as “cl” and the expert as “el”. The
clerk is binding the set of actor references for the involved lawyers (“L1”) and
the set of actor references for the involved courts (“T1”). If this interaction
has been completed the second elementary interaction is enabled, showing
the sending of a response from the expert to the clerk. Before executing this
interaction, the expert is binding the sets of actor references again, which
allows for the change of the two sets. The whole composite interaction is
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Fig. 33. Pattern 13: Dynamic routing - Example 3

repeated until a condition “X” is fulfilled, which is evaluated by the actor
referred to as “c1”.



