
WSCE: A Flexible Web Service Composition Environment

Xiulan YU, Long ZHANG, Ying LI, Ying CHEN
{yuxl, longzh, lying, yingch}@cn.ibm.com

IBM China Research Laboratory

Abstract

In this paper, we propose the concepts of virtual
partner and inspector into the web services
composition. Virtual partner, as an IT level concept, is
a web service (pseudo web service) using the same
interface with the actual partner but different binding
message. A virtual partner can be invoked directly by a
business process described by BPEL, so that the BPEL
programmer can test both application’s functionality
and non functionality performance early in the
development cycle to avoid any problems in the final
runtime, or test the selection of their partners in
business level design. The IT virtual partners provide
developers with a range of the techniques which let
them explore every aspect of their program. Inspector
is proposed when using the third -party process engine.
An inspector itself is also a web service. The
programmer can register any required output
information in it. The IT virtual partner and the
inspector concepts have been integrated in our WSCE,
a flexible Web Services Composition Environment for a
business process. WSCE is a prototype of autonomic
modeling and simulation environment. With the help of
a third-party BPEL engine, it provides programmer
with concepts and tools to facilitate business process
programming.
KeyWords: Virtual Partner, Inspector, Web service
Composition, BPEL

1. Introduction
With the increasingly competitive situation in the

service market, many enterprises are rushing to employ
web services in to their business, such as on-line travel
reservations, procurement, customer relationship
management (CRM), billing, accounting, and supply
chain. Currently, web services use the technologies of
Universal Description, Discovery, and Integration
(UDDI), Web Service Description Language (WSDL),
and Simple Object Access Protocol (SOAP), and

efficiently and effectively achieve sharing services on
the Web. However, business integration requires more
complex functionality than current web services
provide. The functionality includes transactions,
composition, negotiations, management, and security,
et al. Web services composition is among the most
attractive functions for business integration which can
perform a specific task, that is, the existing services are
able to cooperate although the cooperation was not
designed in advance. Services composition could be
static (service components interact with each other in a
pre-negotiated manner) or dynamic (they discover each
other and negotiate on the fly). This is potential to
reduce development time and cost for new services.

Among web services composition languages, the
Business Process Execution Language for Web
Services (BPEL4WS) [1], the merging of IBM's Web
Services Flow Language (WSFL) and Microsoft's
XLANG, has the most potential to become the de facto
standard . This language is based on
SOAP+WSDL+UDDI basic stack. Users can compose
their web services with BPEL language and run them
with a BPEL engine. However, a composite Web
service is in fact a system that consists of several
conceptually autonomous but cooperating units. It is
difficult to specify how this system would behave and
ensure that it behaves as required by the specification.
Usually we need two kinds of insurances: (1) the
functionality character, given the input and initial state,
the system may produce anticipant outputs; (2) the non
functionality characters, such as quality of service
(QoS), which has became increasing more important
when web processes model complex and mission
critical application [2]. The current solution to this
problem is using model tools to model the process and
QoS respectively and the results generated by the
model tools are used to design the IT process and select
the partners. However, this is just business level design.
When an IT programmer writes the business process
with BPEL, due to the complexity of the process in
some applications, the composed web services may
contain errors. If they are deployed to the operating

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

system, it may lead to angry customers and loss of
revenues. On the other hand, the QoS requirements
modeled by modeling tools need to be verified by IT
operations, even the partners in business process can be
directly selected by the IT process. It is thus important
to analyze business process and partner web services
before they are put into operation. The goal is to
provide mechanisms to support correct Web service
composition.

One possible solution to this problem is to test the
composed web service in true business . For example,
when the developer has finished BPEL document and
composite service WSDL, he can invoke partner’s web
services to test his service function and QoS. However,
it is impossible in most business cases, partner maybe
also provide service for others, he can not provide
testing environment for developers; on the other side,
partner may be charge service invocation, and who will
pay the testing invocation is a real problem.

Another possible solution is to setup simulation
environment by the testing person to help verify the
web services composition. While, in this solution,
testing person has to waste a lot of time to set up the
simulation environment, write test program manually
and deploy the service. How to make the testing
automatic, in other words, the process developer just
care about the process modeling and other problems
will be solved by the environment, is the main problem.

In this paper, we propose the concept of virtual
partner and inspector into the web services composition.
In fact, the object in ER model, which can simulate the
partner in a business process, is a virtual partner. But
this virtual partner is in business level. Here we
proposed the virtual partner in IT level: the virtual
partner is a web service (pseudo web service) using the
same interface with the actual partner but different
binding message. The virtual partner can be invoked
directly by the business process described by BPEL, so
that the BPEL programmer can test both their
application’s functionality and non functionality
performance early in the development cycle to avoid
any problems in the final runtime , and also, the BPEL
programmer and business man can test the selection of
their partners in business level design. The IT virtual
partners provide developers with a range of techniques
to let them explore aspects of their program. The
inspector is proposed when using the third-party
process engine. The Inspector itself is also a web
service; the programmer can put any output information
required in it.

The IT virtual partner and inspector web service
concepts have been integrated in our WSCE, a Flexible
Web Services Composition Environment for a Business
Process. WSCE is a prototype of autonomic modeling
and simulation environment, proposed in IBM China

Research Laboratory. The WSCE provides the
programmer concepts and tools to facilitate business
process programming with the help of a third-party
BPEL engine. A developer can use this environme nt to
model, debug and simulate the BPEL process with
great flexibility.

The rest of this paper is organized as follows.
Section 2 describes a motivating example. The concept
of virtual partner is proposed in section 3. The inspector,
as well as architecture and all components of our
environment are presented in section 4 in more detail
with the help of an example ; Section 5 gives the
experiment results to explore the feasibility of inspector
web service; related work is derived in section 6, and
section 7 concludes the paper and presents possible
future work.

2. Motivating Example
In the paper, we use a business process integration

consulting service as our motivating example. In a
specific business process integration consulting service,
consultant would use BPEL to integrate a business to
business (B2B) service. To do this, several atomic web
services provided by their partners will be composed
together and be invoked according to the process
defined by the consultant. One of the partners is a bank.
Its every transaction will involve cash flow and it will
charge every transaction. After the consultant designs
the process from the viewpoint of the business strategy,
it will be IT developer’s responsibility to implement the
process with BPEL. But he can not put his BPEL
program into operation directly because: (1) his
document may contain errors which will possibly cause
fatal error for the service providers, so he needs to
debug it; (2) the process involve cash flow and the bank
doesn’t know whether the transactions the designer
issued is used as tests or not, so the bank will charge
every transaction.

The straightforward idea is when the developer
writes the BPEL program, he’d better set up a
simulation environment, namely to set up a network
environment, and deploys a pseudo web service for
each partner, and test his BPEL program. If he wants to
test different situations, he has to change the pseudo
web service logic, compile and redeploy it again and
again. Especially if he needs to guarantee the process
QoS to customer, he has to use the model tool to
evaluate whether the partner satisfies the process
requirement. Usually, this is static QoS guarantee. If
one partner should be selected from several partners
who provide same services to meet process QoS, he
must rewrite the services and redeploy them. All the
operations will involve several interfaces for the BPEL
developers; he has to be very familiar with all the

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

software, which costs him a lot of time. So the
developer is required to master higher skill and need
much time to deploy the service, which increases the
business investment. Besides, the BPEL is still a
developing language for business process. When the
new version of the language is provided, the engine of
BPEL has to be updated simultaneity.

Therefore it is urgent for BPEL development
environment to provide developers with an automation
and virtualization development and simulation
environment. With IT virtual partner, the BPEL
programmer can focus on the process coding. When he
needs to test the business process, the development
environment can generate the virtual partner he needs.
What he needs to do is just to input his QoS parameters.
Then it will be much easier for IT engineer to obtain
business goal.

3. Virtual Partner and Inspector
One unique feature of the environment is that the

concept of virtual partner is introduced for the first time.
The virtual partner in IT level is a web service (pseudo
web service) using the same interface with the actual
partner but different binding message. The virtual
partner can be invoked directly by the business process
described by BPEL, and the generation of virtual
partners is transparent to the user. So when a developer
finishes BPEL modeling, our environment can generate
partner web service skeleton automatically according to
partner’s WSDL, and the developer can input the
functionality and non functionality in the web service
according to the requirement. Then the environment
can deploy the service to local host container
automatically. The web service is called pseudo web
service and the partner is called virtual partner. Virtual
partner and pseudo web services provide developer a
functionality and non functionality simulation running
and testing environment.

Another unique feature of the environment is the
concept of inspector. Since the BPEL is still under
development, our environment tries to integrate the
third-party BPEL engine, which maybe provide no API
for us to test the draft BPEL process. In order to make
the simulation environment more reality, we proposed
inspector concept to provide user inspecting interface.
The inspectors are uniformly designed as web services,
similar to the partner’s service. The inspectors are
generated and deployed to the local host container
atomically in our environment. After plugging it in
BPEL engine, all the components form a virtual
running environment for BPEL, so that the developer
can test and simulate his business process to find the
possible problems without relying on the actual
partners’ web service.

Although this virtual environment is some like a
simulation environment, it is obviously different from
the current simulation environment based on discrete
event simulation of ER (Entity-Relationship) model: it
provides tools for developers to test their application’s
performance early in the development cycle so that you
can avoid any problems in the final runtime. These
profiling tools provide developers with a range of
techniques to let them explore aspects of their program.

4. The Flexible Web Service Composition

Environment
In our WSCE environment, the concepts of virtual

partner and inspector have been implemented. The
programmer can program BPEL process with drag and
drop tool, debug and simulate the process using a third
party BPEL engine in WSCE.

4.1 Architecture of the Environment
Fig.1 shows the architecture of the whole

environment. The whole environment includes BPEL
studio and servlet container. BPEL studio is used for
both design and testing time and servlet container
which contains a BPEL engine is used for runtime.
BPEL studio includes drag-drop modeling tool, virtual
partner generator, inspector generator, simulated BPEL
generator, and result analyzer. Drag-drop modeling tool
can facilitates the BPEL modeling greatly with a GUI
tool; virtual partner generator generates and deploys
pseudo web services automatically at simulation period
so that the developer need not invoke actual partner’s
web services, and makes the BPEL debugging and
simulation easier; inspector generator generates and
deploys automatically corresponding inspector web
service which can inspect and record the any detail
information of the process according to the developer’s
requirement; simulated BPEL generator can generate
the simulated business process BPEL file according
to the result of the virtual partner generator and
inspector generator. This simulated BPEL file can be
put into BPEL engine to test the business process; the
result analyzer can replay the flow execution history
record and display the specific information at ru nning
time.

We developed a prototype of WSCE as an Eclipse
plug-in using Tomcat container. The environment has
two states: modeling state and simulation state. In the
following section, we use the example “ simple” , which
is used in BPEL engine of IBM alphaWorks, to explain
and demonstrate how our environment works.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Servlet Container

BPEL Studio

WSDL
DocumentWSDL
DocumentWSDL
Document

Virtual Partner
Generator

Drag-drop
Modeling Tool

Simulated BPEL
Generator

Inspector
Generator

Inspector
Requirement

Pseudo
Web Services

Inspector
Web Services

BPEL Engine

Simulated
BPEL

Result
Analyzer

Fig. 1 The architecture of the BPEL environment

4.2 Drag-drop Modeling Tool
Visual representations are able to provide a high-level
yet precise language which allows developers to

express about concepts at their natural level of
abstraction. So our drag-drop modeling tool provides
the developers GUI tool in modeling state, and the
developers can draw their business process easily, and
input the value of the properties of the activities, then
this tool can generate the BPEL file for them. To
facilitate the developers inputting the properties of
activities, the tool also parse the WSDL file of partner’s
web service, so that the developer can select naturally
the values of properties from the menu provided by the
tool. Our environment is based on Eclipse platform, the
drag-drop modeling tool is developed as an Eclipse
plug-in used GEF (Graphical Editor Framework)[3]
package.

Fig. 2 shows the drag-drop GUI for ” simple”
example .

Fig. 2 The GUI of the modeling tool in the WSCE

4.3 Virtual Partner/Pseudo Web Service and Its
Generator

When a developer finishes the BPEL file, he can
not suppose that his BPEL file can achieve business
goal unless that he run it in real business situation.
However, many business partners can not provide test
case. In some case, the business partner even needs to
charge any transaction. If the developer sets up a
simulated test environment by himself, it will cost him
a lot of time. Considering that many simulated test
environments of business process have a lot of

similarity between each other, the developing
environment can provide this kind of tool which is
similar to code generator in [4] in simulation state for
developers to facilitate development.

In our environment, we call this simulated web
service as pseudo web service, and the service provider
as virtual partner. Pseudo web service generator is
responsible to generate and deploy them. In the real
business situation, the back end system of partner’s
web service may be EJB (Enterprise JavaBean),
CORBA(Common Object Request Broker
Architecture), COM(Component Object Model), etc.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

For simplification, here we use Java servlet to
implement the back end system. The virtual partner
needs to provide the same interface, but different
binding message with the actual partner in their WSDL.
Fig. 3 shows the workflow of pseudo web services
generator.

Fig. 3 The workflow of the virtual partner generator
The detail workflow is
(1) When generating pseudo WSDL, the generator

parses the partners’ WSDL file, gets their binding
information. The binding may be EJB binding, class
binding (Java binding), or .net binding, etc. Here we
uniformly map it to Java binding. Then the data type in
XML schema is mapped into Java data type, and the
partner web service URL is changed into local host.
Then the pseudo WSDL file is generated.

(2) When generating service skeleton, we used
Apache AXIS package, which can generate the service
skeleton according to the pseudo WSDL file.

(3) Implement the service itself. The service
includes its functionality and no-functionality. The
non-functionality, such as the business performance,
quality of service, etc should be concerned in the
development cycle so that the developer can avoid any
problems in the final runtime. For example, response
time functionality is provided in our tool, That is, the
service itself includes a random generator which is used
to generate the runtime of the service according to
users’ requirement. The runtime information of the
process and the pseudo web service are recorded into a
file for analysis. The developer can use source code edit
function to write the service functionality to test the
business process. This is the only action that human
being is involved in virtual partner generator, it’s due to
the consideration of the flexibility of service logic.
Here we show a part service implementation.
public class StockquoteService
{

private Logger m_logger= Logger.getInstance();

private double from = 2.0;
private double to = 2.5;
private void logTime(int instanceID)

{
GregorianCalendar now= newGregorianCalendar();
m_logger.log(instanceID + "," +"this webservice
begin at" + "," +now.get(Calendar.HOUR_OF_DAY)

+ "," + now.get(Calendar.MINUTE));
int timeLength;
timeLength = (int)(from + Math.random() * (to –

from));
now.add(Calendar.MINUTE, timeLength);
m_logger.log(instanceID + "," +"this webservice end
 at" + "," + now.get(Calendar.HOUR_OF_DAY) +
"," + now.get(Calendar.MINUTE));

}

public java.lang.Float getQuote(java.lang.String
arg_0,java.lang.IntegerinstanceID)
{

logTime(instanceID.intValue());
// the service functionality

}
}

After the developer finishes the service code, the
environment will compile it and the class file is
generated correspondingly.

(4) Generate the service deployment file . The
environment can generate the service deployment file
and wrap all generated files into a war package and put
it into corresponding directory.

(5) Dynamic deploy pseudo web services into a
servlet container automatically. If the developer edits
the service code himself, when he saves the service
code, the other steps will execute automatically. Here
we show the pseudo web service deployment interface.
All the actions taken by the virtual partner generator are
transparent to the developer; the only thing that the
developer need to do is to open the simulation menu.
4.4 Process Inspector and Its Generator

Considering that BPEL specification is in
developing process, we employ a third-party BPEL
engine to run the business process. Thus the whole
environment can be upgraded with the upgrade of
BPEL engine. But we can not get the variables and
runtime information in the BPEL engine unless it
provides API for it. In order to monitor the simulated
business process, and be adaptive to any BPEL engine
in this situation, some inspectors should be added to the
process. All the inspectors should not disturb the actual
business process, and do the least affection on it, while
the BPEL engine can accept and run it at the same time.

Generate WSDD file

Deploy the service dynamically

Implement the service itself

Generate service skeleton

Generate pseudo WSDL

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Fig. 4 One of the UI of simulation state
Therefore, the inspectors here are implemented as

web services too. Inspector web services make our
environment flexible and resilient. When the
programmer switch to simulation state, he can input the
requirement for the inspector, for example, if he can
select “ yes” in the property of “ generate inspector” of
“ invoke” action in the GUI. All these inspector web
services are generated by the component of inspector
web service generator. And the process inspector
generator does work as the following shown in Fig. 5,
and details are also provided.

Fig. 5 The workflow of the inspector generator
(1) Gets user’s requirement. The user can input his

inspector requirement at any point in BPEL process. In
the GUI tool, we provide an inspector attribute, if the
user input “ Yes” in this column, the requirement will be
received by the system.

(2) Generates the inspector web services code and

class. Because the inspector web service may need to
recode the runtime information of the business process
or partner’s web services, monitor the variables of the
business process, and provide the other users required
information, etc, our tool provides source code edit
function like pseudo web service generator, the
developer can write the service functionality
themselves according to their requirement. And the
default function is to record the running time
information. All these inspector web services are
implemented using Java. After the code is generated,
the JDK will compile it automatically and generate Java
class file.

(3) Generates the inspector web services WSDL
file. This file is generated by using Apache AXIS
package automatically according to the service;

(4) Generates the inspector web services deploy
description automatically, similar to the work of virtual
partner generator;

(5) Dynamically deploys the inspector web
services into appointed servlet container. When the
developer finds that their requirements have changed,
they can change the service functionality, and job (1)-(4)
will adaptively change. New service will then be
deployed dynamically. Same as the virtual partner
generator, all the actions are transparent for the user.

At present, inspector web service in our
environment can inspect the invocation of web services,
such as “ receive, invoke, reply” activities. Inspector
web services can be extended to inspect any activities
in BPEL process.

Generate Inspector WSDD file

Deploy the inspector service dynamically

Generates the inspector WSDL file

Generates the inspector web services

Get user’s requirement

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

4.5 Simulated BPEL Generator
Simulated BPEL file is a little different from the

original BPEL file, in which the inspector web services
are part partners web services, and the BPEL process
also calls the inspector web services. The simulated
BPEL generator will parse the original BPEL file and
insert the inspector web service invocation operations
according to user’s requirements, and generate the
simulated BPEL file, which can be deployed into BPEL
engine. So when the programmer switches to simulation
state, he inputs the inspector requirements firstly and
press es the Generate button. And the pseudo web service,
inspector web service and simulated BPEL file are
generated and deployed into local host container
automatically. Finally, the programmer may deploy the
simulated composite web service into the third party
BPEL engine manually. Here we use the BPEL engine in
IBM alphaWorks.

4.6 Result Analyzer
In order to test the business process written in BPEL,

the programmer can write testing client by himself. If
clients invoke the simulated composite web services, the
pseudo web service and inspector web service will
record the running time and other information. For
example, if the recorded running information is like this:

Instance ID, process *** beginning at t1;
Instance ID, receive operation 1 at t1…
The result analyzer will analysis the above

information and summarize the running information, for
example, the number of testing instance, process average
running time, partner’s web service running time, et al.
The analyzing gives developer the necessary information
for monitoring and this help improve the design.

5. Experiments
In our environment, inspector is added to the

business process. But if the inspector web service
influences the process greatly, the result gotten from the
simulation might leads to the serious problem for
programmer to evaluate his whole design. In this part,
we will try to explore the effects of inspector web
service.

In our experiments, the example of “Simple” in
BPEL engine of IBM alphaWorks is used, in which an
atomic stock query web service is invocated. We deploy
the processes without inspector and with inspector
respectively to BPEL engine in a computer with AMD
1.8G CPU and 512M memory, and set the running time
of pseudo web service as 2-2.5 seconds randomly.
Twenty clients invoke the composite web services one
by one and the every client invocating process time is
measured.

Fig. 6 shows the whole process invocating time . In
which the process without inspector and with inspector
have little difference. The reason is that the running time
of the atomic pseudo web service is randomly selected in

a certain range, and their running time occupies the
process running time greatly.

In order to evaluate the effect of the inspector web
service, we subtract the running time of atomic pseudo
web service from the running time of the process and
compare the effect of inspector web service. Fig. 7
shows the time difference between the whole process and
atomic pseudo web services, caused by the client
invocation, server response, processing invocation, and
inspector web service. The average time difference
caused by inspector web service is 1597.75, nearly 10%
of the process running time (not include the pseudo web
service running time). We believe it is reasonable time
for business process execution inspection, and the
inspector web service has very little effect with the
composite web service and our method is feasible.

130000

140000

150000

160000

170000

1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20

The nth of invocation
T

im
e

(M
S)

without inspector
with inspector

Fig. 6 The running time of simulated composite web service
with and without inspector web service

8000

13000

18000

23000

28000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
The nth of invocation

T
im

e(
M

S
)

invoke time
invoke time with inspector

Fig. 7 The running time of simulated composite web service
with and without inspector web service subtracting atomic

web service

6. Related Work
So far, there are two main trends of web service

composition: one is from industry [5] and another from
Semantic Web community[5,6,7]. The industry views
web services as abstract, standardized interface to
business process, and has developed a number of
XML-based standards to formalize the specification of
web services, their flow composition and execution [5].
In particular, such Web languages as Universal
Description, Discovery, and Integration (UDDI), Web
Services Description Language (WSDL), Simple Object
Access Protocol (SOAP) are used to define standard
ways for service discovery, description and invocation

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

(message passing). Some web services need to
communicate with each other, so that all of them can be
composed into a business process, and the process is
called web services orchestration or composition.

Early works in web service orchestration include
WSFL from IBM, XLANG from Microsoft, WSCL, eCo
from CommerceNet[8], SWORD[9], from Stanford,
which uses its own simple description language and does
not support any existing standards like WSDL or
DAML-S. Now, BPEL4WS[1], joint effort from WSFL
and XLANG, has superseded other language, and will be
industrial de facto web services workflow specification.
BPEL4WS, providing support for both executable and
abstract business process, is essentially a layer on top of
WSDL, with WSDL defining the specific operations
allowed and BPEL4WS defining the operations can be
sequenced. Although BEA contributed BPEL4WS, its
current release of WebLogic can not support BPEL4WS
well, so does current version of BizTalk of Microsoft.
IBM provides an alpha release of BPEL4WS[10], and
Collaxa Orchestration Server supports BPEL4WS with a
GUI editor, an orchestration server and a management
consol. Business process written in BPEL4WS can be
debugged in some products, however, all of them can not
provide pseudo web service concept to help simulation.
Chandrasekaran[2] et al provide a simulation model in
their project SCET to estimate performance, while their
simulation is similar to the Entity Relationship model,
and their simulation model is described by JSIM[11], a
Java-Based Integrative Model Simulation and Analysis
Environment, and need a JSIM Simulator to run it. Our
simulation has two functionalities: debugging and
performance estimation, which make the tool unique.

7. Conclusion and Future Work
In this paper, we propose the concept of IT level

virtual partner and inspector in the web service
composition. The virtual partner is a pseudo web service
using the same interface with the actual partner but
different binding message. The virtual partner can be
invoked directly by the business process described by
BPEL, so that the BPEL programmer can test both their
application’s functionality and non functionality
performance early in the development cycle to avoid any
problems in the final runtime . Due to involving
non-functionality testing in virtual partner, the business
man can select his partners according to the QoS
requirement of the process. The inspector web services
provide the users flexibility to adopt the third-party
engines to inspect the process details. The IT virtual
partners and inspector web service provide developers
with a range of techniques to explore aspects of their
programs.

Also, we implemented these concepts in a flexible
Web Service Composition Environment (WSCE) for
business process in this paper. The advantages of our

environment include:
(1) Providing drag-drop UI programming model for

developer to facilitate programming;
(2) Using the IT level concept of virtual partner and

pseudo web service. This facilitates the developer to test
the composed web services, automatically deploy testing
environment and automatically change with the
requirement. The method will bring easier and faster
deployments, better continuity between development and
operations, and a lower total cost of ownership.

(3) Be ing able to plug in any BPEL engine and the
whole environment can upgrade with engine, which
make its maintenance cost low.

At present, the Tomcat container is employed in the
environment. Future work will involve Websphere
Application Server container and provide more advanced
UI to improve user’s experience.

Reference
[1] Business Process Execution Language for Web Services

Specification, version 1.1, avaible at : http://www-
106.ibm. com/ deve loperworks/ webservices/library/
ws-bpel/

[2] Senthilanand Chandrasekaran, Gregory Silver, John A.
Miller, Jorge Cardoso, and Amit P. Sheth, Web service
technologies and their synergy with simulation,
Proceedings of the 2002 Winter Simulation Conference,
San Diego, California (December 2002) pp. 606-615

[3] GEF package, available at: www.eclipse.org/org/press
release/may2002GEFpr.html

[4] Karthik Nagarajan, Herman Lam Stanley, and Y.W. Su.
Integration of Business Event and Rule Management
With the Web Services Model. Proceedings of the
international conference on web service, Las Vegas,
Nevada, USA. pp83-89, 2003

[5] Biplav Srivastava and Jana Koehler, Web service compo
sition – current solutions and open problems, ICAPS 2003,
Workshop on Planning for Web Services, 10, June, 2003,
Trento, Italy

[6] Rubé n Lara, Holger Lausen, Sinuhé Arroyo, Jos de Bruijn,
Dieter Fensel, Semantic Web Services: description
requirements and current technologies, Semantic Web
Services for Enterprise Application Integration and
E-Commerce workshop, at the Fifth International
Conference on Electronic Commerce (ICEC 2003),
Pittsburgh, 1-3 October, 2003.

[7] Sheila A. Mcllraith, Tran Cao Son and Honglei Zeng,
Semantic Web Services, IEEE Intellengent System,
pp46-53

[8] Chris Peltz, web service orchestration, avaible at:
www.hp .com/drc/technical_white_papers/WSOrch/SOrch
estration.pdf

[9] Shankar R. Ponnekanti and Armando Fox, SWORD: A
developer Toolkit for Web Service Composition, In
Proceedings of The Eleventh World Wide Web
Conference (Web Engineering Track), Honolulu, Hawaii,
May 2002

[10] BPWS4J, available at www.alphaworks.ibm.com/tech/bp
ws4j

[11] JSIM, avaible at: http://nsr.bioeng.washington.edu/Soft
ware/JSIM/

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

	footer1:

