Transforming BPEL into annotated Deterministic Finite State Automata
for Service Discovery

Andreas Wombacher

Peter Fankhauser

Erich Neuhold
Fraunhofer Gesellschaft, Integrated Publication and Information Systems Institute,
64293 Darmstadt, Germany
firstname.lastname @ipsi.thg.de

Abstract

Web services advocate loosely coupled systems, al-
though current loosely coupled applications are limited
to stateless services. The reason for this limitation is the
lack of a method supporting matchmaking of state depen-
dent services exemplarily specified in BPEL. In particular,
the sender’s requirement that the receiver must sup-
port all possible messages sent at a certain state are
not captured by models currently used for service dis-
covery. Anmnotated deterministic finite state automata
provide this expressiveness. In this paper the transfor-
mation of a local process specification given in BPEL
to annotated deterministic finite state automata is pre-
sented.

1. Introduction

Web services and related technologies promise to facil-
itate efficient execution of B2B e-commerce by integrat-
ing business applications across networks like the Inter-
net. A lot of effort has been expended to define standards,
e.g., to model business processes and describing workflows
and interfaces (BPEL4WS, WSDL, etc.) as well as spec-
ifying the technical infrastructure for carrying out busi-
ness transactions (e.g., SOAP, UDDI). Conceptually, web
services are advertised as a technology for implementing
loosely coupled business processes, that is a dynamic and
flexible binding of services. Nowadays, web services are
mainly deployed as stateless components accessible via a
single request-response remote procedure call (RPC). One
reason for this limited deployment is the missing support
for searching and finding state-maintaining/ complex web
services. UDDI and the corresponding distributed approach
WSIL support searching of name-value pairs, which does
not suffice for service discovery of complex services. In

particular, it can not generally be guaranteed by matching
name-value pairs that the service results in a deadlock-free
and bounded business transaction. Thus, several extensions
of UDDI have been proposed such as addressing Service
Level Agreement [8], semantic [4], or logical [1] exten-
sions of UDDI. An extension of UDDI taking care of in-
ternal states (process specification) of a service is discussed
in [19].

Service discovery for the Business Process Execution
Language (BPEL) which explicate internal states of pro-
cesses requires an adequate formal model of BPEL [2]. This
paper presents a transformation of major parts of BPEL to
such a formal model providing a matchmaking definition.

The two major requirements for the matchmaking is to
guarantee that i) all messages sent by a party are supported
by the receiving party, while ii) messages offered by a re-
ceiving party, but not required by a sending party might be
neglected. A formal model fulfilling these requirements is
annotated deterministic finite state automata (aDFA) [20]
modeling matchmaking by means of automata intersection.
This paper presents the mapping of BPEL to aDFAs in a
constructive way.

The paper is organized as follows: Section 2 describes a
sample application, Section 3 sketches the overall approach,
Section 4 briefly introduces the used formal models, fol-
lowed by a presentation of the transformation in Section 5.
The paper concludes with related work in Section 6 and a
summary and future work in Section 7.

2. Example

The example scenario used for further discussion is a
simple procurement workflow within a virtual enterprise
comprising a buyer, an accounting department, and a logis-
tics department. The accounting department approves an or-
der (order message) sent by a buyer and forwards the order
to the logistics department (deliver message) to deliver the
requested goods. The logistics department confirms the re-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

ceipt (deliver_conf message) and forwards it to the buyer
extended by the expected deliver date and the parcel track-
ing number using the delivery message. Further, the buyer
may perform parcel tracking (get_status and status mes-
sages) of the shipped goods, which is forwarded by the ac-
counting department to the logistics department. The over-
all scenario is depicted in Figure 1.

(J—)
logistic accounting
department department

N order
.
M- deliver X
. Ll delivery

get_status |

H

Figure 1. Global Procurement Scenario

The scenario sketched above represents the global work-
flow, while the local workflows can be derived from the
global one, e.g., by using [17]. In the following the lo-
cal workflow of the accounting department denoted accord-
ing to the BPEL specification is described in more detail.
To keep the example simple, the detailed structure of mes-
sages is neglected and the names of messages are simpli-
fied. Concrete message structures could be, e.g., taken from
the RosettaNet Partner Interface Processes (PIPs) 3A4 (Re-
quest Purchase Order), 3A7 (Notify of Purchase Order Up-
date), 3B2 (Notify of Advanced Shipment) [13].

Within web service specifications one or more messages
specify an operation representing a potential message ex-
change. If an operation contains only a single input mes-
sage, then the operation is asynchronous, otherwise it is
synchronous. A porttype contains a set of operations pro-
vided by a service provider, which is specified in the cor-
responding WSDL file. Figure 2 depicts the operations and
the related messages used in the exemplary accounting de-
partment BPEL description, where the messages are labeled
in accordance to messages in the global workflow depicted
in Figure 1. The buyer and the logistics porttypes represent
the operations provided by the corresponding department
service, that is contain messages that are received by the
buyer and logistics department respectively. Consequently,
the accBuyer and accLogistics porttypes contain operations
received by the accounting department and sent by the buyer
and the logistics department respectively. All operations are
asynchronous except the synchronous getStatusOP opera-

=port Type name="accBuyer"=

=operation name="orderCp"=
=input message="tns: order"=
=foperation=
=operation name="getStatus Op"=
=input message="tns: get Status"/=
=foperation=
<=operation name="terminate Op"=
zinput meszage="tnz:terminate"/=
=foperation=
=ipor Type=
=2port Type name="kbuyer"=
<operstion name="deliveryOp"=
zinput message="tns: delivery"/=
<loperation=
=operation name="statusOp"=
=input message="tns:status"!=

=port Type name="accLogistics"=

=operation name="outOfStock Op'=
=input message="tns: delivery"’=

=foperation=

=operstion name="deliver_confop"=
=input message="tns: deliver_conf"f=

=foperation=

<ot Types
=port Type name="logistics"=

=operstion name="getStatus Op"=
zinput message="tns: get Status"/=
2output message="tns: status"r=
=foperation=
=operstion name="deliverOp"=
zinput message="tns: deliver"/=
=foperation=
=operstion name="terminate Op"=

<loperation= =input message="tnsterminate"’=
=iport Types =foperation=
=fport Types

Figure 2. WSDL porttype definition of the ex-
emplary scenario

tion provided in the logistics porttype.

The description of the local workflow is based on these
porttype definitions by directly referencing them. Local
workflows are denoted in BPEL [3], where a workflow is
specified in terms of tasks (named activities in BPEL termi-
nology) representing basic pieces of work to be performed
by potentially nested services. The control flow of a BPEL
process constrains the performance of tasks by selective
(switch and pick activities), sequence (sequence activity),
and parallel (flow activity) execution. In addition, a BPEL
process also defines the data flow (variable handling and
assign activity) of the business process regardless of con-
crete implementation of tasks. Based on this understanding,
a workflow model includes activities realizing the interac-
tion with partners represented by exchanging messages (re-
ceive, reply, invoke, and pick activities).

The BPEL specification of the accounting department lo-
cal workflow is depicted in Figure 3. The partnerLink def-
inition associates a partner name to a bilateral interaction
between two roles. The association of roles to porttypes
is done in the partnerLinkType definition contained in the
WSDL file, where each role is related to porttypes and op-
erations received by itself. Thus, buyer and logistics depart-
ment are mapped to the corresponding porttypes, while ac-
counting department is related to accBuyer and accLogis-
tics porttpyes.

The process starts by receiving an order message sent
by the buyer, which is forwarded to the logistics depart-
ment via a deliver message. The logistics department an-
swers asynchronously with a deliver_conf message, which
is forwarded by the accounting process to the buyer via a
delivery message. Due to the fact that the buyer is allowed
to do parcel tracking an undetermined number of times, the
parcel tracking must be contained within a non-terminating
loop. To enable a termination of the accounting and logistics

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

<process>

<gequence nams="accounting department process">
<receive partnerLink="buyer" portType="tns: accounting”
operation="orderOp" variable="order"/>
<invoke partnerLink="logistic" portType="tns:logisticCallback"
operation="deliverOp" inputVariable="order"/>
<recelve partnerLink="logistic" portType="tns:logistic"
operation="deliver_confOp" inputVariable="order"/>
<invoke partnerLink="buyer" portType="tns:accountingCallback"
operation="deliveryOp" inputVariable="order"/>
<while name="parcel tracking" condition="1=1">
<picks
<onMessage partnerLink="buyer"' portType="tns accounting"
operation="getStatusOp" variable="getStatus">
<seguence=
<invoke partnerLink="logistic" portType="tns:logisticCallback"
operation="getStatusOp" />
<invoke partnerLink="buyer" portType="tns accountingCallback"
operation="statusOp" inputVariable="status"’>
</sequence>
<fonllessage=
<ontdessage partnerLink="buyer" portType="tns accounting"
operation="terminate Op" variable="terminate">
<seguence>
<invoke partnerLink="logistic" portType="tns:logisticCallback"
operation="terminate Op" inputy ariable="terminate"/>
<terminate/>
<fsequence>
<fonhtessage>
</pick>
<fwhile=
<fseguence>
<fprocess>

Figure 3. BPEL notation of the accounting lo-
cal workflow

department processes a fermination message initiated by the
buyer and forwarded by the accounting to the logistics de-
partment terminates the corresponding processes. Alterna-
tively, the accounting department may receive a ger_status
message sent by the buyer, which is forwarded by a syn-
chronous invocation of the logistics process and reporting
the status via a status message back to the buyer.

3. Overall Approach

Given the local workflow for the accounting department
the task of matchmaking is to find the complementary work-
flows for the logistics and the buyer process that guarantee
a successful business interaction.

Figure 4 contains potential trading partners of the ac-
counting workflow. In particular, the buyer workflow is
quite similar to the one described above, but requires an ad-
ditional status message not supported by the accounting. As
a consequence, the depicted buyer process does not match
the accounting process due to different requirements of the
trading partners on message ordering. The logistics process
depicted in Figure 4 does not support parcel tracking. In
particular, the get_status and status messages are not sup-
ported, but they are mandatory from the point of view of
the accounting process. Thus, the logistics process does not
match due to not providing messages sent by the account-
ing, so considered to be mandatory for a trading partner.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

logistic

accounting
department

department

deliver

v Oye

status

/S

eliver_conf

terminate get_status

/

terminate

Figure 4. potential trading partners

Opposed to the above negative examples, the logistics and
the buyer depicted in Figure 1 match the accounting pro-
cess.

The definition of matchmaking stateful web services
specified in BPEL requires a formal model, which is not
provided by BPEL itself [18]. The model used in this paper
is annotated Deterministic Finite State Automata (aDFA)
[20] being an extension of deterministic finite state au-
tomata. A finite state automata approach has been selected,
because the BPEL subset used in this paper can be inter-
preted as message sequences representing a regular lan-
guage. Thus, an approach based on standard automata suf-
fices and no more complex models like Petri Nets [12],
Workflow Nets [16], or Statecharts [6] are required. Based
on this formal model matchmaking is defined as an inter-
section of aDFA automata [20].

Since, we do not expect people to provide descriptions
of processes in aDFA notation, the aim of this paper is
to provide a transformation from BPEL to aDFA notation.
The transformation is quite similar to transformations, e.g.,
from regular expressions to finite state automata (for exam-
ple Berry-Sethi Algorithm).

The approach performs the structural traversal of the
BPEL XML document and recursively transforms an activ-
ity by interrelating the already transformed child activities.
Thus, an activity is transformed by representing it in a par-
tial structure combined by the partial structures of the child
activities. These partial structures must maintain an input
state q;, representing the state to enter the partial structure
and an output state g,,; representing the state to leave the
partial structure finally. This partial structure is called par-
tial aDFA and is formally defined in the next section.

The recursion has to start with the first activity within the
BPEL document being a child element of the <process> el-
ement. So, the transformation of the <process> is different
from the one of the activity elements, because here the re-
cursion is initiated by creating a start and final state passed
to the partial structure used in the recursion as input and

YF]',F.

COMPUTER
SOCIETY

output places. Finally, the mapping from the partial aDFA
to the aDFA structure is performed.

4. Formal Model

In the following the required formal definitions of aDFA
and partial aDFA is introduced. A more detailed discussion
can be found in [20].

Definition 1 (annotated Deterministic Finite State Au-
tomata (aDFA))

An annotated deterministic finite state automaton A is rep-
resented as a tuple

A= (Q,%,0,q0, F,QA) where Q is a finite set of states,
Y is a finite set of messages, 6 : Q@ x ¥ — @ repre-
sents transitions, qo a start state with qg € Q, F C @
a set of final states, and QA : @ X E is a finite rela-
tion of states and logical terms within the set E of proposi-
tional logic terms.

The terms in E are standard Boolean formulas. Adapting
the definition in [5]:

Definition 2 (definition of terms)
The syntax of the supported logical formulas is given as fol-
lows:

e the constants true and false are formulas,

e the variables v € X are formulas,

o if ¢ is a formula, so is —¢,

e if ¢ and 1) are formulas, sois ¢ AN and ¢ V 1.

Based on the aDFA definition, an intersection and empti-
ness operation has been defined in [20], which is quite sim-
ilar to the one of standard automata. In particular, intersec-
tion combines annotation of states by conjunction, while the
emptiness test checks reachability of final states not only
via a single transition, but via all transitions contained in a
conjunction of an annotation. A detailed discussion of the
sketched operations and their applicability to matchmaking
business processes is given in [19].

Based on the aDFA definition above, the partial aDFA is
defined. As stated above, this structure is used by the recur-
sive transformation of the BPEL description to aDFA nota-
tion, where the input state and the output state represent the
states to enter / leave the partial structure used within the re-
cursion step.

Definition 3 (partial aDFA)
A partial annotated deterministic finite state automaton PA
is an aDFA extended by an output state q .z € () and an in-

put state q;,, by not passing by the start state qq. The result-
ing signature is PA = (Q, %, 6, ¢in, Gout, F, QA).

When constructing a partial aDFA by combining lower
level partial aDFAs, the corresponding input and output

states must be interrelated to exemplarily form a sequence.
In particular, states of different partial aDFAs are consid-
ered to be equivalent, thus one of them need to be renamed
by another one. So, a renaming function

7 : (QU{e}) x (@ xQ) — (QU{e}) of states on partial aD-
FAs is defined, where € represents a non-existing state .

Definition 4 (renaming of states)
A state q is renamed with ' by function & defined for a state
g with
e ¢ ifqg=q
0(¢a—q):= { G otherwise

Extending the above definition to partial automata results
in a renaming function o : PA X (Q X Q) — P A which re-
names a state of the input annotated automaton P A result-
ing in a new automaton P A’ by adding the new state to the
set of states of PA’, renaming all source and target states
in transitions of PA’, and renaming the corresponding vari-
ables within annotations of PA’.

Definition 5 (renaming of partial aDFA)

Let PA = (Q, E; 6; Qiny Qout, F7 QA) and

PA" = (Q',%,0',4},,qous, F', QA") be partial automata.
Then, PA' := o(PA,q — ¢)with@' := {¢'}U(Q\ {q}),
8 = {(6(q1,9 = ¢'),1,6(q2,0 =) | (a1,,q2) € 0},
G = 0 (ins 0 = 4", Gour = 0 (qout, ¢ — 4'),

F’ = quF &(qu — q’)
(¢'se' neé) if §=q
QAI _U(ié)EQA\{(q’:e’)} 0~ _ qu:g
(q,€é) otherwise

5. Transformation

The transformation translates BPEL syntax to annotated
DFA. In particular, the transformation represents messages
that might be sent by a party at a particular state as mes-
sages that must be supported by the corresponding receiv-
ing party. This is because the sender has the choice to select
a particular message to be sent, while the receiving party
must be able to handle all possible choices of the sender.
This is modeled by the sender workflow annotating each
choice of sending messages as mandatory transitions, that
is a conjunction of message labels. In contrast, a receiving
party represents all supported options as genuine alterna-
tives via a disjunction of message labels. This explicit mod-
eling of mandatory transitions of a sender and optional tran-
sitions of a receiver is the main contribution of the approach.

5.1. Example

The query process of the accounting department as de-
picted in Figure 3 can be translated into an aDFA by the
following mapping of BPEL activities:

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

e represent send, receive, pick, and invoke activities as
transitions

e switch and pick activities represent choices, that is
modeled as several transitions each connected with the
current place by an input arc

e a flow activity represents a parallel execution, that is
modeled by enumerating all possible execution se-
quences of the parallel execution

e data management operations like assign are neglected

The aDFA model derived by this transformation is depicted
in Figure 5, where the annotations of the transitions are part-
nerlink pl, porttype pt, operation op, and direction dir de-
picted as pl#pt#op#dir.

buyer# logistics#
accBuyer# logistics#

terminateOp#in terminateOp#out
buyer# logistics# logistics# buyer# P P

accBuyer# logistics# acclogistics# buyer#
orderOp#in deliverOp#out deliver_confOp#in deliveryOp#out

buyer# logistics#
accBuyer# logistics#
t_statusOp#in get_statusOp#out

buyer# logistics#
buyer# acclLogistics#
statusOp#out get_statusOp#in

Figure 5. aDFA notation of the accounting lo-
cal workflow

The process is started by the buyer sending an or-
der message to the accounting department, which forwards
the order to the logistics department via a deliver mes-
sage. The logistics department confirms this request (de-
liver_conf message extending the provided information
with the planned delivery date and the parcel tracking num-
ber) to the accounting department, which forwards the de-
livery details of the order (delivery message) to the buyer.
Afterwards, the buyer is allowed to do parcel track-
ing with the logistics department, where the accounting
department acts as a proxy to the buyer.

A detailed formal description of the transformation is in-
troduced next.

5.2. Messages

The representation of interactions in BPEL and aDFA
differ, because BPEL is based on communication activi-
ties while aDFA 1is based on exchanged messages between
trading partners. Communication activities are either syn-
chronous or asynchronous, and the specification is done in

terms of partnerlink, porttype and operation. The latter one
are specified in a corresponding WSDL file (as already dis-
cussed in section 2). The partnerlink is defined in the BPEL
document and implicitly assigns roles to porttypes. While
asynchronous communication can be characterized by port-
type and operation executed via a partnerlink, synchronous
communication requires a differentiation between outgoing
and incoming message. This is because a receiving trading
partner models synchronous communication by two seper-
ate activities (receive and reply). Thus, an additional pa-
rameter 'in’ or "out’ expressing the direction of the sender
of the synchronous exchange is added to the correspond-
ing message. Thus, an exchange within a bilateral interac-
tion is characterized by: portType, operation, direction, and
partnerLink (latter one to enable a generalization of the ap-
proach from bilateral to multi-lateral matchmaking). A def-
inition of a message equivalence relation used for the inter-
section and emptiness test is as follows:

(pl', pt', op', dir'") <=
pt = pt' Aop = op' A\ dir = dir’

(pl, pt,op, dir) ~

Note that pl and pl’ are not taken into account, because mes-
sage equivalence does not depend on the local role model.
The underlying assumption here is that the two process
to be compared reference the same WSDL document, thus
guaranteeing that portType and operation are referencing to
commonly agreed messages by the bilateral trading parties.

5.3. Process Element

The recursive transformation starts at the top level ele-
ment <process> of BPEL resulting in a partial aDFA rep-
resenting the child activity.
<process> activity </process>
The recursion starts by transforming the activity by the
rules below resulting in a partial aDFA P A, which can be
represented as an aDFA A by adding the output state g,y
to the set of final states and assigning the input state q;,, as
the start state go resulting in an aDFA
A= (Q7 27 67 Gin, Fu {QDut}a QA)
with PA := (@, X, 6, Gin, Gout, I, QA).

5.4. Internal Activities

Internal activities do not need to be represented in a
description of the bilateral interaction. Such activities are:
scope, assign, or wait. To provide a full composability of
the transformation, internal activities are represented by an
empty activity.

5.5. Simple Activities

Simple activities are related to a single state without hav-
ing a transition, thus, the corresponding annotation to the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

state is true. Simple activities are empty and termination
activity.

5.5.1. empty activity denoted in BPEL as <empty/> is
represented as a partial aDFA by a single state only:

PA = ({SO},@,@asoasoawv {(807true)})

5.5.2. terminate activity denoted in BPEL as
<terminate/> is modeled by a single state, where no
further activity can be appended, thus, the output state
is an empty state. Further, the input state is marked fi-
nal.

PA = ({s0},0,0,50,¢,{s0},{ (50, true)})

5.6. Communication Activities

Communication activities exchange messages with trad-
ing parties. They are represented as partial aDFAs with a
single transition per exchanged message, while the corre-
sponding state is annotated with the transition label in case
of sending activities, or with true in case of receiving activ-
ities. The output state is the state reached after the last mes-
sage has been exchanged.

5.6.1. reply and asynchronous invocation activities de-
noted in BPEL as

<reply partnerLink="pl” portType="pt”
operation="o0p” variable="var”/>
<invoke partnerLink="pl” portType="pt”
operation="0p” inputVariable="var”/>
are modeled as a single transition with an message label at
the transition source state represented as
PA= ({807 51}7 {(plvpta op, Zn)}a
{(807 (plapta op, Zn): 51)}7
50, 51, wv {(807 (plvpta op, OUt))a (817 true)})

5.6.2. receive activity denoted in BPEL as
<receive partnerLink="pl” portType="pt”

operation="0p” variable="var”/>
is modeled as a single transition annotated with true repre-
sented as

PA=({so,s1},{(pl,pt,op,out)},
{(507(plaptaopa()Ut)?Sl)};

50,51, w: {(507 true), (817 true)})

5.6.3. synchronous invoke activity denoted in BPEL as

<invoke partnerLink="pl” portType="pt” operation="op”
inputVariable="var” outputVariable="var2”/>

is modeled by two transitions, while the first one is sending
transition annotated with the message name, the second one

is a receiving transition annotated with true. The resulting
partial aDFA is represented as

PA= ({807 S1, 82}7 {(plvpta op, Zn)v (plvpta op, OU/t)}a
{(507 (pl,pt, op, in)a 31)7 (317 (pl,pt, op, OUt)v 32)}7
50, 52,0, {(507 (pl,pt, op, Zn))a (317 true): (527 true)})

The remaining communication activity pick will be dis-
cussed later, because it is a mix of structural and communi-
cation activities.

5.7. Structural Activities

Structural activities are sequence, while, switch, and
flow. They take some partial automata P A, ..., PA, and
combine them to a new partial automaton P A with
PA; = (Qi,%4, 64, Gin,is Qout,i» Fi, QA;) fori = 0,...,n
and PA = (Q7 E; 67 Qin, Qout, F7 QA)

5.7.1. while activity denoted in BPEL by
<while condition="cond”> PA; </while>

allows a single activity inside the while activity only. The
loop is created in the partial aDFA by replacing the output
state with the input state, formally denoted as

PA= O'(PAlaqout,l — qin,l)
The previous output state g,;,1 is disabled.

5.7.2. sequence activity denoted in BPEL by

<sequence> PA; PA> ... PA, </sequence>

connects the independent partial aDFAs by renaming the in-
put state of PA;,; with the output state of PA; of all par-
tial aDFAs except the last one, that is P A,, which remains
unchanged formally denoted as

n—1
PA = PAn U (U U(PAi7QOut,i - qin,i+1))
i=1

5.7.3. flow activity denoted in BPEL by
<flow> PA; PAy ... PA, </flow>

specifies parallel execution of the partial automata
PAy,...,PA,. Automata do not provide means to
model parallel execution, thus, the resulting execution se-
quences must be enumerated. A well known operation to
generate these enumeration is the shuffle product. In par-
ticular, the shuffle product keeps the message order within
each message sequence, but combines two message se-
quences in all possible combinations. A standard algorithm
of the shuffle product can be found in [9]. Applied to par-
tial aDFA the shuffle product forms a conjunction of the
annotations of the combined states.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Definition 6 (shuffle annotated automata definition)[9]
The shuffle product PA := PA,&PAs of PA, and
PAy is defined as QQ := Q1 X Q2, X := X1 U X,
Qin ‘= Qin,1 X Qin,2; Qout ‘= Gout,1 X Jout,2, F:=F xF,
A= {((pqr), o, (pg2)) €
(Q1 X Q2) X Ty X (Q1 X Q2) | (q1,x,q2) € Az}
U {((plaq)aaa(p27q)) €
(Q1 X Q2) x X1 X (Q1 X Q2) | (p1,a,p2) € Ar}

QA= U ((q1,42), €1 Ae2)

(q1,61)€EQA1,(g2,e2)EQA>

Based on the shuffle product definition the flow activ-
ity can easily be transformed into partial aDFA by shuffling
all partial automata and finally rename the combination of
the input states of all automata by a new input state, and the
combination of all output states with a new output state re-
spectively. The formal definition is given below

PA:U(U(?:1PAi7(qin,17-"7qin,n) _)qzn);
(qout717 ey qoutm) — qout)

5.7.4. switch activity denoted in BPEL by
<switch>
<case condition=""cond, "> PA, </case>
<case condition=""conds "> PAs </case>

<case condition="cond,, > PA, </case>

<otherwise> P Ay </otherwise>
</switch>
specifies an internal choice performed by evaluating the
condition statements being XPath 1.0 boolean expressions.
This choice is represented in partial aDFAs by introducing
a new input state ¢;, and an output state g, and renam-
ing input and output states of PAy,..., PA, by ¢;, and
Qowut respectively. The formal definition is

n

PA = U U(U(PAhQimi — Qin)a Qout,i — QDut)

=0

The presented approach is based on the assumption that all
conditions are pairwise disjoint.

5.7.5. pick activity denoted in BPEL as
<pick>
<onMessage partnerLink="pl, " portType="pt,”
operation="op1 " variable="var,”> PA, </onMessage>

<onMessage partnerLink="pl,,” portType="pt, "
operation="op,,” variable="var, "> PA, </onMessage>
<onAlarm> PAy </onAlarm>
</pick>
is a combination of a switch activity applied to several se-
quences of a receive activity and a partial automaton P A;.
In the current modeling the time constraints which might be

expressible in onAlarm, that is for and until , are not con-
sidered.
Each onMessage element is modeled as a single receive
transition formally described as
PA; = ({80751}7{(pljvptjaopjain)}a
{(s0,5, (Pl ptj, 0pj,in), 51,5)}, 80,5, 51,5, 0,
{(s0,5, true), (s1,;,true)})

Each of these receive transitions is sequentially com-
bined with the corresponding P A; in accordance with the
sequence activity formally described as

PA;I = U(PA; @] PAjqul)ut,j — Qin,j)

Finally, the above constructed sequences are combined
by a choice resulting in the final partial automaton formally
denoted as

n

PA:= U U(U(PA;’; q;;-t,i - qin)aq(l)lut,i - qout)

=0
5.8. Limitations

The transformation defined above is partial, in particu-
lar, the attributes joinCondition and suppressJoinFailure, as
well as the elements link and throw have not been consid-
ered. The first ones are relevant to process execution only
thus do not effect the matchmaking. The latter ones are in-
troducing additional dependencies between the different ac-
tivities, which can not be resolved in a recursive traversal of
the BPEL, but require a post-processing to reflect these ad-
ditional constraints.

6. Related Work

Service discovery is a hot research issue. In particular, a
lot of work is dedicated to define service descriptions ad-
dressing specific aspects required for service discovery.

There exist logic based approaches like for example the
Web Service Request Language (WSRL) [1], where the cor-
responding matchmaking is based on temporal and linear
constraint satisfaction. Further, DAML-S [4] aims to de-
scribe services in semantic web communities. The main
draw back of semantic annotation is the necessity of a com-
mon ontology used for annotating and querying services.
Unfortunately, no such ontology currently is in place. While
process annotations as discussed in this paper are addressed
within several papers [10, 15], unfortunately no concrete ap-
proach is mentioned. In [11] an approach based on state ma-
chines is presented providing the same expressiveness of fi-
nite state automata, but the approach has not been related
to concrete process specification languages like BPEL, and
further does not address the issue of a receiver guarantee-
ing the support of the senders potential choice.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

All the above mentioned approaches extend the currently
established service repository being based on UDDI [7], al-
though several extensions already exists, like for example
[14, 8, 21], none of them has addressed the issue of pro-
cess annotation as presented in this paper.

7. Summary and Future Work

This paper presented the concept of matching business
processes in loosely coupled architectures. In particular, a
transformation from BPEL to annotated deterministic finite
state automata has been defined. Future work will investi-
gate in more detail the effect of the BPEL link language
concept on the transformation process.

The transformation presented in this paper has been used
for implementing the IPSI Process Finder (IPSI-PF) pro-
cess matchmaking engine. Currently, this implementation is
evaluated on a set of process definitions derived from the In-
ternet Open Trading Protocol (IOTP). First results are con-
vincing with regard to the precision, while the performance
is an issue of ongoing work. In particular, the application
of IPSI-PF to dynamic service discovery scenarios require
the development of an index structure supporting the spe-
cific queries.

References

[1] M. Aiello, M. Papazoglou, J. Yang, M. Pistore, M. Carman,
L. Serafini, and P. Traverso. A request language for web ser-
vices based on planning and constraint satisfaction. In Proc.
of 3rd Int. Workshop, Technologies for E-Services (TES),
LNCS 2444, pages 76-85. Springer, 2002.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business process execution lan-
guage for web services, version 1.1, March 2003.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. Business pro-
cess execution language for web services. version 1.1.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbiz2k2/html/BPEL1-1.asp, May 2003.

[4] D.-S. C. A. Ankolekar, M. Burstein, J. R. Hobbs,
O. Lassila, D. McDermott, D. Martin, S. A. Mcllraith,
S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
Daml-s: Web service description for the semantic web.
In Proc. Ist Int’l Semantic Web Conf. (ISWC 02), vol-
ume 2342 of LNCS, pages 348-363. Springer, 2002.
http://citeseer.nj.nec.com/ankolekar02damls.html.

[5] J. Chomicki and G. Saake, editors. Logics for Database and
Information Systems. Kluwer, 1998.

[6] D. Harel. Statecharts: A visual formalism for complex sys-

tems. Science of Computer Programming, 8(3):231-274,
June 1987.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

IBM, Microsoft, HP, Oracle, Intel, and SAP. Uni-
versal description, discovery and integration, July 2002.
http://www.uddi.org/.

H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. A
service level agreement language for dynamic electronic ser-
vices. Electronic Commerce Research, 3(1-2):43-59, 2003.
O. Matz, A. Miller, A. Podtthoff, W. Thomas, and
E. Valkema. Report on the program AMoRE. Technical Re-
port 9507, Christian-Albrechts Universtaet, 1995.

M. Mecella, B. Pernici, and P. Craca. Compatibility of e-
services in a cooperative multi-platform environment. In
F. Casati, D. Georgakopoulos, and M. Shan, editors, TES
2001 LNCS 2193, pages 44-57. Springer, 2001. Lecture
notes in Computer Science 2193.

C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and
J. Warne. Contract representation for run-time monitoring
and enforcement. In Proc. of Int. Conf. on Electronic Com-
merce (CEC), pages 103—110. IEEE, 2003.

J. L. Peterson. Petri Net Theory and the Modeling of Sys-
tems. Prentice-Hall, 1981.
RosettaNet.
http://www.rosettanet.org.
A. ShaiklAli, O. F. Rana, R. Al-Alj, and D. W. Walker. Ud-
die: An extended registry for web services. In Proceedings of
the 2003 Symposium on Applications and the Internet Work-
shops (SAINT-w03). IEEE Computer Society, 2003.

K. Sycara, J. Lu, M. Klusch, and S. Widoff. Matchmaking
among heterogeneous agents on the internet. In Proceed-
ings AAAI Spring Symposium on Intelligent Agents in Cy-
berspace, Stanford, USA, 1999.

W. van der Aalst and K. van Hee. Workflow Management -
Models, Methods, and Systems. MIT Press, 2002.

W. van der Aalst and M. Weske. The P2P approach to in-
terorganizational workflows. In Proc. of 13. Int. Conf. on Ad-
vanced Information Systems Engeneering (CAISE’01), Inter-
laken, Switzerland, 2001.

W. van der Aalst. Dont go with the flow: Web services com-
position standards exposed. IEEE Intelligent Systems, pages
72-76, Jan/Feb 2003.

A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold.
IPSI-PF: A business process matchmaking engine. In sub-
mitted to CEC 04, 2004.

A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold.
Matchmaking for business processes based on choreogra-
phies. In Proc. of International Conference on e-Technology,
e-Commerce and e-Service (EEE-04). IEEE Computer Soci-
ety Press, 2004. to appear.

L. Zeng, B. Benatallah, P. Nguyen, and A. H. H. Ngu.
Agflow: Agent-based cross-enterprise workflow manage-
ment system. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Para-
boschi, K. Ramamohanarao, and R. T. Snodgrass, editors,
Proc. of 27 international conference. on VLDB, pages 697—
699, 2001.

Rosettanet homepage.

YF]',F.

COMPUTER
SOCIETY

	footer1:

