
10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona,
February 2005, pp. 139 - 147.

Specification-Based Verification and Validation of Web Services and
Service-Oriented Operating Systems

Wei-Tek Tsai, Yinong Chen, Ray Paul*
Department of Computer Science and Engineering, Arizona State University

Tempe, AZ 85287-8809, U.S.A.
*Department of Defense, Washington DC, U.S.A.

Abstract
Service-Oriented Architecture (SOA) and Web

Services (WS) have received significant attention
recently. Even though WS are based on open standards
and support software interoperability, but the trustworthy
issues of WS has actually limited the growth of WS
applications as organizations do not trust those WS
developed by other vendors and at the same time they do
not have access to the source code. This paper addressed
this issue by proposing several solutions including
specification-based verification and validation,
collaborative testing, and group testing. The key concept
is that it is possible to provide a comprehensive
evaluation of WS even if their source code is not
available.

Keywords: Web services, service composition,
collaborative testing, group testing, verification.

1. Introduction

Web Services (WS) have received significant attention
recently as it is based on a simple yet powerful Service-
Oriented Architecture (SOA) that supports easy software
interoperability via standard WS protocols such as SOAP,
UDDI, WSDL, as well as other standard protocols such
as OWL-S, CDL, BPEL. Many production and research
projects have been initiated and carried out, aiming at
finding a new way of developing and using software, by
major computer and software corporations, such as IBM,
Microsoft, Oracle, Sun Microsystems, and SAP, as well
as by universities, research laboratories, and government
agencies such as NCES, GIG-ES, JBMC2, FORCEnet
projects within U.S. DoD.

In theory, with this elegant way of WS interoperability
via standard protocols, software productivity will be
improved significantly because interoperability promotes
software reusability. While it is true that numerous WS

products are now available for public use online, the
corporations have not made use of each other WS or
integrate WS developed by others into their WS,
especially, when the WS to be developed is mission- or
business-critical. The main issue is the trust:

Can the WS developed by one organization be used in
a trustworthy application in another organization?

The answer is unfortunately "no" at this time. Even
companies that push for interoperability of WS and SOA
technology refuse to use WS developed by another
organization if the WS source code is not available. The
consequence is staggering and is affecting the current WS
development and applications.

Companies that support and promote WS and SOA
technologies are willing to integrate the WS developed by
other companies if the source code is available. However,
the WS developers may not be willing give the source
code away, and thus the technology designed to promote
interoperability may not reach its original goal due to
reasons not related to technology.

If the current trend persists, we will have several
major clusters of WS, WS within each cluster will be able
to interoperate with each other and work in a seamlessly
manner. However, WS from different clusters may not be
able to interoperate in an integrated application with each
other in spite of the fact all the WS in each cluster use the
same WS and SOA standard protocols such as WSDL,
OWL-S, SOAP and UDDI.

This is a serious challenge for the original goal of WS
and SOA, i.e., software interoperability via standard
protocols. This issue arises due to the trustworthiness,
which includes not only security, but also reliability and
safety issues.

Computer users have used software without having
access to their source code for years. People use the
software because of the reputation, the authorized
distribution channels, and availability of objective

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona, February
2005, pp. 139 - 147.

evaluation by the third parties. The problem with WS is
different: WS can be offered by unknown providers
through internet, which can be searched, bounded, and
executed at runtime. Based on our research on WS testing
[26-32], we propose several methods to address the
trustworthiness of WS offered over the internet:
• Specification-based Verification and Validation

(V&V): Proposed in this paper, V&V will be based
on WS specifications only, and thus bypass the need
of the WS source code. Techniques include
Completeness and Consistency (C&C) analysis,
model checking, and test case generation based on
WS specifications only.

• Collaborative V&V or CV&C: Instead of solely
depending on WS developers, WS V&V should
depend on all parties involved: WS clients, brokers,
providers, regulators. For example, all of them can
contribute test cases for WS testing. Moreover, it is
desirable to have a neutral 3rd-party organization to
perform objective evaluation of WS using the
contributed test cases. The role of the organization is
similar to the Consumer Reports for consumer
products and NHTSA (National Highway Traffic
Safety Administration) for rating auto safety, but this
organization will test and evaluate WS and publish
the evaluation and ranking of WS evaluated.

• Group testing: It is expensive to test a large number
of candidate WS for applications, and group testing
techniques, originally proposed for blood testing, can
be used for WS testing [27]. The key advantage of
this approach is that the test oracle can be established
and intelligent algorithms are available to test a large
number of WS rapidly.

Furthermore, once the trustworthiness issue is
addressed, SOA should not stop at the application level.
We propose in this paper to extend SOA to the entire
software system, all way through from the kernel of the
operating system to the application layer.

The remainder of the paper is organized as follows.
Section 2 outlines the WS development process. Section
3 discusses existing WS testing techniques, identifies the
missing pieces in current WS testing techniques, and
presents three new WS testing techniques. Section 4
proposes a full SOA that completely reorganize the entire
software system into a single layer of services. Finally,
section 5 concludes the paper.

2. Developing WS applications

WS development process is significantly different
from that of traditional software that consists of
specification, design, implementation, and testing. New

WS can be composed at runtime using WS found over the
Internet. For example, a new travel agency service can be
composed at runtime from existing travel agency
services, airline services, rental car services, and hotel
services.

When planning a new WS application, traditional
development steps such as specification, design,
implementation (coding), and testing are not sufficient. In
the WS applications, development steps could be
supplemented by searching, discovery, matching,
dynamic composition, remote invocation, remote
verification, and remote monitoring. Existing WS can be
searched, located, remotely invoked to deliver the
required functionality or a part of the functionality. A
new service thus can be composed dynamically and at
runtime, completely or partially using existing WS
available over the Internet.

It is a business decision, when planning new WS,
whether to use (purchase) existing WS to compose the
new WS or to pay developers to implement new WS from
scratch and sell the WS on the Internet for profit. The
former approach has the advantage of rapid development
while the latter approach could be more cost effective in
long term. As a result, a large number of alternative WS
may exist for any given WS specification.

Figure 1 illustrates a typical development process of a
WS application. First, the WS specification is written in a
WS specification language such as OWL-S, DMAL-S,
WSDL, and WS-CDL, etc. A decision needs to be made
in the first place if to decompose a Web Service into
multiple modules. If no decomposition is necessary, the
WS will consist of only one module, otherwise, it will
consist of multiple modules. For each module, WS search
will be performed and the found WS will be tested. Other
factors such as the costs of using existing WS and the
costs of writing new WS may be taken into consideration.
After unit testing, the required WS will be composed
from the modules. The composed WS will be tested for
their interoperability and overall functionality among the
modules. For the functionality, the composed WS is
tested as a unit and techniques for unit testing can be
applied.

The challenges imposed on testing WS include
• Test WS developed by unknown developers without

the source code. Often only the WS developer has
the access to the source code, while the other parties
only need to know the quality of the WS.

• Test WS at runtime: One major challenging in testing
WS is that the unpredictable environment that the
WS may run on. This issue is especially serious in
WS orchestration, which involves multiple
organizations rather than one. It is difficult to

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona, February
2005, pp. 139 - 147.

estimate how many clients will access the WS
simultaneously, how they invoke them, or whether an
unauthorized client or broker invokes the WS. WS
testing includes all of the performance, scalability,
reliability, availability, security, and stress/load
testing aspects for traditional software, but the
specialty and distributed property of WS also make
WS testing difficult and complicated, and the entire

V&V of WS also becomes critical for practical
applications.

• Test large number of available WS as potentially a
WS consumer may need to choose a WS from
hundreds of candidate WS available on the Web for
application.

.

Figure 1. Development process of Web Services

3. Specification-based WS testing

Current WS testing techniques assume component
WS have been tested properly by the WS providers and
thus focus on integration testing of composite WS. This
assumption is not acceptable if the composed WS need
to be trustworthy. In a trustworthy system, every
component must be verified before being used in a
composite WS. We thus propose to perform rigorous
unit test on the components of WS to be used in
trustworthy composite WS.

3.1 Current techniques and tools

As a software system, WS can be tested by
traditional software testing techniques, such as
functional testing, regression testing, performance
testing, security testing, stress/load testing, availability
testing, safety testing, versioning testing, compatibility
testing etc. Versioning testing and compatibility testing
are especially important in WS composition. Due to its
Web environment, certain extensions to traditional
software testing are necessary, including UDDI testing,

including WS publishing, querying, and binding
capabilities; SOAP message testing which including
intermediary capabilities; XML formatting; Service-
Oriented Architecture testing, including the
configuration, reconfiguration, composition, and re-
composition capabilities. Configuration and
reconfiguration deal with faults and failures that
prevent a part of WS from working correctly, while
composition and re-composition deal with changing
environments and evolving new functionalities into the
existing WS.

Current WS testing techniques focus on the
composition and the interoperability among WS,
including functionality testing, interface (WSDL file)
testing, SOAP message testing, stress testing, and
performance testing. A common solution is the model-
based approach [15][17][19]. In [13] the verification
problem for WS specifications is studied, aiming at
guiding the construction of composite WS to guarantee
desired properties, such as deadlock avoidance, bounds
on resource usage, and response times. Several formal
languages have been developed for modeling and
verification. BPEL [2], which combines WSFL and

WS specification

Decompose the WS into N modules, N ≥ 1

For i = 1 to N do

Found?

Search WS module i

WS unit testing:
Test case generation and collaborative

testing group testing

Pass test?

Code WS module i

Yes No

Yes

No

Compose WS from modules
1, 2, .., i

WS composition testing:
Regression testing

Interoperability testing
Orchestration testing

SOAP testing

Test case generation
Collaborative testing

Group testing

WS publishing

WS specification

Decompose the WS into N modules, N ≥ 1

For i = 1 to N do

Found?

Search WS module i

WS unit testing:
Test case generation and collaborative

testing group testing

Pass test?

Code WS module i

Yes No

Yes

No

Compose WS from modules
1, 2, .., i

WS composition testing:
Regression testing

Interoperability testing
Orchestration testing

SOAP testing

Test case generation
Collaborative testing

Group testing

WS publishing

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona,
February 2005, pp. 139 - 147.

WSCI with Microsoft’s XLANG specification,
accompanied with WS-Coordination protocol and WS-
Transaction protocol is one of the widely used
languages. Web Ontology Language (OWL) and
OWL-Services (OWL-S) are widely used in specifying
and developing WS. There are other formal methods.
Process Algebra and Petri Nets [14] have been used in
verifying software correctness. They could be applied
in verifying WS. However, it is more difficult because
WS are often associated with business and enterprise
environments that involve non-numerical transactions.
None of these approaches provides good scalability for
WS testing, nor they support automatic composition
[20] or provide testing mechanism or matrix to choose
the most qualified WS from multiple candidate WS that
claim to perform the same function.

WS testing tools are developed to enable automated
testing. Most tools support testing a single service by
simulating thousands of clients accessing the service
simultaneously. Such examples includes SilkPerformer
[25] by Segue Software, ANTS [24] by Red Gate
Software, e-Test Suite (FirstAct2.0 previously) [11] by
Empirix, Astra LoadTest [18] by Mercury Interactive,
DevPartner Studio [8] by Compuware, MQTester [7]
by Rational Software etc. Xmlspy 2005 [1] by Altova
focuses on SOAP messaging testing. SOAPtest [23] by
Parasoft can perform functional testing, stress testing,
security testing, and interoperability testing by
simulating both client side and server side.

Some WS testing tools are also development tools
that are often platform dependent, e.g. DevPartner
Studio is a development suite for Microsoft .NET
platform-based WS application, while MQTester [7] is
a test studio plug-in for IBM’s WebSphere MQ system.
For interoperability testing, WS-I provides a testing
tool to ensure the WS under development conform to
the Basic Profile 1.1 Compliance [3].

3.2 Specification-based test case generation

Because the source code of existing WS may not be
available, it is important to be able to generate test
cases from WS specifications only. WS specifications
often contain conditions and constraints the WS
operate, which can be used for test case generation.
Figure 2 shows the overall process of our specification-
based test case generation process. Assume the given
WS specifications are written in OWL-S. The
specifications written in other specification languages
such as WSDL, and WS-CDL may be translated into
OWL-S first. OWL-S facilitates WS specification with
a core set of markup language constructs for describing
the properties and capabilities of WS in an

unambiguous and computer-interpretable form. OWL-
S supports the automation of various tasks including
automated WS discovery, invocation, interoperation,
composition, and execution monitoring. The first step
is to perform specification V&V. We developed three
different specification V&V techniques: Completeness
and Consistency (C&C) analysis [30], model checking
technique based on BLAST [4][9], and verification
patterns [31]. If the specification fails the check, i.e., it
does not meet the published specification, the service
fails the test.

Once the specification passes the test, Boolean
expression analysis method is used to extract the full
scenario coverage of Boolean expressions [30], which
are then applied as the input the Swiss Cheese
Automated Test Case Generation Tool [29][32], which,
in turn, generates both positive and negative test cases.
Positive test cases are used to test if the WS output
meets the specification for the legitimate inputs, while
negative test cases are used to test the robustness, i.e.,
the behavior of the WS if unexpected inputs are
applied. Negative test is particularly important for WS
because the source code may not be available. Negative
testing will be able to verify that a service does not add
unspecified features into the code. Failing to perform
negative testing may compromise the security and
safety of the other WS that communicate with this WS.

Figure 2. WS unit testing

C&C
analysis

Fail test

Pass test
Verified?

Boolean expression analysis

Swiss Cheese (SC) tool

Positive
test cases

Test case database

WS specification

Model
checking

Verification
patterns

Negative
test cases

WS unit testing

Other
source of
test cases

WS composition

C&C
analysis

Fail test

Pass test
Verified?

Boolean expression analysis

Swiss Cheese (SC) tool

Positive
test cases

Test case database

WS specification

Model
checking

Verification
patterns

Negative
test cases

WS unit testing

Other
source of
test cases

WS composition

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona,
February 2005, pp. 139 - 147.

Finally, the test cases are stored in the test case
database before actual application. The key
technologies applied in WS unit test include:
• Completeness and consistency (C&C) analysis of

the WS specification: This checks whether all
conditions in OWL-S specification are consistent
and whether all conditions have been covered and
handled properly by the specification.

• Model checking: Model checking has been proposed
recently to facilitate software testing following the
idea that model checking verifies the model while
testing validates the correspondence between the
model and the system. One of the most promising
approaches was proposed at University of California
at Berkeley using BLAST [4][9]. The BLAST
model checker is capable to check safety temporal
properties, predicate-bound properties (in the form
to assert that at a location l, a predicate p is true or
false), and identify dead code. BLAST abstracts
each execution path as a set of predicates (or
conditions) and then these predicates are used to
generate test cases to verify programs. This
approach is attractive because it deals with code
directly rather than the state model in traditional
model checking [6][16]. Thus, the BLAST approach
is better suited for software verification than
traditional model checking. However, this approach
is not directly applicable to WS verification because
WS providers may not provide the source code.
Furthermore, the test cases generated in the BLAST
approach are targeted mainly on the positive aspects
of testing. Negative aspects such as near misses are
not handled. In our approach, we extend the BLAST
approach to adapt to WS testing in the following
ways: (1) Instead of using the source code to drive
model checking, we use the OWL-S for model
checking. The control flow automata used by
BLAST resembles the workflow model derived by
the control constructs in the process ontology of
OWL-S. (2) We rely on the conditional or
unconditional output, effect, and precondition of
each atomic / primitive WS to construct their
essential inner control logic.

• Test case generation: Test case generation
techniques can be greatly enhanced by this
comprehensive formal C&C analysis followed by
test case generation based on Boolean expressions
[30]. An important distinction of this approach is
that test case generation is based on topological
structure of Boolean expressions and quantitative
Hamming Distance (HD). Previous approaches
including MC/DC and MUMCUT [5] explores the
Boolean expressions but did not consider the
topological structure. Exploring the topological

structure of Boolean expressions can easily reveal
the faults not discoverable by previous approaches.
Furthermore, these test case generation mechanisms
can be automated and thus saving significant effort
and time. Both positive and negative test cases can
be generated. Because the topological structure of
Boolean expressions may be similar to the
topological structure of Swiss Cheese, this test case
generation is called Swiss Cheese (SC) approach.
The SC approach identifies those (positive and
negative) test cases that are most likely to fail in the
source code. The SC approach first maps the
Boolean expressions into a multi-dimension
Karnaugh map called polyhedron. It then iteratively
identifies all boundary cells of the polyhedron and
selects most fault-sensitive test cases among all
boundary cells. The more neighboring negative test
cases (degree of vertex -- DoV) a boundary cell has,
the more error-sensitive it is. The last step is post-
checking, trying to identify critical negative test
cases within the polyhedron. For each negative test
case, HD is used to define the minimum different
Boolean digits between it and any boundary cells.
The HD of all boundary cells is 0, while the one
next to it has HD of 1, and so on. A positive HD
means that the cell is outside of the Boolean
expression specified, and a negative HD means that
the cell is inside the Boolean expression specified.
By selecting cells at corners and major intersections,
one can select the most potent test cases including
positive and negative test cases.

3.3 Collaborative testing
WS offers a more competitive market than the

traditional software market. All countries can easily
provide their software products as services on the web.
It is even more competitive than “traditional” e-
commerce because the decision may be now made at
runtime rather than at “think” time. Decisions are based
on testing results in addition to other criteria such as
brand and profiles. Only the best services can survive
in such a competitive environment.

Traditional software is tested using Independent
V&V (IV&V), in which testing is done by an
independent team different from the development team.
This is a good practice to avoid common mode errors.
However it is not sufficient for WS testing. A WS
broker or provider can compose a new service using
available WS from different providers without knowing
the implementation details. WS need to be tested
collaboratively by clients, WS brokers, WS providers,
and other independent organizations such as research
institutions, standard organizations, and regulators.
Since the collaborators in testing also include the

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona,
February 2005, pp. 139 - 147.

competing WS providers, it is necessary to balance the
WS providers’ business secrets (implementation details)
and trustworthiness of the composite WS. Thus, WS
testing needs a new model: Collaborative V&V
(CV&V). Under this model, the WS providers must
still perform IV&V during the development of WS, but
when a service registers at a WS broker, the WS
provider must provide a set of sample test cases. Then
all the parties including clients, WS brokers, and WS
providers collaborate to perform CV&V. Table 1
summarizes the similarities and differences between
traditional IV&V and CV&V for WS. As can be seen,
traditional IV&V is often performed statically and off-

line. Although traditional V&V techniques can be
applied to WS, a significant portion of WS testing must
be done dynamically at runtime. Such dynamic and
just-in-time nature challenges the traditional IV&V
theory and practice.

This CV&V can be centrally performed by a neural
3rd-party. All WS participants including clients,
providers and brokers can submit WS, WS
specifications, test cases, model checker to this neutral
party, and this neutral party can perform various test
and evaluation on submitted WS using submitted test
cases and model checkers. Figure 3 shows a potential
design for this neutral party.

Table 1. IV&V versus CV&V
 Traditional IV&V Service-Oriented CV&V

Approach

The test team is independent of the
development team to ensure objectivity
and completeness. Test is done by
software providers.

Test by collaboration among WS providers, clients, and
independent WS brokers. The emphases are on real time
and just-in-time testing, and evaluation using data
dynamically collected at runtime.

Testing location Centralized multi-phase testing. Distributed, remote, multi-agent and multi-phase testing.
Operational testing Off-line field testing or simulation. On-line just-in-time testing in application environment.
Regression testing Off-line regression testing. On-line regression testing using data dynamically

collected.
Integration testing Static configurations and systems must

be linked before integration testing
Dynamic configuration and systems are linked at runtime
and verified at runtime

Testing coverage Input domain, structural (white-box),
or functional (black-box) coverage.

WS providers can have traditional coverage, brokers and
clients may have black-box (e.g., WSDL) coverage only.

Test case profiling Static profiling Dynamic profiling with data collected by distributed
agents.

Reliability
modeling

Input domain-based and reliability
growth models

Reliability models based on dynamic profiles and group
testing

Certification Static certification center. Dynamic certification based on service history.
Test case
repository

Statically maintained repository. Dynamically expanding repository.

Model Checking Model checking on the code or state
model.

Just-in-time dynamic model checking on the specification
and WSDL/DAML-S/OWL-S.

Simulation Specification and models can be
simulated to verify the design and code

Just-in-time on-the-fly simulation for composite WS.

3.4 Group testing
A group testing technique, originally developed for

testing a large number of blood samples and later for
software regression testing [10], is an attractive solution
to address the problem of testing large number of
available WS.

Assume the new WS to be composed consists of n
component WS: WS1, WS2, ..., WSn. For component WSi,

there are ki alternative WS available. Thus, there are
totally k1 * k2 * ...* kn different possibilities to compose
the new WS. Since ki is a large number it is obviously not
efficient to test all the combinations. A group testing
technique is proposed to test a large number of WS
efficiently [27]. The main idea is to test the large number
of WS in two phases. In phase 1, following steps are
executed:
1. Select a subset of WS randomly from the set of all WS

to be tested.

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona, February
2005, pp. 139 - 147.

2. Group testing: Apply each test case to all the WS in
the selected WS simultaneously.

3. Voting: For each test input, the outputs from the WS
under test are voted by a stochastic voting mechanism
based on majority and deviation voting principles.

4. Failure detection: Compare the majority output with
the individual outputs. A disagreement indicates a
component failure.

5. Oracle establishment: If a clear majority output is
found, the output can be used to form the oracle of the
test case that generates the output.

6. Test case ranking: Test cases will be ranked according
to their fault detection capacity, which is proportion to
the number failures a test case detects. In the phase 2,
the higher ranked test cases will be applied first to
eliminate the WS that failed to pass the test.

7. WS ranking: The best WS found will be selected for
new WS composition.
In phase 2, the remaining WS will be tested and a

shortlist of best WS will be generated using the oracles
and the most powerful test cases found in phase 1, so that
the overall testing time can be reduced. In phase 2,
following steps will be executed:
8. Apply the most powerful test case that has not been

used in phase 2 to group test the remaining WS;
9. Update the oracle if necessary;
10. Update WS ranking if necessary;
11. Update the test case ranking;
12. Eliminate the WS that cannot enter the shortlist;
13. return to step 8 if there are still unused test cases;
14. Output the shortlist of the best WS.

The two-phase group testing technique is name
ASTRAR for Adaptive Service Testing and Ranking with
Automated oracle generation and test case Ranking.
Extensive experiments have been conducted to verify the
effectiveness of the group testing techniques. The data
show that this approach save significant time and effort,
and at the same time achieving the same test results as
compare to exhaustive testing.

4. Full service-oriented operating systems
and the challenges

Current computer system architecture for both
software and hardware resembles an onion in which each
layer provides a set of functions depending only on the
immediate layer (ring) within it. The CPU and memory of
a computer system form the innermost ring or the core of
the system. The input/output devices form a ring
surrounding the core. For software, the innermost ring is
the Operating System (OS) kernel. The next ring is the

OS device mangers and drivers. A layer of middleware
(or agent) that supports specific types of applications
could form a ring outside the manager and driver ring.
The outermost layer of an OS is the shell or a window
that interfaces the OS functions to the programmers. The
application layer forms another ring surrounding the OS.
The advantages of such an onion architecture are:
• Each component communicates with a limited number

of components only and thus the interface is relatively
simple.

• V&V of the OS design are relatively easy because of
the hierarchical structure and limited interactions.

• A new system can be developed based on or from the
layer needed thus saving development cycle.
However, the current architecture does not support the

important features offered by the SOA architecture,
including
• Interoperability: Components in SOA are services and

are implemented strictly following interfacing
standards so that each component can easily
communicate with other components with the same
interface.

• Dynamic re-composition: The overall function of the
system can be recomposed by adding new
components, removing, replacing, and re-organizing
existing components. Re-composition is more generic
than reconfiguration, where failed component can be
replaced by a backup component.

• Searching and remote invocation: Due to the standard
interface, an SOA system can search, find, and
remotely invoke components to perform required
services. In other words, the interoperability applies
not only to the components within a system. It also
applies to the components among heterogeneous
systems, which ultimately solves the data
representation and interpretation problems among
different systems.
Current implementation of SOA is only applied at the

application layer or in a middleware layer which is
created to support service-oriented computing. The rest of
the system, i.e., the operating system, networks, and
hardware components are still implemented in the
traditional way. Thus, the benefits of SOA are applicable
at the application layer only.

In this paper we propose to apply SOA to the entire
system, including the inner layers, that is, to design a
Service-Oriented Operating System (SOOS). Figure 3
shows the structures of a traditional OS and an SOOA.
The former has an onion of layers while the latter has
only one layer: all services are equally placed in the same
layer.

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona, February
2005, pp. 139 - 147.

Figure 3. A full service-oriented operating system architecture
What is the significant difference between an SOOS

and a traditional OS? The most significant difference is
the interoperability among heterogeneous systems and the
compatibility of the applications on these systems. We
will no longer have Windows applications, Unix
applications, and Mac applications. All applications will
be compatible on the SOOS. Another major benefit is that
all the components on OS are now services that can be
added, removed, and replaced, including the system calls
and the scheduler in OS kernel. This feature will allow
the OS of a computer system to be upgraded and
gradually replaced without stopping the operations or
causing incompatible problems for the existing
applications. The current practice is, every a few years a
new OS version is released and all computer users will
have to stop all applications, install the new OS, restart
the computer, and cross their fingers to wish all the
existing applications to work on the new OS version.

What are the major challenges to the SOOA design?
V&V of SOOA will be much more challenging because
of the all-in-one layer architecture with its composability
and interoperability. The service-oriented testing
techniques presented in this paper, the specification-based
testing, dynamic model checking, CV&V, and group
testing, can be applied to test SOOA. However, due to the
complexity and the open platform design of such a
system, more research is needed before the SOOA can

gain the level of trustworthiness that a traditional OS
possesses. We urge the research community to pay
attention to the V&V issues while researching for the
functionality of full SOA systems.

5. Summary and conclusion

Current WS testing techniques assume that unit testing
has been adequately performed by the WS providers. This
assumption does not hold if trustworthy services need to
be composed based on the searched and found WS over
the Internet. Limiting the sources of WS providers
breaches the idea of the open platform on which WS are
based upon. This paper examined the importance of
dynamic WS unit test, which is significantly different
from software unit testing due to the unavailability of
source code and the runtime feature. Then this paper
proposed three techniques to perform unit testing:
specification-based test case generation, collaborative
testing, and group testing, which can enforce the
trustworthiness of the WS components before they are
integrated into the new composite WS.

Finally, this paper outlined the layout of a full SOA-
based OS, or SOOS, in which all components from the
kernel of a traditional OS through the application layer
are implemented as services. Such an architecture will
allow the OS to be upgraded and replaced without

Memory services

Scheduling services

Matching services

File services

Monitoring services
Fault detection services
Fault masking services
Verification & validation services

User interface services

Composition services

Exception handling services
Policy enforcement services
Access control
Encryption services

Dynamic reconfiguration services

SOA
Supporting
services

Storage services

Security
services

Dependability
services

System services (system calls) Core services

Caching services
Device services
Networking services

Input/output services

Publishing services
Shell services
Windows services

Traditional OS Structure

Service Oriented OS: All in one layer Function categories

OS
Kernel

Managers

Drivers

Middleware

Agents

Shell

Windows

Middleware
Agents

Applications

Application services

Memory services

Scheduling services

Matching services

File services

Monitoring services
Fault detection services
Fault masking services
Verification & validation services

User interface services

Composition services

Exception handling services
Policy enforcement services
Access control
Encryption services

Dynamic reconfiguration services

SOA
Supporting
services

Storage services

Security
services

Dependability
services

System services (system calls) Core services

Caching services
Device services
Networking services

Input/output services

Publishing services
Shell services
Windows services

Traditional OS Structure

Service Oriented OS: All in one layer Function categories

OS
Kernel

Managers

Drivers

Middleware

Agents

Shell

Windows

Middleware
Agents

Applications

Application services

10th IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona, February
2005, pp. 139 - 147.

stopping the current operations, introduce full
interoperability among heterogeneous systems, and
ultimately create platform (OS) dependent applications.
The challenges to implement full SOA-based OS are the
development of adequate V&V techniques to ensure the
trustworthiness of the SOA-based OS and the computer
system.

References
[1] Altova, “Altova XMLSpy® 2005”, http://www.

altova.com/products_ide.html
[2] Tony Andrews, Francisco Curbera, Hitesh Dholakia,

Yaron Goland, Johannes Klein, Frank Leymann, Kevin
Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana
Trickovic, Sanjiva Weerawarana, “Specification: Business
Process Execution Language for Web Services Version
1.1”, http://www-128.ibm.com/developerworks/library/
ws-bpel/

[3] Keith Ballinger, David Ehnebuske, Christopher Ferris,
Martin Gudgin, Canyang Kevin Liu, Mark Nottingham,
Prasad Yendluri, “Basic Profile Version 1.1”,
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html

[4] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R.
Majumdar, “Generating Tests from Counterexamples”,
Proceedings of the 26th International Conference on
Software Engineering (ICSE’04), Scotland, UK, May
2004, pp. 326 – 335.

[5] T. Y. Chen and M. F. Lau, “Test Cases Selection Strategies
Based on Boolean Specifications”, Software Testing,
Verification and Reliability, Vol. 11, No. 3, Sep. 2001,
pp.165-180.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking,
MIT Press, 2002.

[7] CommerceQuest, “CQ MQTester”, http://www.
commercequest.com/products_utilities_mqtester.asp#

[8] Compuware, “DevPartner Studio Professional Edition”,
http://www.compuware.com/products/
devpartner/studio.htm

[9] N. Davidson, Testing Web Services, at http://
www.webservices.org/, in October 2002.

[10] D. Z. Du and F. Hwang, Combinatorial Group Testing And
Its Applications, World Scientific, 2nd edition, 2000.

[11] Empirix, “e-Test suite”, http://www.empirix.com/
www/resources/media/pdf/brochures/br_eTESTsuite.pdf

[12] R. Fikes, A. Farquhar, “Distributed Repositories of Highly
Expressive Reusable Ontologies”, IEEE Intelligent
Systems, 14(2): 74-79, 1999.

[13] X. Fu, T. Bultan, and J. Su, “Formal Verification of E-
Services and Workflows,” Proc. Workshop on Web
Services,E-Business, and the Semantic Web (WES), LNCS
2512, Springer-Verlag, 2002, pp. 188–202.

[14] R. Hamadi and B. Benatallah, “A Petri-Net-Based Model
for Web Service Composition,” Proc. 14th Australasian
Database Conf. Database Technologies, ACM Press, 2003,
pp. 191–200.

[15] Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff
Kramer, “Model-based Verification of Web Service
Compositions”, Proceeding of the 18th IEEE International

Conference on Automated Software Engineering (ASE’03)
[16] G. Holtzman, “The Spin Model Checker,” IEEE

Transactions on Software Engineering, Vol. 23, No. 5,
May 1997, pp. 279-295.

[17] Daniel A. Menascé, “Composing Web Services: A QoS
View”, IEEE Internet Computing, IEEE Computer Society,
November-December 2004.

[18] Mercury Interactive, “Mercury Interactive Astra
LoadTest”,http://www.b2net.co.uk/mercuryinteractive/mer
cury_interactive_astra_loadtest.htm

[19] Sin Nakajima, “Verification of Web Services Flow with
Model-Checking Techniques”, Proceedings of the First
International Symposium on Cyber Worlds (CW’02),
November 2002, pp. 378 - 385.

[20] S. Nara Narayanan and S.McIlraith, “Simulation,
Verification and Automated Composition of Web
Services,” Proc. Int’l World Wide Web Conf.
(WWW2002), 2002, pp. 77–88.

[21] B. Sleeper, “The five missing pieces of SOA”,
www.infoworld.com/article/04/09/10/37FEwebservmiddle
_1.html, September 2004.

[22] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T.
Senator, and W. R. Swartout, “Enabling Technology For
Knowledge Sharing”, AI Magazine, Volume 12, No. 3,
Fall, 1991.

[23] Parasoft, “SOAPTest Data Sheet”, http://
www.parasoft.com/jsp/products/quick_facts.jsp?product=S
OAP

[24] Red-gate, “Load Testing for .NET Developers and
Testers”, http://www.red-gate.com/dotnet/load_testing.htm

[25] Segue,“SilkPerformer”,
http://www.segue.com/pdf/silkperformer.pdf

[26] W. T. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao,
"Verification of Web Services Using an Enhanced UDDI
Server", Proc. of IEEE WORDS, 2003, pp. 131-138.

[27] W. T. Tsai, Y. Chen, R. Paul N. Liao, and H. Huang,
“Cooperative and Group Testing in Verification of
Dynamic Composite Web Services”, in Workshop on
Quality Assurance and Testing of Web-Based
Applications, in conjunction with COMPSAC, September
2004, pp.170-173.

[28] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, N.
Liao, “A software reliability model for Web Services”, 8th
IASTED International Conference on Software
Engineering and Applications, Cambridge, MA, November
2004, 144-149.

[29] W. T. Tsai, X. Wei, Y. Chen, B. Xiao, R. Paul, and H.
Huang, “Developing and Assuring Trustworthy Web
Services”, 7th International Symposium on Autonomous
Decentralized Systems (ISADS), April 2005, pp. 91-98.

[30] W.T. Tsai, Lian Yu, Feng Zhu and Ray J. Paul, “Rapid
Verification of Embedded Systems Using Patterns”,
COMPSAC 2003: 466-471.

[31] W. T. Tsai, R. Paul, L. Yu, X . Wei, and F. Zhu, “Rapid
Pattern-Oriented Scenario-Based Testing for Embedded
Systems”, to appear in book Software Evolution with UML
and XML, edited by H. Yang, 2004.

[32] W. T. Tsai, X. Wei, L. Yu, R. Paul, and H. Huang,
“Condition-Event Combination Covering Analysis for
High-Assurance System Requirements”, to appear in
Computer Systems Science & Engineering (CSSE) journal.

