

WSOL – A Language for the Formal Specification of Various
Constraints and Classes of Service for Web Services

Vladimir Tosic, Bernard Pagurek, Kruti Patel

Research Report OCIECE-02-06

November 2002

WSOL – A Language for the Formal Specification of
Various Constraints and Classes of Service for Web

Services
Vladimir Tosic, Bernard Pagurek, Kruti Patel

Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive

Ottawa, ON, K1V 6L8, CANADA
+1 (613) 520-2600, x3548

{vladimir, bernie, kpatel}@sce.carleton.ca

ABSTRACT
We are developing a language, Web Service Offerings Language
(WSOL), for the formal specification of various constraints,
management statements, and classes of service for Web Services.
WSOL is an XML (Extensible Markup Language) notation
compatible with WSDL (Web Services Description Language).

A service offering in WSOL is a formal description of one class
of service of a Web Service. It contains formal representation of
various constraints: functional (pre-, post-, and future-
conditions), Quality of Service (QoS, a.k.a. non-functional, extra-
functional), and access rights. It also contains management
statements, such as statements about prices, monetary penalties,
and management responsibilities. One Web Service can be
associated with multiple service offerings. For easier
specification of similar service offerings, WSOL enables
specification of constraint groups (CGs) and constraint group
templates (CGTs). We have also developed a format for
representation of dynamic relationships between service
offerings.

WSOL service offerings are simple contracts and SLAs (Service
Level Agreements) between Web Services. Describing a Web
Service in WSOL, in addition to WSDL, enables monitoring,
metering, and management of Web Services. The Web Service,
its consumer, or one or more designated third parties (usually
SOAP message intermediaries) can meter QoS metrics and
evaluate constraints in WSOL service offerings. Further,
manipulation of service offerings can be used for dynamic
adaptation and management of Web Service compositions. In
addition, WSOL supports selection of a more appropriate Web
Service and service offering for particular circumstances.

The main distinctive characteristics of WSOL, compared to
recent related works, are its expressive power, features that
reduce run-time overhead, and orientation towards management
applications.

Categories and Subject Descriptors
K.6 [Management of Computer and Information Systems],
D.m [Miscellaneous], H.m [Miscellaneous].

General Terms
Management, Measurement, Languages.

Keywords
Web Service, constraint, class of service, service offering, SLA,
WSDL, WSOL, management of Web Services.

1. INTRODUCTION
In the last couple of years, there has been a lot of work on Web
Service technologies. The W3C (World Wide Web Consortium)
defines a Web Service as “a software application identified by a
URI, whose interfaces and binding are capable of being defined,
described and discovered by XML artifacts and supports direct
interactions with other software applications using XML based
messages via Internet-based protocols” [12]. URI means
‘Uniform Resource Identifier’ and XML means ‘Extensible
Markup Language’. The three main Web Service technologies
are the SOAP protocol for XML messaging, the WSDL (Web
Service Description Language) description language, and the
UDDI (Universal Description, Discovery, and Integration)
directory. The ultimate goal of the standardization efforts related
to Web Services is a standard platform, based on already widely
used technologies like XML, for distributed application-to-
application (A2A) and business-to-business (B2B) integration
[3].

While Web Services can be used for providing services to human
end users, their true power is leveraged through compositions
(a.k.a. orchestrations, choreographies, flows, networks) of Web
Services. Hereafter, by a consumer (a.k.a. requester, client) of a
Web Service A we assume another Web Service that is composed
with A and collaborates with it, not an end user (human) using A.
One Web Service can serve many different consumers, possibly
at the same time. On the other hand, we refer to A as the
supplier (a.k.a. provider) Web Service. The composed Web
Services can be distributed over the network, run on different
platforms, implemented in different programming languages, and
provided by different vendors.

Since Web Service technologies are relatively young,
standardization bodies do not yet address a number of important
issues. Our research group is researching issues related to
management of Web Services and Web Service compositions.
One part of this research is our work on Web Service Offerings

Web Service

- Functionality
- Access methods
- Location

- Various constraints
- Management
 statements
- Classes of service

WSDL file WSOL file

Figure 1. WSDL vs. WSOL.

Language (WSOL) – an XML language for formal specification
of various constraints, management statements, and classes of
service for Web Services.

In this section, we have defined the general area of our work and
terminology used. In Section 2, we describe the motivation and
goals for the development of WSOL. Then, in Section 3, we
discuss why we have made classes of service the central concept
in WSOL and define the term ‘service offering’. In Section 4, we
discuss in detail WSOL language features and constructs. After
that, we discuss possible applications of WSOL, primarily in the
management area, in Section 5. We briefly review some recent
related works in Section 6 and then summarize the distinctive
benefits of WSOL in Section 7. In Section 8 we make general
conclusions and summarize future work.

2. MOTIVATION AND GOALS
When SOAP, WSDL, and UDDI were first published, we
examined them to see how they support management activities. It
was easy to conclude that these technologies needed significant
additions to better support management. We were particularly
intrigued by the fact that WSDL does not support specification of
various constraints, management statements, classes of service,
SLAs (Service Level Agreements) and other contracts between
Web Services. Explicit, precise, and unambiguous specification
of such information is crucial for management activities.

Functional constraints, such as pre-conditions and post-
conditions, are invaluable in determining whether a Web Service
behaves correctly. Consequently, they are useful in fault
management and, to some extent, configuration management.
Formal and precise specification of Quality of Service (QoS,
a.k.a. non-functional, extra-functional) constraints is the basis for
monitoring and metering QoS metrics. It prescribes which QoS
metrics to monitor, where and how to do this monitoring, how to
eventually calculate aggregate QoS metrics, what the expected
values of QoS metrics are, and eventually what to do if they are
not met. Consequently, formal and precise specification of QoS
metrics is particularly useful in performance management.
Access rights, another category of constraints, limit access to
operations and ports of a Web Service and can be one part of a
comprehensive security management solution for Web Services.
Statements about prices and monetary penalties that have to be
paid are invaluable in accounting management. Grouping of
various constraints and management statements into classes of
service, SLAs, or other contracts between Web Services helps in
better handling of the complexity of management information.
Therefore, it is very useful for all management activities.

Since WSDL does not specify the information that is crucial for
our research of Web Services and Web Service compositions, we
have decided to develop our own XML language for this purpose.
We have named this language Web Service Offerings Language
(WSOL). As will be explained in the next section, we have
chosen the concept of a class of service to model SLAs and
contracts between Web Services in WSOL. We had several goals
for WSOL:

1. Usability for monitoring, metering, and management of Web
Services and Web Service compositions. Since our research
group is interested in management of Web Services and
Web Service compositions, we have envisioned WSOL as
the basis for our research on Web Services.

2. Expressive power to enable reusable specifications. When
classes of service, SLAs, or other comprehensive contracts
between two parties are specified, there is often a lot of
similar information that differs in some details. For
example, two classes of service can be the same in many
elements, but differ only in response time and price.
Expressive mechanisms for reuse of specifications enable
easier specification of new classes of service, SLAs, or
contracts from existing ones. In addition, they can be very
useful in determining similarities and differences between
two classes of service, SLAs, or contracts.

3. Reduction of run-time overhead. While monitoring and
management is a critical business activity, it can incur
significant overhead. One of the goals of our work on
WSOL has been study of mechanisms to reduce this
overhead without disabling management activities. We did
not assume that Web Services are provided by enterprises
that already have complex management frameworks and/or
application servers supporting management. While supplier
Web Services must have some infrastructure behind them to
support management activities, this need not be the case
with their consumers. Consequently, we wanted WSOL to
accommodate relatively simple consumer Web Services and
to support reduction of management overhead for supplier
Web Services.

4. Full compatibility with WSDL. WSDL is the standard for
the specification of functionality, access methods, and
location of Web Services. Our goal with WSOL was reuse
of this information and additional specification of various
constraints, management statements, and classes of service
for Web Services. Further, we have envisioned WSOL as an
optional language, separate from WSDL. While some
constraints (particularly functional) rarely change during
run-time, other constraints (particularly QoS constraints and
prices/penalties) can be changed during run-time to better
fit the execution circumstances. It is beneficial that WSOL
specifications can be created, deactivated, or reactivated
dynamically (i.e., during run-time) without modifying the
referenced WSDL files. To achieve this, a WSOL
specification has to reference the underlying WSDL
specification without modifying it.

The desired relationship between WSDL and WSOL is shown in

Figure 1. WSOL files reference WSDL files and contain
information that is not present in WSDL files.

3. SERVICE OFFERINGS
In certain circumstances, it can be useful for a Web Service to
offer several different classes of service to consumers. By a
‘class of service‘ we mean a discrete variation of the complete

Figure 2. Multiple classes of service for one Web
Service.

WSDL description of a Web Service

class of service 1 class of service 2 …

service and quality of service (QoS) provided by one Web
Service. In other words, we discuss classes of service at the level
of Web Services, not at the level of particular constraints (e.g.,
response time) that are part of the overall service and QoS of the
Web Service.

Classes of service of one Web Service refer to the same
functionality (i.e., WSDL description), but differ in constraints
and management statements. For example, they can differ in
usage privileges, service priorities, response times guaranteed to
consumers, verbosity of response information, etc. The concept of
classes of service also supports different capabilities, rights, and
needs of potential consumers of the Web Service, including
power and type of devices on which they execute. Further,
different classes of service may imply different utilization of the
underlying hardware and software resources and, consequently,
have different prices. Additionally, different classes of service
can be used for different payment models, like pay-per-use or
subscription-based. To summarize, a Web Service with multiple
classes of service can be used in different circumstances and by a
wider range of consumers. Therefore, providing multiple classes
of service enables the broadening of the market segment of a
Web Service. It also enables the Web Service to balance limited
underlying resources and the price/performance ratio.

Providing classes of services is not the only possible way to
customize constraints and management statements that a Web
Service offers to its consumers. There are various alternatives,
including custom-made SLAs, profiles, parameterization, an
separate ports. However, classes of service require relatively low
overhead and complexity of management. Since one of our goals
with WSOL was the study of mechanisms for the reduction of
run-time overhead, we have decided to make classes of service
the central concept in WSOL. We are aware that they are not a
complete replacement for all alternatives and that even the
overhead of classes of service can be too high for some
circumstances. However, even if some of the alternative
approaches were more appropriate for particular circumstances,
classes of service could be a useful addition and complement.

The concept that one Web Service can have multiple classes of
service is depicted in Figure 2.

We define a service offering as a formal representation of a
single class of service of one Web Service. Consequently, a
service offering is a combination of formal representations of
various constraints and management statements that determine
the corresponding class of service. It can also be viewed as one
contract or one SLA between the supplier Web Service, the
consumer, and eventual management third parties. A Web
Service can offer multiple service offerings to a consumer, but a
consumer can use only one of them at a time. WSOL service
offerings are specified separately from the WSDL description of
the Web Service. This enables dynamic creation, deactivation,

and/or reactivation of service offerings without any modification
of the underlying WSDL file.

Note that in WSOL service offerings are specified for the
complete Web Service, not for separate ports. In other words, we
discuss ‘component-level service offerings (CLSOs)’. In WSOL,
there is no need for a separate concept of a ‘port-level service
offering (PLSO)’ that would contain constraints and management
statements for a particular port. If needed, WSOL constraints and
management statements for one port can be grouped into a
constraint group (CG), as will be discussed later in this paper.

4. LANGUAGE FEATURES
The syntax of WSOL is defined using XML Schema. WSOL is
currently compatible with WSDL 1.1, but we will make it
compatible with WSDL 1.2 when the work on the latter is
finalized.

WSOL is based on the following specification constructs:
o constraint,
o statement,
o constraint group (CG),
o constraint group template (CGT), and
o service offering.

4.1 Constraints and Expressions
In WSOL, every constraint is a Boolean expression that states
some condition to be evaluated. The constraints can be evaluated
before and/or after invocation of operations or at particular
date/time instances. WSOL enables formal specification of:
1. Functional constraints (pre-, post-, and future-conditions).

These constraints define conditions that a functionally
correct operation invocation must satisfy. They usually
check some characteristics of message parts of the invoked
operation.

2. QoS (a.k.a. non-functional, extra-functional) constraints.
These constraints describe properties such as performance,
reliability, and availability. They check whether the
monitored QoS metrics are within specified limits.

3. Access rights. An access right specifies conditions under
which any consumer using the current service offering has
the right to invoke a particular operation. If access is not
explicitly allowed, it is forbidden. Access rights are used in
WSOL for service differentiation. On the other hand,
specification of conditions under which a particular
consumer (or a class of consumer) may use a service
offering and other security issues are outside the scope of
WSOL.

WSOL constraints are defined using the <constraint> element,
which is independent of particular types of constraints. The type
attribute of the <constraint> element refers to the XML schema
defining a particular type of constraints. We have defined XML
schemas for the above mentioned types of constraints. Using the
XML Schema mechanisms, additional types of constraints can be
defined.

Figure 3 shows an example WSOL constraint, in this case a
precondition. The <constraint> element contains attributes
determining the type of constraint, name, and scope to which it
applies. In this case, the constraint C3 applies to a particular
service, port, and operation. However, constraints and other

WSOL constructs, other than service offerings, can be defined for
scopes that are more abstract. Some examples of such ‘more
abstract’ scopes are ‘a particular operation of a particular port
type (but not a particular port)’ and ‘any operation of any port of
any service’. The shown constraint contains a simple Boolean
expression that compares an operation input parameter and a
constant.

<wsol:constraint name="C3" xsi:type= "preConditionSchema:
preCondition" service="buyStock:buyStockService"
portOrPortType="buyStock:buyStockServicePort"
operation="buyStock:buySingleStockOperation">
 <expressionSchema:booleanExpression>
 <expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticVariable
avName="buyStock:buySingleStockRequest.quantity"/>
 </expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticComparator type=">"/>
 <expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticConstant>
 <expressionSchema:integerConstant value="0"/>
 </expressionSchema:arithmeticConstant>
 </expressionSchema:arithmeticExpression>
 </expressionSchema:booleanExpression>
</wsol:constraint>

Boolean expressions in constraints can contain standard Boolean
operators (AND, OR, NOT, IMPLIES, EQUIVALENT),
references to operation message parts of type Boolean, and
comparisons of arithmetic, string, date/time, or duration
expressions. Arithmetic expressions can contain standard
arithmetic operators (+, -, unary -, *, /, **), arithmetic constants,
and references to operation message parts of numeric data types.
WSOL provides only basic built-in support for string and
date/time/duration expressions. However, it is possible to
perform external operation calls in any expression. Here,
‘external’ means ‘outside the Web Service for which the
constraint is specified’. These external operations can be
implemented by other Web Services or they can be implemented
by the management entities evaluating the given constraint. In
the latter case, although these external operations are described
with WSDL, they are invoked using internal mechanisms,
without any SOAP call. Note that WSOL does not support
operation calls upon the same Web Service because there is no
way to guarantee that they are side-effect free (i.e., that they do
not change the state of the Web Service). Evaluation of
constraints must be side effect free. WSOL also supports
checking operation message parts that are arrays (of any data
type) using quantifiers ForAll and Exists.

The concept of a future-condition is a novel concept, first
introduced in WSOL. A future-condition is a Boolean expression
evaluated some time after the supplier finishes execution of the
requested operation and sends results to the consumer. This is
different from a post-condition, which is evaluated when the
supplier sends results to the consumer. In WSOL, one can specify
that a future-condition should be evaluated: a) on a particular
date/time; b) after a specified duration elapses from the
completion of the invoked operation; c) periodically from one
date/time to another date/time with specified interval duration
and number of repeats. If a future-condition is not satisfied,
operation invocation is considered invalid and the supplier has to

pay some penalty. The concept of a future-condition enables
specification of operation effects that cannot be easily expressed
with post-conditions. This includes some effects that a Web
Service operation can have in the physical world. An example is
delivery confirmation for goods bought using Web Services.

For specification of QoS constraints, WSOL needs external
ontologies of QoS metrics and measurement units. We have
summarized requirements for such ontologies in [11]. In our
current implementation of WSOL, we have simply assumed that
ontologies of QoS metrics are collections of names with
information about appropriate data types and measurement units.
Similarly, ontologies of measurement units are simple collections
of names without any additional information. A more appropriate
definition of ontologies of QoS metrics, measurement units, as
well as monetary units for price/penalty statements is planned for
a future version of WSOL.

Note that one could argue for separate languages for different
categories of constraints. For example, one could suggest one
language for functional constraints, another language for QoS
constraints and SLAs, and maybe a third language for access
rights. However, there are benefits of describing various
constraints and management statements in one language. These
benefits are related to our goals of WSOL development,
particularly reduction of incurred overhead. There is less
overhead in supporting one language for various constraints than
several separate languages. This is because syntax of different
constraints is similar (Boolean expressions containing arithmetic
and other expressions), while management statements (such as
prices and penalties) relate to all constraints and not a particular
category of constraints. Further, a unified language for various
categories of constraints can reduce redundancies and potential
incompatibilities that can occur when similar information is
described in different ways. In addition, dependencies between
different categories of constraints can occur (although such cases
are probably rare). For example, one can state that the lowest
response time for all operations is reserved for those consumers
that have access to management operations. When all constraints
and management statements are described in one language,
suppliers can express such dependencies more easily. Finally,
formal specification of various categories of constraints and
management statements in one language enables definition of
comprehensive classes of service, the benefits of which will be
discussed in the next section.

4.2 Statements
A WSOL statement is any construct, other than a constraint, that
states some important information about the represented class of
service. WSOL enables formal specification of various
statements: price/penalty statements, management responsibility
statements, include statements, and declarations of external
operation calls.

Price statements specify the price that a consumer using the
particular service offering has to pay for successful use of the
Web Service. Penalty statements specify the monetary amount
that the Web Service has to pay to a consumer if the consumer
invokes some operation and the Web Service does not fulfil all
constraints in the service offering. WSOL price/penalty
statements support the subscription and the pay-per-use payment
models, as well as their combinations.

Figure 3. An example WSOL pre-condition.

Figure 4 shows an example price statement in WSOL. This price
statement specifies pay-per-use price for a particular operation.
The <price> element has attributes for name of the statement
and for the scope to which it applies. The currency
CanadianDollar used for this price is defined in an external
ontology of monetary units.

<wsol:price name="Price1" service="buyStock:buyStockService"
portOrPortType="buyStock:buyStockServicePort"
operation="buyStock:buySingleStockOperation">
 <wsol:numberWithUnitConstant>
 <wsol:value>0.003</wsol:value>
 <wsol:unit type="currencyOntology:CanadianDollar"/>
 </wsol:numberWithUnitConstant>
</wsol:price>

A management responsibility statement specifies what entity has
management responsibility for checking a particular constraint, a
constraint group, or the complete service offering. A management
entity can be the supplier Web Service, the consumer, or an
independent third party trusted by both the supplier and the
consumer.

The <include> statement enables constraints, statements, or
constraint groups to be reused across different service offerings,
constraint groups, and/or constraint group templates. This
powerful reuse mechanism will be discussed in more detail and
illustrated with an example later in this paper.

Declaration of external operation calls enables results of the
same external operation call to be used in several related
constraints.

4.3 Constraint Groups
A constraint group (CG) is a named set of constraints and/or
statements. A CG can also contain other CGs (including
instantiations of CGTs, which will be discussed later). Arbitrary
levels of nesting of CGs are allowed.

<wsol:CG name="CG7" service="buyStock:buyStockService”
portOrPortType= “WSOL-ANY” operation="WSOL-ANY">
 <wsol:CG name="CG8" service="buyStock:buyStock-Service"
portOrPortType="buyStock:buyStockServicePort"
operation="buyStock:buySingleStockOperation">
 …
 </wsol:CG>
 <wsol:constraint name="C7" xsi:type="preConditionSchema:
preCondition" service="buyStock:buyStockService"
portOrPortType="buyStock:buyStockServicePort"
operation="buyStock:buyMultipleStocksOperation">
 </wsol:constraint>
 …
 <wsol:include constructName="C3" resService="buyStock:
buyStockService"
resPortOrPortType="buyStock:buyStockServicePort"
resOperation="buyStock:buySingleStockOperation"
resName="C3inCG7"/>
</wsol:CG>

The WSOL concept of a CG has several benefits. First, a CG can
be reused across service offerings as a unit. Second, it is possible
to specify that all constraints from a CG are evaluated by the
same management entity. Third, constraints in different CGs can
have the same constraint name, so using CGs enables name
reuse. Fourth, one can use CGs to define aspects of service
offerings. For example, one can group all functional constraints
for one port type into one CG, QoS constraints for the same port
type into another CG, and access rights for this port type into a
third CG. Fifth, as already mentioned, CGs can be used as port-
level service offerings.

When a new CG is defined and some of the contained constraints
and CGs have been already defined elsewhere, there is no need
to define them again. They can simply be included into the new
containing CG using the WSOL <include> statement. On the
other hand, new constraints and CGs can also be defined inside a
containing CG. A new CG can be defined as an extension of an
existing CG, inheriting all constraints, statements, and nested
CGs and defining some additional ones. Extension is, in fact,
single inheritance of CGs. We have also studied multiple
inheritance, but it is not part or the current version of WSOL.
Benefits similar to multiple inheritance can be achieved in
WSOL by including several existing CGs inside the new CG. If
inside one CG two or more constraints of the same type (e.g., two
pre-conditions) are defined for the same operation, they all have
to be satisfied. This means that the Boolean AND operation is
performed between such constraints.

Figure 5 illustrates the WSOL concept of a CG. The CG named
CG7 contains the nested CG named CG8, the constraint C7, and
the <include> statement for inclusion of the constraint C3
(defined in Figure 3). The details of CG8 and C7 are left out for
brevity. Note that CG7 contains information that relates to
different operations and ports of the same service. This is
specified with the “WSOL-ANY” constant as value of attributes
of the <CG> element. During inclusion, the scope of included
constraints, statements, and CGs can be specialized (according to
some rules that are out of scope of this paper). However, in the
shown example there is no specialization of scope. Analogous
specialization of scope during instantiation of CGTs will be
shown in Figure 7.

4.4 Constraint Group Templates
A constraint group template (CGT) is a parameterized CG. At
the beginning of a CGT, one defines one or more abstract CGT
parameters, each of which has a name and a type. CGT
parameters often have the type ‘numberWithUnit’, which
requires additional information about the used measurement unit.
Definition of parameters is followed by definition of constraints
and nested CGs, in the same way as for CGs. Constraints inside
a CGT can contain expressions with CGT parameters.

<wsol:CGT name="CGT2" service="WSOL-ANY"
portOrPortType="WSOL-ANY" operation="WSOL-ANY">
 <wsol:parameter name="maxResTime" dataType="wsol:
numberWithUnit" unit="QoSMeasOntology:millisecond"/>
 <wsol:constraint name="QoScons2" service="WSOL-ANY"
portOrPortType="WSOL-ANY" operation="WSOL-ANY">
 <expressionSchema:booleanExpression>
 <expressionSchema:arithmeticExpression>
 <expressionSchema:QoSmetric metricType="QoS-
MetricOntology:ResponseTime“ service="WSOL-ANY"

Figure 4. An example WSOL price statement.

Figure 5. An example WSOL constraint group.

portOrPortType="WSOL-ANY" operation="WSOL-ANY“
measuredBy="WSOL_INTERNAL"/>
 </expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticComparator type="<"/>
 <expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticVariable avName=
"tns:CGT2.maxResTime"/>
 </expressionSchema:arithmeticExpression>
 </expressionSchema:booleanExpression>
 </wsol:constraint>
</wsol:CGT>

Figure 6 illustrates the WSOL concept of a CGT. The CGT
CGT2 and the QoS constraint QoScons2 within it are defined for
any operation of any port of any service. This CGT has one
parameter maxResTime, of the data type numberWithUnit and
measurement unit millisecond (defined in an external ontology of
measurement units). The QoS constraint QoScons2 states that
the measured value of the QoS metric ResponseTime must be less
than the value of the parameter maxResTime.

A CGT is instantiated when concrete values are supplied for all
CGT parameters. The result of such instantiation is a new CG. A
CGT can be instantiated inside a CG, a definition of another
CGT, or a service offering. One CGT can be instantiated many
times with different parameter values. For example, one can
define a CGT with one parameter ‘maxRT’ and one constraint
that the measured response time must be less than ‘maxRT’.
Then, this CGT can be instantiated with ‘maxRT’ parameter
values 20 milliseconds, 50 milliseconds, 2 seconds, etc.

The concept of a CGT in WSOL is a very powerful specification
mechanism. Many classes of service (and SLAs) contain
constraints with the same structure, but with different constant
values. In our opinion, it is an even more important specification
concept than the single inheritance (i.e., extension) of CGs,
CGTs, and service offerings. However, the WSOL concept of a
CTG also has some limitations. First, CGT definitions must not
be nested. In other words, one must not define a CGT inside
another CGT. Next, since constraints inside a CGT may contain
expressions with CGT parameters, these constraints must not be
included inside other CGTs, CGs, or service offerings. Further,
WSOL supports single inheritance (i.e., extension) of CGTs,
similarly to extension of CGs. However, a CGT extending some
other CGT must not define additional CGT parameters. Only
addition of new contained constraints, statements, and CGs is
allowed.

4.5 Syntax of Service Offerings
Syntactically, a WSOL service offering is similar to a CG. It is a
set of constraints, statements, and CGs (including instantiations
of CGTs) that all refer to the same Web Service. Further, WSOL
supports single inheritance (extension) of service offerings,
similarly to single inheritance of CGs and CGTs. The rules
discussed for CGs also apply for service offerings. An important
exception is that service offerings must not be nested. We make a
service offering a separate concept in WSOL to emphasize its
special run-time characteristics. Most importantly, consumers
can choose and use service offerings, not CGs. This is because
CGs need not be complete and consistent from the usability

view. For the same reason, dynamic relationships can be
specified only for service offerings, not for CGs.

The accounting party is a special management party responsible
for keeping track of the use of the supplier Web Service and
management third parties, as well as what constraints were kept
and what were not. In addition, the accounting party is the
default management entity. In other words, it is responsible for
evaluation of all constraints for which management responsibility
is not specified explicitly through management responsibility
statements. Due to its special purpose, the accounting party is
specified through an attribute of the <serviceOffering> element
and not through a <managementResponsibility> statement.

<wsol:serviceOffering name="SO1" service="buyStock:
buyStockService" accountingParty="WSOL-SUPPLIERWS">
 <wsol:instantiate CGTName="CGT2" resService=
"buyStock:buyStockService" resPortOrPortType="WSOL-EVERY"
resOperation="WSOL-EVERY" resCGName="CG5">
 <wsol:parmValue name="maxResTime">
 <wsol:numberWithUnitConstant>
 <wsol:value>300</wsol:value>
 <wsol:unit type="QoSMeasOntology:millisecond"/>
 </wsol:numberWithUnitConstant>
 </wsol:parmValue>
 </wsol:instantiate>
 …
</wsol:serviceOffering>

Figure 7 shows an example WSOL service offering. The
attributes of the <serviceOffering> element are name, service,
and accountingParty. Since a service offering is always defined
for a particular service, there is no need for the portOrPortType
and operation attributes present in other WSOL constructs. In
the given example, the service offering SO1 contains an
instantiation of the CGT CGT2 shown in Figure 6. Since this
CGT was defined for any operation of any port of any service,
during instantiation a more specific scope is specified, along with
the name of the result CG (CG5). The scope of the new
constraint group is every operation of every port of the Web
Service buyStockService. During instantiation, the abstract
parameter maxResTime from CGT2 is replaced with the constant
value of 300 milliseconds. Therefore, every operation of every
port of the Web Service buyStockService must have response
time less then 300 milliseconds. Other parts of the service
offering SO1 are omitted for brevity.

4.6 Relationships between Service Offerings
One important issue in WSOL is how to represent relationships
between service offerings. These relationships have to be
specified for at least three purposes. The first one is to provide a
more straightforward and more flexible specification of new
service offerings. This is needed to specify relatively similar
service offerings of one Web Service, as well as relatively similar
service offerings of similar Web Services. The second purpose is
to enable easier selection and negotiation of service offerings.
The third purpose is to support dynamic adaptation of Web
Service compositions based on the manipulation of service
offerings, which we will briefly discuss in the next section.

Figure 7. An example WSOL service offering.

Figure 6. An example constraint group template.

Consumer Web Service

Accounting party

Supplier Web Service

QoS metering party

QoS constraint
evaluation party

Figure 8. An example configuration of management
third parties as SOAP intermediaries.

Our study of this issue showed that a difference should be made
between static and dynamic relationships between service
offerings. Static relationships between service offerings are those
that do not change during run-time. For example, two classes of
service can instantiate the same template, or one class of service
can be an extension of another class of service. Such
relationships can be built into definitions of service offerings.
These relationships are crucial for easier and more flexible
specification of new service offerings from existing ones. In
WSOL, static relationships between service offerings are
modeled with the mechanism for reuse of specifications. In
particular, single inheritance (extension) of service offerings is
explicitly specified in WSOL. In addition, service offerings that
instantiate the same CGTs and/or include the same constraints,
statements, and CGs can be related to each other.

On the other hand, dynamic relationships between service
offerings are those that can change during run-time, e.g., after
dynamic creation of a new class of service. For example, one
dynamic relationship can state what class of service could be an
appropriate replacement if a particular constraint from some
other class of service cannot be met. Such relationships should
not be built into definitions of service offerings, to avoid frequent
modification of these definitions. Dynamic relationships between
service offerings are useful for easier selection and negotiation of
service offerings and for dynamic adaptation of Web Service
compositions.

After research of several alternatives, we have decided to
represent dynamic relationships between service offerings as
triples <SO1, S, SO2> where:
o SO1 is a service offering;
o S is a set of constraints, statements, and CGs from SO1 that

are not satisfied; and
o SO2 is the appropriate replacement service offering.
These triples are specified in a special XML format outside
WSOL files to make their evolution independent from the
evolution of other characteristics of a service offering.

5. APPLICATIONS
As argued in more detail in [9] and [10], WSOL can be used in
several ways. We are particularly interested in management
applications of WSOL. We strongly believe that appropriate
specification of management information is the key for successful
management activities. WSOL describes for Web Services the
QoS metrics to monitor, the constraints to evaluate, as well as
when (and to some extent: how) to perform particular
management activities. Consequently, WSOL service offerings
can be used for Web Service monitoring, metering, control,
accounting, and billing. They are precise and complete enough to
serve as simple contracts or SLAs between Web Services.
Further, dynamic (i.e., run-time) manipulation of service
offerings is a useful tool for management of Web Services and
Web Service compositions.

When a consumer submits a request for executing a supplier’s
operation, the management third parties are organized as SOAP
intermediaries for the request, as well as the eventual response
message. An example configuration of management third parties
as SOAP intermediaries is shown in Figure 8. Some QoS
metrics, such as availability, can be measured using probing
instead of message interception. WSOL supports this by

modeling probing entities as separate Web Services that provide
results of their measurements through operations of some agreed-
upon interfaces. These operations can be invoked in appropriate
QoS constraints in WSOL service offerings, using the WSOL
external operation call mechanism.

We are also researching management and dynamic adaptation of
Web Service compositions without breaking an existing
relationship between a Web service and its consumer. To achieve
this goal we are exploring management and dynamic adaptation
mechanisms that are based on the manipulation of service
offerings in WSOL. Our dynamic adaptation mechanisms include
switching between service offerings, deactivation/reactivation of
existing service offerings, and creation of new appropriate
service offerings. These mechanisms can be used between
operation invocations that are part of the same transactions or
session. We summarize them here, while more detail is given [9]
and in a forthcoming publication. The crucial support for these
mechanisms is specification of dynamic relationships between
service offerings discussed in the previous section.

Dynamic switching between service offerings enables consumers
to dynamically adapt the service they receive without the need to
find another Web service. It also enables Web services to
gracefully degrade or upgrade their service and QoS in case of
changes.

Deactivation and reactivation of service offerings is used by a
Web service in cases when changes in operational circumstances
affect what service offerings it can provide to consumers. When a
change of circumstances occurs, a Web service can dynamically
and automatically deactivate service offerings that cannot be
supported in the new circumstances. The affected consumers are
switched to an appropriate replacement service offering and
notified about the change. If there is no appropriate replacement
service offering, an alternative supplier Web Service has to be
sought. The deactivated service offering might be reactivated
automatically at a later time after another change of
circumstances and, eventually, the consumers can be
automatically switched back to their original service offering and
notified about the change.

Dynamic creation of new service offerings can be used when
there has been a change in the Web Services implementation

(e.g., in case of dynamic versioning/evolution) or the execution
environment. To some limited extent, it can also be performed
after a demand of important consumers. It then becomes a
substitute for negotiation of a custom-made contract or SLA
between Web Services. Dynamic creation of new service
offerings is often non-trivial and can incur significant overhead.
Therefore, we use it only in exceptional circumstances.

Compared to finding alternative Web Services (i.e., re-
composition of Web Service compositions), these three dynamic
adaptation mechanisms enable faster and simpler adaptation and
enhance robustness of the relationship between a Web Service
and its consumer. Further, these capabilities are simple and incur
relatively low overhead, while providing additional flexibility.
However, compared to finding alternative Web Services, these
dynamic adaptation mechanisms have limitations. Service
offerings of one Web Service differ only in constraints and
management statements, which might not be enough for
adaptation. Further, appropriate alternative service offerings
cannot always be found or created. Therefore, manipulation of
service offerings is a complement to, and a replacement for,
finding alternative Web Services. The first step in dynamic
adaptation of a Web Service composition is to try to find a
replacement service offering from the same Web Service. If this
is not possible, the second step is to try to find a replacement
Web Service and perform re-composition. In fact, a Web Service
can provide a temporary replacement service offering while the
consumer searches for another, more appropriate, Web Service.

In addition to management applications, WSOL can be used in
the process of selection of supplier Web Services (and their
service offerings) that are best for particular circumstances. As
the number of Web Services on the market that offer similar
functionality increases, the offered QoS and price/performance
ratio become important competitive advantages. Comprehensive
WSOL descriptions of Web Services, help consumers to better
choose service and QoS that they will receive and pay for.

6. RELATED WORK
Our work on WSOL draws from the considerable previous work
on differentiated classes of service and formal representation of
various constraints in other areas (e.g.,[2]). At the beginning of
our research, there was no relevant work of this kind in the area
of Web Services. In parallel with our research, several related
works emerged.

The most important related works to WSOL are two recent
languages for formal XML-based specification of custom-made
SLAs for Web Service: WSLA (Web Service Level Agreements)
[4] from IBM and the HP work on the formal specification of
Web Service SLAs [8]. The latter work seems to be part of
WSML (Web Service Management Language). SLAs in these
two languages contain QoS constraints and some management
information.

WSLA enables formal specification of contract parties, service
definitions, and obligations (service level objectives and action
guarantees) of the contract parties. ‘Service definitions’ in WSLA
contain information about schedules, triggers, SLA parameters,
metrics, operations, and operation groups. All these elements of
SLAs can be described in detail, achieving precise description of
what QoS metrics are measured, where and how they are
measured, as well as how to compute aggregate (composite)

metrics from raw measured metrics. In this aspect, WSLA
captures more detail than WSOL, which leaves definition of QoS
metrics to external ontologies. Further, QoS constraints in WSOL
relate to service level objectives in WSLA, but WSOL has only
implicit notion of action guarantees - payment of monetary
penalties.

WSML enables formal and unambiguous specification of
information about when SLAs should be evaluated, which inputs
should be considered for evaluation, where are the measurements
should occur, as well as what and how to evaluate. In addition, it
is a flexible SLA formalization, fully compatible with WSDL and
WSFL (Web Services Flow Language). However, WSML does
not enable specification of management third parties. Further,
WSML does not define the language for expressions to be
evaluated. It is assumed that expressions will be written in some
other mathematical languages, such as MathML. This means that
the infrastructure for the evaluation of WSML constraints should
also support these mathematical languages.

Both WSLA and WSML are oriented towards management
applications in inter-enterprise scenarios. It seems that they
assume existence of some measurement and management
infrastructure at both ends. This is a different assumption from
the one that we have adopted for WSOL. They specify more
detail for QoS constraints than WSOL and specify custom-made
SLAs, not classes of service. It seems that this results in higher
run-time overhead than it is needed for the simpler WSOL. Both
WSLA and WSML have some support for templates, but only at
the level of and SLA, not its parts. They do not have support for
inheritance of specifications and other support for reuse of
specifications that WSOL has. Contrary to WSOL, these
languages do not address formal specification of functional
constraints, access rights, and other constraints. To conclude,
while both WSLA and WSML are good language for their
domain and purpose, they are not addressing all issues that
WSOL does.

Another related work to WSOL is DAML-S (DAML-Services)
[5]. This community works on semantic description of Web
Services, including specification of functional and some QoS
constraints. However, properties intended for formal
specification of constraints in DAML-S are currently only
placeholders for constraints, because one can use any kind of
DAML object for them. It is expected that the DAML rule
language, when it is developed, will be used for the formal
specification of functional constraints in DAML-S. Also,
properties for QoS constraints in DAML-S are defined somewhat
ambiguously. They are not intended for actual monitoring and
metering of QoS metrics and evaluation of QoS constraints, but
only for more comprehensive description of DAML-S services.
This is a major difference DAML-S and WSOL. DAML-S also
enables a service to provide multiple service profiles, each
describing functionality and various constraints. However,
contrary to WSOL, DAML-S does not explicitly define the
concept of classes of service that relate to the same functionality.
Further, it does not address static and dynamic relationships
between classes of service. Consequently, we find that WSOL
has clear advantage in management of Web Services and Web
Service compositions. DAML-S was originally developed as a
language incompatible with the main three Web Service
technologies (SOAP, WSDL, UDDI). The works towards this
compatibility have started relatively recently.

Apart from these recent works that partially address similar
issues to WSOL, there are other works that recognize the
importance of the formal specification of various constraints,
SLAs, and contracts for Web Services. For example, the notion
of WSEL (Web Services Endpoint Language) has been
mentioned in the literature [6], but with no detailed publication
to date. One of the goals stated for WSEL was specification of
some constraints, including QoS, for Web Services. In addition,
the OGSA (Open Grid Services Architecture) [7] community also
recognizes the need for formal specification of constraints, SLAs,
and contracts. However, a Grid Service is a very special Web
Service and it is still not clear how the future results from the
OGSA community will relate to general Web Services.

7. SUMMARY OF WSOL BENEFITS
The main benefits of WSOL, compared with the recent related
works, are its expressive power, features that reduce run-time
overhead, orientation towards management applications, and full
compatibility with WSDL. These benefits are direct
consequences of the goals we had for WSOL, discussed in
Section 2.

The major features that demonstrate unique expressive power of
WSOL are:
1. WSOL enables formal specification of different categories

of constraints and management statements, as well as
multiple classes of service for one Web Service.

2. WSOL has several built-in mechanisms for reuse of
specifications:
o CGTs,
o single inheritance (extension) of service offerings,

CGs, and CGTs,
o the <include> statement,
o grouping of constraints, statements, and nested CGs

into CGs and CGTs, and
o specialization of scope during inclusion and CGT

instantiation.
These mechanisms enable easier specification of new service
offerings from similar existing ones.
3. WSOL supports specification of both static and dynamic

relationships between service offerings (although the latter
are specified outside WSOL files).

4. WSOL is extensible because new types of constraints can be
specified with the generic <constraint> element and
because QoS metrics, measurement units, and monetary
units are defined in extensible external ontologies.

The major features of WSOL that are aimed at the reduction of
run-time overhead are:
1. The central concept in WSOL is class of service

(represented by a service offering), instead of more
demanding alternatives such as custom-made SLAs, user
profiles, and others.

2. WSOL is one language for specification of various
categories of constraints (functional constraints, QoS
constraints, and access rights) and management statements.
The overhead of this approach is less than the overhead
when different languages are used for various categories of
constraints.

3. Metering of QoS metrics and evaluation of WSOL
constraints can be delegated to specialized third parties
(SOAP intemediaries or probes). This reduces the run-time

overhead at the supplier Web Service and its consumers. It
is also appropriate if consumers do not fully trust suppliers.

4. Reasoning about WSOL service offerings, for example in
the process of selection and negotiation of service offerings,
can be delegated to specialized third parties.

Some of the WSOL features that support management
applications are:
1. Constraints are specified formally and unambiguously, in a

format that can be used for automatic generation of
constraint-checking code.

2. Management statements are important parts of service
offerings:
o management responsibility statements, and
o statements about prices and monetary penalties.

3. WSOL has language support for management third parties:
o management responsibility statements,
o the monitoredBy attribute of QoS metrics, and
o management entities that are not SOAP intermediaries

can be modeled with external operation calls.
4. WSOL has explicit support for accounting parties, due to

their special characteristics.
5. WSOL supports specification of dynamic relationships

between service offering. Although this specification is done
outside WSOL files, it is dependent on naming conventions
and other features of WSOL.

Due to these and other features, WSOL can be actually used for
monitoring, metering, management, accounting, billing, and
dynamic adaptation of Web Services and Web Service
compositions. In addition to the WSOL language, we are
developing the corresponding management infrastructure and
management algorithms, which will be presented in more detail
in a forthcoming publication.

8. CONCLUSIONS AND FUTURE WORK
Numerous practical benefits can result from providing multiple
classes of service and formal specification of various constraints
for Web Services. WSOL service offerings are simple contracts
and SLAs between Web Services. Their specification and
manipulation are useful in management of Web Services and
Web Service compositions. Customization of service and QoS
through classes of service has limitations. Similarly, dynamic
adaptation mechanisms based on manipulation of classes of
service have limitation. However, they incur relatively little
overhead and require limited complexity of management.
Consequently, we find that our solutions are appropriate in many
non-trivial situations.

Formal specification of classes of service that contain various
constraints and management statements was not addressed prior
our work on WSOL. Several recent works partially address
similar issues, such as formal specification of custom-made SLAs
containing QoS constraints. However, the distinctive
characteristics of WSOL are its expressive power, features for
reduction of run-time overhead, support for management
applications, and full compatibility with WSDL 1.1.

We are working intensively on tools for WSOL. Most
importantly, we have developed a WSOL parser performing
syntax checks and some semantic checks. Its implementation is
based on the Apache Xerces XML Java parser. This parser will
be discussed in detail in a forthcoming publication. We are also

looking at automatic generation of some constraint-checking code
from WSDL and WSOL files. This is a complex issue. In this
respect, we are exploring use of composition filters [1] and
similar aspect-oriented approaches. This is because a constraint-
checking SOAP intermediary in our approach can be related to a
composition filter. Further, we plan to develop a Java API
(Application Programming Interface) for easier generation of
WSOL files, but this work is still in an early stage.

Our future work on WSOL will be oriented towards further
development of WSOL tools and further research of management
applications of WSOL. We plan full compatibility with WSDL
version 1.2 when it becomes stable. In addition, we are
considering extending WSOL to achieve compatibility with
BPEL4WS and some other improvements of the WSOL language
syntax. The improvement of formats for external ontologies (of
QoS metrics, measurement units, and monetary units), and
addition of some new categories of constraints and management
statements (such as possible roles in patterns and coordination
protocols) are important issues for future work, but they are not
our current priority.

9. REFERENCES
[1] Bergmans, L., Aksit, M. Composing Crosscutting Concerns

Using Composition Filters. Comm. of the ACM, Vol. 44,
No. 10. (Oct. 2001), pp. 51-57, ACM.

[2] Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D.
Making Components Contract Aware. Computer, Vol. 32,
No. 7 (July 1999), pp. 38-45.

[3] Curbera, F., Mukhi, N., Weerawarana, S. On the Emergence
of a Web Services Component Model. In Proc. of the WCOP
2001 workshop at ECOOP 2001 (Budapest, Hungary, June
2001). On-line at: http://www.research.microsoft.com/
~cszypers/events/WCOP2001/Curbera.pdf

[4] Dan, A., Franck, R., Keller, A., King, R., Ludwig, H. Web
Service Level Agreement (WSLA) Language Specification.
In Documentation for Web Services Toolkit, version 3.2.1
(August 9, 2002), International Business Machines
Corporation (IBM).

[5] The DAML Services Coalition. DAML-S: Semantic Markup
for Web Services. WWW page. (December 12, 2001) On-

line at: http://www.daml.org/services/daml-s/2001/10/daml-
s.html

[6] Ferguson, D. F. Web Services Architecture: Direction and
Position Paper. In Proc. of the W3C Workshop on Web
Services – WSWS’01 (San Jose, USA, Apr. 2001), W3C.
On-line at: http://www.w3c.org/2001/03/WSWS-
popa/paper44

[7] Foster, I., Keselman, C., Nick, J. M., Tuecke, S. Grid
Services for Distributed Systems Integration. Computer,
Vol. 35, No. 6 (June 2002), pp. 37-46, IEEE –CS.

[8] Sahai, A., Durante, A., Machiraju, V. Towards Automated
SLA Management for Web Services. Research Report HPL-
2001-310 (R.1), Hewlett-Packard Laboratories Palo Alto.
On-line at: http://www.hpl.hp.com/techreports/2001/HPL-
2001-310R1.pdf

[9] Tosic, V., Pagurek, B., Esfandiari, B., Patel, K. On the
Management of Compositions of Web Services. In Proc. of
the OOWS’01 (Object-Oriented Web Services 2001)
workshop at OOPSLA 2001 (Tampa, Florida, USA, Oct.
2001). On-line at: http://www.research.ibm.com/people/
b/bth/OOWS2001/tosic.pdf

[10] Tosic, V., Patel, K., Pagurek, B. WSOL - Web Service
Offerings Language. In Proc. of the Workshop on Web
Services, e-Business, and the Semantic Web (WES) at
CaiSE’02 (Toronto, Canada, May 2002). To be publ.,
Springer-Verlag, Lecture Notes in Computer Science
(LNCS).

[11] Tosic, V., Esfandiari, B., Pagurek, B., Patel, K. On
Requirements for Ontologies in Management of Web
Services. In Proc. of the Workshop on Web Services, e-
Business, and the Semantic Web (WES) at CaiSE’02
(Toronto, Canada, May 2002). To be publ., Springer-Verlag,
Lecture Notes in Computer Science (LNCS).

[12] World Wide Web Consortium (W3C). Web Services
Description Requirements. W3C Working Draft 28 October
2002. On-line at: http://www.w3.org/TR/2002/WD-ws-desc-
reqs-20021028/

