
A Concept for QoS Integration in Web Services

M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller
Freie Universität Berlin, Institut für Informatik

Takustr. 9, D-14195 Berlin, Germany
{tian, gramm, naumowic, hritter, schiller}@inf.fu-berlin.de

Abstract

With the growing popularity of Web services, a
general QoS support for Web services will play an
important role for the success of this emerging
technology. Unfortunately, current Web service
environments do not offer comprehensive QoS support. In
this paper, we present an approach that does not only
enable the QoS integration in Web services, but also the
selection of appropriate services based on QoS
requirements regarding server and network performance.
Furthermore, we present how application requirements
regarding communication QoS are mapped onto the
underlying QoS aware network at runtime, as well as how
users can obtain real-time information about server
performance in order to monitor the accomplishment of
assured services, giving the user an instant QoS feedback.

1. Introduction

Today, research activities in applications, Web
services, and communication networks are running in
many aspects widely independent from each other. In
most cases, researchers of applications and Web service
technologies assume that existing communication
infrastructures provide reliable communication.
Furthermore, researchers in middleware, Web services,
and applications are not very considerate of the resources
provided by the underlying networks. On the other hand,
research activities in certain communication architectures
and protocols are performed with less attention to
requirements of actual applications. Therefore, most
applications cannot actively consume the Quality of
Service (QoS) that may be supported in the
communication networks, and on the other hand common
network technologies do not support application-
dependent requirements.

The demand on highly reliable and highly available
Web services increases as more and more companies and
customers rely on them to satisfy business and personal
needs [1]. The growing variety of customers requires a
diverse range of QoS support. The QoS a service provider
delivers will become a decisive criterion when services

with the same functionalities are available at customers’
choice.

Nowadays, we have sophisticated technologies and
research results regarding QoS support in different
domains. They are for example DiffServ and IntServ for
the network layer QoS support, demand-based QoS
support through an adaptive end system [2], QoS aware
middleware [3], service differentiation in overloaded
servers [4]. Most recent efforts on QoS support in Web
services are for example IBM’s Web Services Level
Agreement (WSLA) [5] and HP’s Web Service
Management Language (WSML) [6]. These two
languages have been developed to specify Service Level
Agreements for Web Services. Electronic contracts are
negotiated individually and then surveyed by a monitoring
engine. Service offerings defined in the Web Service
Offerings Language (WSOL) [7] provide different
predefined classes of service for clients to choose from.

However, most of these approaches neither support the
mapping of QoS requirements from higher layers onto the
underlying network layer in terms of the Internet model
nor considerate the server performance. Figure 1 gives
examples for parameters on different layers when
mapping applications and services onto certain
transmission technologies or when pushing performance
parameters from transmission technologies up to
applications, respectively. The communication and
cooperation between different layers allows an efficient
utilization of the underlying network resources as well as
a better support of application-dependent requirements.

In this paper, we introduce our current effort tackling
the gap between the Web service layer and network layer,
as Figure 1 illustrates. We have been developing an
architecture that allows the dynamic definition,
publication, and matching of both Web service offers and
requirements regarding server performance, network
performance, security, transaction, pricing as well as
customer defined issues at both implementation time and
runtime. Our architecture supports the dynamic mapping
of requirements regarding the network performance from
higher layers onto the underlying network layer at
runtime. We have defined a Web service QoS XML
schema that both clients and service providers apply to
define the QoS parameters, so that the QoS parameters are

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

comparable. Furthermore, our architecture allows users to
obtain real-time information about server performance in
order to monitor the accomplishment of assured services,
giving the user an instant QoS feedback. Our approach is
extensible and based on Internet standards such as XML
schema, SOAP, WSDL, and UDDI. This ensures the
independence of any particular programming model and
other implementation specific semantics.

It should be noted that our architecture does not by
itself address the problems of routing, load balancing,
security, transaction, and pricing. Instead, we concentrate
on defining the WS XML schema, mechanisms for
efficient selection of QoS-aware Web services, dynamic
mapping at runtime, and instant QoS information delivery.

The goal of our prototypical implementation shown in
this paper is to prove the feasibility of our concept.
Strategies for parameter definition, selection of QoS-
aware services, and pricing can be implemented
individually. The study of these strategies is beyond the
scope of this paper.

metric

metric

communication pattern

cooperation pattern

Applications, web services,
middleware

transmission technology

technical parameters

content attributes / parameters

P2P networks, web services,
data bases, middleware

key words, categories,
names

semantic distance,
similarity, identity

reliable unicast

multicast to x neighbors,
TTL=y

technical distance

topology, delay,
dynamics, layer 3 routing,
interference, bandwidth

ad-hoc networks, mobile &
wireless networks

Examples

Figure 1. Mapping of applications and services
onto communication technology

The remainder of this paper is outlined as follows.
After discussing some related work, we present the
architecture of our QoS aware approach and discuss the
specification issues in section 3. We conclude with an
outlook of future work.

2. Related Work

To enable standardized QoS specification for Web
Services, three sophisticated approaches for QoS
specification within SLAs for Web Services have been
developed simultaneously. Some QoS parameters are also
considered in the course of process modelling.

IBM’s Web Service Level Agreement (WSLA)
framework [5] was designed to enable the specification
and monitoring of the QoS with which a Web service is
provided through electronic Service Level Agreements
(SLA). While the form of an SLA specification is
provided with the XML-based WSLA language [8] the
aspect of monitoring the compliance with an associated

SLA is implemented in the SLA Compliance Monitor
which is part of IBM’s Web Services Toolkit.

HP’s Open View Internet Services product enables a
business to manage services against service level
agreements with service level violations being instantly
reported. They describe a theoretic Web Service QoS
parameter specification model and introduce Web Service
SLAs in the form of the XML based Web Service
Management Language (WSML) [6]. Automated SLA
compliance monitoring has been realized with the
Business Management Platform Agent. Furthermore, QoS
aware service choice can be achieved through dynamic
service ranking according to the different effects that the
SLAs in question will have on a composite business
process, which are simulated in HP’s Business Process
Simulation Environment on the basis of Service Level
Information (SLI) provided by service providers.

While both WSLA and WSML foster a concept of
individually negotiated customized SLAs, a research
group from the Carleton University in Canada has
developed the notion of providing various classes of
service for one and the same functional service
specification, which differ in QoS level and management
efforts provided as well as a related prices. Distinct
service offerings are formally described in the XML-
based Web Service Offerings Language (WSOL) [7].

Distinguishing between different service levels will
influence the strategies for the design of business
processes that use Web Services service invocation. With
this in mind, it is not surprising, that features related to
QoS such as security, message reliability and transactional
QoS are also issues in business process management
(BPM) standards. So far, the most influential standards
have been Microsoft’s XLANG [9] and IBM’s Web
Services Flow Language [10]. As the most recent
development the Business Process Execution Language
for Web Services (BPEL4WS) [11] is designed to realize
a convergence of the XLANG and WSFL to endorse
further standardization with “a common model shared by
leading organizations” [12]. High level QoS support
might also be addressed during the work on the WS-
Integration specifications.

All the concepts available today differ from our
approach in that they do not use standard parameters.
Furthermore, they neither support the mapping of QoS
requirements from higher layers onto the underlying
network layer in terms of the Internet model nor
considerate the (Web service) server performance. An
effective way of comparing offers for a dynamic selection
has not yet been developed.

3. Web Service QoS Architecture

We propose QoS support in the Web service layer. By
utilizing our system, service providers can augment their

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

Web service offers with QoS aspects while clients can
define their requirements related to QoS parameters. QoS
parameters such as processing time, request rate, response
time, availability, reliability, security protocols,
transaction, price, and customer defined parameters are
declared for the Web service layer QoS support by clients
and servers. Standard and customer defined parameters
such as delay, bandwidth, jitter, and packet loss are
defined for the network layer QoS support by both parties.
It is not necessary to use the predefined parameters, one
can define her own parameters by applying the WS-QoS
Ontology (section 3.2.3).

Service providers can offer different classes of the
same services. Of course, the different classes of services
are charged differently. For example, the QoS could differ
in three categories, platinum, gold, and bronze, each with
different parameters as shown in Table 1.

Table 1. An example of different classes of a
service

Class of
service

Platinum Gold Bronze

Processing
time

0,3ms 0,7ms 0,9ms

Throughput 200
requests/s

150
requests/s

100
requests/s

… … … …

Price per
service usage

0.05€ 0.03€ 0.01€

All the QoS parameters are defined in a standardized
form based on our Web service QoS (WS-QoS) XML
schema, which will be described in section 3.2.

3.1. Web Service Broker

We introduce a Web service broker (WSB) in order to
accelerate the client lookup process for services, since a
WSB can prefetch information about Web service offers a
client could be interested in. That means a Web service
client will contact the WSB for looking up a service
instead of doing this with a UDDI registry. The WSB
holds up-to-date information on offers currently available
for a group of services. Offers are grouped by the
interface (tModel) that the services providing them
implement. The first time a service is requested and the
WSB does not have up-to-date information about this
service, one or more UDDI registries associated with the
broker are inquired. The WSDL files for these services are
then checked for WS-QoS extensions and available offers
are built. From then on this newly created offer list is
consulted to find the best match for clients.

To keep an up-to-date list of all services implementing
a given interface (tModel), the UDDI registries are
regularly checked. The available services are then
regularly checked for new offers. Once an offer expires, it
is deleted from the WSB’s registry. If the validity of the
offer is extended, it will be re-detected during the next
check.

When a client application inquires the WSB for the
cheapest available offer, it sends its QoS requirements as
a part of the request. In the order of their price, the WSB
then tests the available offers whether they fulfil the
client’s requirements. The first compliant offer is returned
to the client. It is worth noting that one can implement her
own strategy for defining the QoS parameters and the
selection of the appropriate services. We just give here a
simple idea of how the selection could be done.

There are two implementations of the WSB. One is a
local object running within the application. This ensures a
highly performing service selection and detailed
information on available offers. The other implementation
uses a remote Web Service to obtain the access point of
the most appropriate service. This version is mainly
intended as a (Web) service for multiple client
applications that could use a single private service broker
running within their network domain. This service broker
could be used by any other WS-QoS compliant
implementation, too.

Figure 2 depicts the participating roles service
providers, clients, UDDI registries, and the Web service
broker and their interactions. Note that there are no
service brokers in the standard Web service model [13].

UDDI
Registry

Service
Broker

Client
Application

Service
Provider

1

publish

9 invoke service

2

request
service

8

get best
service

3 request services

4

7

get services

test offers
against client
requirements

5
6

request service
description

get
service

description

Figure 2. Interactions between the four
participating roles

When the service broker does not have any information
about a required service, the interactions between the roles
are as follows. Note that we assume that service brokers
normally analyze service offers in advance.
1. Service providers publish their Web services to

UDDI registries. Web services available in UDDI
registries are identified uniquely by an interface key
(tModel).

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

2. Clients ask the WSB for services that implement a
certain interface and accomplish the required QoS
requirements.

3. If the WSB does not already hold up-to-date
information on offers that accomplish clients’
requirements, the WSB will request Web services
according to the interface key from one or more
UDDI registries. Note that we would prefer the model
in which the WSB prefetches information of offers
that clients could be interested in. This would
accelerate the lookup phase significantly.

4. The UDDI registries return a list of services that
implement the interface key.

5. The WSB asks the service providers for service
descriptions, e.g. WSDL files.

6. The service providers return their service descriptions
with QoS offers.

7. The WSB tests the offers against the clients’
requirements.

8. The WSB returns the most appropriate service to the
client.

9. The client directly invokes the service with the
original QoS requirements. At this time, the QoS
requirements regarding the network performance are
actively mapped onto the underlying transport
technology, as described in section 3.3.

Note that the WSB in step 7 tests the offers (step 6)
against clients’ QoS requirements sent in step 2.

3.2. The XML schema for Web service QoS
definitions

For the QoS aware dynamic selection of Web services
the QoS parameters defined by both service providers and
clients must be compared by the WSB or any other
instance. In our prototypic implementation, the WSB
selects the cheapest service fulfilling the requirements
from all available offers for services that implement the
specified interface. Of course, the WSB could implement
any other decision strategy. In order to standardize the
QoS specification for efficient comparison, we have
designed a Web service-QoS XML schema. The
standardization through the XML schema is essential
since it allows an easy lookup and selection of services.

Both QoS requirements and QoS offers are specified
by elements of the type tQoSDefinition. While only one
requirement element is allowed as a root element, multiple
offers may be held in a collection. The collection may also
contain references to WS-QoS files to include further
offers. This allows for dynamically adjusting offers
without changing the WSDL file. Furthermore, an offer
could be referenced from multiple WSDL files and thus
be reused for different services.

Next to standard parameters, custom parameters can be
declared, referring to a public WS-QoS ontology.

Therefore, an element WSQoSOntology has been designed
to hold definitions of QoS parameters and protocol
references.

In the following subsections, we will describe the QoS
definition and components participating in this process,
how offers and requirements are matched, the mapping of
the QoS requirements onto the QoS aware network as well
as how service providers deliver real-time information
about the server performance to the user.

3.2.1. QoS Definition

Elements of the type tQoSDefinition are either
instantiated as an element requirements expressing a
client’s QoS requirements or as a qosOffer representing a
minimal QoS level a service provider guarantees to
provide. The qosOffer element is extended by an attribute
expires which denotes a point in time until which the offer
will be valid.

Figure 3 shows the type tQoSDefinition. An element of
this type holds one or more elements of the type tQoSInfo.
These can be defined for the scope of an individual
operation in an operationQoSInfo element or for the
whole service in a defaultQoSInfo element.

In its contractAndMonitoring node, a node of the type
tQoSDefinition provides references to protocols needed
for service management and QoS monitoring as well as
entries of third parties that one side would be willing to
trust. The price element relates the specified QoS level to
the cost of service usage per invocation. Finally, an
extension element allows future extensions to the schema.

Figure 3. Structure of the type tQoSDefinition

3.2.2. QoS Info

The most important of all elements are those of the
type tQoSInfo as depicted in Figure 4. It holds information
on the level of QoS regarding the server performance,
transport QoS support and protocol required for providing

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

security and transaction support. In a serverQoSMetrics
element, values for the standard parameters processing
time, requests per second, reliability, and availability can
be declared for the Web service server performance as
well as customer defined server QoS metrics.

Figure 4. Structure of the type tQoSInfo

A transportQoSPriorities element specifies priorities
for the four standard transport QoS parameters delay,
jitter, throughput, and packet loss rate and optionally
customer defined transport QoS priorities.

Security and transaction management for Web Services
is realized by a variety of protocols. Most of them already
have sophisticated mechanisms of negotiating key and
session information. Therefore, security and transaction
support at this level will be restricted to listing protocols
needed for a successful service execution in a
securityAndTransaction element. As for a QoS definition,
extensibility is supported.

3.2.3. WS-QoS Ontology

Custom defined metrics, priorities, and protocol
support statements all have an attribute ontology, which
references a file containing a WS-QoS Ontology where
the referenced types are defined. By using the
combination of the ontology’s URL and the parameter
name, a reference is unique. A customer defined transport
QoS priority is defined by a distinct name and a human
readable definition of what metric the priority refers to in
a priorityDefinition element.

Figure 5. Structure of a WS-QoS Ontology

A custom server QoS metric defined in a
metricDefinition element also has a name and a human
readable description of what is measured, but it also
declares a standard unit and the direction of how values
are to be compared.

Accordingly, in a protocolDefinition element, a
protocol is defined by its name, a human readable
description about the reasons for using this protocol and
the URL of an overview document of the protocol
specification if available.

Figure 5 shows the structure of a WS-QoS Ontology
element.

3.3. Network Layer QoS Support

In the previous section, we have introduced our
approach that allows both the client and service providers
to define QoS requirements and offers based on the WS-
QoS schema. A Web service broker helps the clients to
find the appropriate offers.

As shown in section 3.2.1 and 3.2.2, client applications
can not only define QoS requirements concerning the
server performance, transaction, security, and pricing, but
also the network performance. As Figure 1 depicts, it is
essential that the underlying QoS enabled transmission
technology takes the application requirements into
account in order to achieve an overall performance gain.
The WS-QoS XML schema provides a generic mechanism
for an application to specify such requirements.
Application designers and programmers need not have any
knowledge about the underlying transport technology at
the design or implementation time, since the mapping
takes place at runtime.

In order to control and set the requirements of the
client application concerning the network performance,
we have to deal with the network streams exchanged
between the client application and the remote Web service
provider. Note that we assume that the underlying
transport technology supports QoS such as DiffServ,
ATM, or UMTS. Since different QoS enabling
technologies have different QoS mechanisms the QoS

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

parameters for transport are declared as priorities, rather
than absolute values. An instance located between the
Web service layer and the transport layer evaluates the
transport QoS parameters and maps them onto the
underlying technologies meaningfully. We call such an
instance QoS proxy.

On the client side, a QoS proxy resides between the
Web service client and the network interface. The QoS
proxy observes the traffic on a specific port, through
which the Web service client sends its requests to the
server. The QoS proxy maps the client’s requirements
onto the current QoS-aware network after detecting the
transport QoS parameters set by the client application.

On the server side, a QoS proxy or any other instance
such as a traffic shaper or a load balancer is located
between the network interface and the Web service. It sets
the QoS parameters according to the client requirements
onto the underlying transport technology when the Web
service provider sends responses to the service client.

client

QoS Proxy

Network
Interface

Web service

Network
Interface

Service client Service provider

request repsonse

DiffServ Router

QoS Proxy

<requirement>

Codepoint
111000

<requirement>

Codepoint
111000

Figure 6. QoS Proxies map client’s requirements
onto the underlying transport technology

Figure 6 depicts the participating components and the
data flows during the interaction between a Web service
client and the service provider at runtime. In this case, we
assume that the QoS-aware network is a DiffServ network.
The QoS information regarding the network performance
specified by the client is placed in the SOAP header,
which will be parsed by the QoS proxies on both the client
and server side. Based on the QoS information, the QoS
proxies mark the DiffServ specific DiffServ code points
(DSCP) in the IP packets. DiffServ routers in the network
will treat the traffic between clients and server depending
on the DSCP. For simplicity, we only show the interaction
between the Web service client and provider, ignoring the
UDDI registries and the WSB, which are Web services,
too.

3.4. Server Performance Observation

Our architecture informs users about the current server
performance in real-time. We introduce a QoS channel
between the server and the client. The QoS channel is
realized by placing information into the SOAP header.

The user defines what QoS information regarding the
server performance she is interested in. The server
delivers the required information to the client by applying
the QoS channel. The client knows the service time, which
is defined as the time interval between the moment the
client requests the service and the moment the client
receives the response. The server provides information
about its performance such as the processing time of the
current request, worse case and average values for
processing requests of different classes, and customer
defined values.

The processing time denotes the time interval a Web
service needs to process a service request. The time a
request spent for queuing at the Web service host
computer is not included. If the client knew both the
queuing and processing time of its request it would be
able to derive the network performance from this
information, since it knows the service time. Mechanisms
for determining client perceived response time is
discussed in [14]. Note that we use the QoS channel to
transport the server performance, for now. But one could
apply the generic QoS channel to transport further
information such as packets queuing time.

A graphical user interface (GUI) on the client side
shows the server and network performance. The usage of
the GUI is fully flexible. The user can switch off the GUI
completely; she can choose QoS parameters she is
interested in from the GUI. She can be alerted instantly in
case of server underperformance. Since she can request
statistics about the server performance of other classes of
the same service, she can get a feeling what would happen
if she paid for a better or worse class of the same service
as she does.

Figure 7 shows a sample GUI that allows the user to
select a service class, in this case class A, B, C, or no
choice, and information about the server performance
such as the processing time of the current request, and
statistics about worse case and average processing time.
The user can define custom values as well. The
corresponding Web service treats the client requests
differently depending on the client class. The tab pane
“AVG” shows the average server performance in all three
classes.

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

Figure 7. A GUI informs the user about the server
performance instantly

4. Conclusions and Future Work

In this paper, we have introduced our current effort on
QoS support in Web services and the dynamic mapping of
requirements from Web service layer onto the underlying
QoS aware network layer. Our approach allows the
dynamic selection of Web services depending on various
QoS requirements. The QoS definition regarding network
performance can be stated independently of the underlying
network. Its mapping onto the current transmission
technology takes place at runtime. Our approach allows
the user to receive instant information about the server
performance.

We have built a testbed in order to conduct
performance measurements of our architecture. We are
interested, for example, in the performance of the WSB
for selecting the most appropriate service in comparison
to the standard lookup model. Another interesting issue is
to extend our architecture with support for mobile clients.

5. References
[1] D. Menasce and V. Almeida, Capacity Planning for Web

Services, Prentice Hall, ISBN 0130659037, 2002.

[2] M. Bechler, H. Ritter, J. Schiller, “Quality of Service in
Mobile and Wireless Networks: The Need for Proactive and
Adaptive Applications”, 33rd Hawaii International
Conference on System Sciences-Volume 8,
http://www.computer.org/proceedings/hicss/0493/04938/04
938026abs.htm, Maui, Hawaii, January 04 - 07, 2000.

[3] K. Nahrstedt, et al., “QoS-aware middleware for ubiquitous
and heterogeneous environments”, IEEE Communications

Magazine, http://cairo.cs.uiuc.edu/publications/paper-
files/IEEEComm01.ps, Nov. 2001.

[4] T. Voigt, R. Tewari, D. Freimuth and A. Mehra. “Kernel
Mechanisms for Service Differentiation in Overloaded Web
Servers”, 2001 Usenix Annual Technical Conference,
Boston, MA, USA,
http://www.sics.se/~thiemo/usenix01.ps, June 2001.

[5] A. Dan, A. R. Franck, A. Keller, R. King, H. Ludwig
(IBM), „Web Service Level Agreement (WSLA) Language
Specification”,
http://dwdemos.alphaworks.ibm.com/wstk/common/wstkdo
c/services/utilities/wslaauthoring/WebServiceLevelAgreem
entLanguage.html, 2002.

[6] A. Sahai, V. Machiraju, M. Sayal, L. Jie Jin, F. Casati (HP),
“Automated SLA Monitoring for Web Services”,
http://www.hpl.hp.com/techreports/2002/HPL-2002-
191.pdf, 2002.

[7] V. Tosic, B. Pagurek, K. Patel, “WSOL – A Language for
the Formal Specification of Classes of Service for Web
Services”, Research Report OCIECE,
http://www.sce.carleton.ca/netmanage/papers/TosicEtAlRes
Rep03-03.pdf, Feb. 2003.

[8] A. Keller, H. Ludwig (IBM), “The WSLA Framework:
Specifying and Monitoring of Service Level Agreements
for Web Services”, IBM research report RC22456,
http://www.research.ibm.com/resources/paper_search.shtml
, 2002.

[9] S.Thatte (Microsoft), “XLANG - Web Services for
Business Process Design”,
http://www.gotdotnet.com/team/xml_wsspecs/xl ang-c/,
2001.

[10] F. Leymann (IBM), “Web Services Flow Language (WSFL
1.0)”, http://ibm.com/software/solutions/webservices/
pdf/WSFL.pdf, May 2001.

[11] IBM, Microsoft, Bea, “SAP Business Process Execution
Language for Web Services 1.1”, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel,
May 2003.

[12] BPMI.org BPML / BPEL4WS, “A Convergence Path
toward a Standard BPM Stack”,
http://www.bpmi.org/downloads/BPML-BPEL4WS.pdf,
August 2002.

[13]Heather Kreger, IBM Software Group, “Web Service
Conceptual Architecture (WSCA 1.0)”,
http://dwdemos.dfw.ibm.com/wstk/common/wstkdoc/ettk/w
stk/doc/WebServicesArchitecture.pdf

[14] D. Olshefski, J. Nieh, and D. Agrawal, “Inferring Client
Response Time at the Web Server”, Proceedings of the
ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2002)
Marina del Rey, CA,
http://parapet.ee.princeton.edu/~sigm2002/papers/p160-
olshefski.pdf, June 15-19, 2002, pp. 160-171.

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

