Available online at www.sciencedirect.com

SCIENCE(lenECT“ Electronic Notes in
Theoretical Computer
Science

ELS ER Electronic Notes in Theoretical Computer Science 126 (2005) 3-26
www.elsevier.com/locate/entcs

Modeling and Model Checking Web Services

Holger Schlingloff

Institut fir Informatik
Humboldt-Universitdt zu Berlin
Berlin, Germany,
and
Fraunhofer FIRST
Berlin
Germany

Axel Martens

Institut fir Informatik
Humboldt- Universitdt zu Berlin
Berlin, Germany

Karsten Schmidt

Institut fir Informatik
Humboldt-Universitit zu Berlin
Berlin, Germany

Abstract

We give an overview on web services and the web service technology stack. We then show how
to build Petri net models of web services formulated in the specification language BPEL4WS.
We define an abstract correctness criterion for these models and study the automated verification
according to this criterion. Finally, we relate correctness of web service models to the model
checking problem for alternating temporal logics.

Keywords: Web Service, Workflow module, Model Checking, Alternating Temporal Logic,
BPEL4AWS, Service Oriented Architecture.

I Email:hs,martens,kschmidt@informatik.hu-berlin.de

1571-0661/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2004.11.011

mailto:{hs,martens,kschmidt}@informatik.hu-berlin.de
http://www.elsevier.com/locate/entcs

4 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

1 Introduction

Service-oriented architectures are a new paradigm in the development of com-
municating computational systems which are used in business organization.
Today, more and more administrative and organizational tasks such as pro-
curement, document handling, business transactions and management aspects
are transferred to fully automated systems or at least supported by computing
systems. Web service technologies are expected to fundamentally change the
way such systems are constructed and how internal and external systems will
interact.

For example, five years ago an information system for public administration
which is used to collect and process forms containing personal data would
be conceived as follows. The system is supposed to support up to 18.000
users on 10.000 clients with 120 backend servers. It allows stationary and
mobile access via dedicated fiber optics and reserved radio bands and has an
interface module to national and European networks. It consists of three main
components, a large business transaction processing client comprising more
than 350 forms and wizards, an information server accessing a very large data
base, and a communication part allowing a distributed processing of forms and
scheduling of activities. The client component keeps a local database of open
transactions and connects to the PL/SQL server farm via SOAP /XML when
online. The server component checks on the validity of incoming request and
transfers them to the data base access programs according to a fair distribution
strategy. The communication component attaches to the usual office- and
email-applications and prepares the messages to be usable by the system.

Specification and documentation of the system is by approximately 300
“use cases”, which are textual descriptions of preconditions, possible user ac-
tions and system responses, resulting system states, and alternatives or ex-
ceptions. The use cases are the main contractual basis for the acceptance
procedure with the ordering authority. Thus, verification and testing have
been done by translating the use cases into formal descriptions, and then
checking a model of these descriptions and constructing test cases from them.
A major difficulty in this enterprise is the “black box” view onto a large dis-
tributed system: the use-cases describe the overall behaviour of the system,
whereas for testing and verification activities only parts of it were available.

For the development of the system “from scratch” about 45 person-years
were necessary; the design, implementation and placing into operation took
approximately 5 years. With such a setting, service-oriented architectures
promise a significant reduction in development cost and time. In particu-
lar, interoperability with external systems and existing components can be
achieved much more easily. Moreover, verification and testing are greatly

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 5

facilitated since they are performed on a component level.

Intuitively, a web service is “a web site for use by computers”. In a service-
oriented architecture, a service is a function that is well-defined, self-contained,
and does not depend on the context or state of other services [2]. It is devised
to be published, accessed and used via intra- or internet. A service provider
is a component offering some service for (public or limited) use. A service
broker maintains a catalogue of available services, which can be looked up
and located. The service requestor searches a service from the service broker,
and then attaches to the service provider by composing the offered service with
its own components. If the service requestor thus establishes a new service, it
may become a provider which again is registered with the service broker.

Service
_ Description

Discovery
. Agency

e publish

Service
Description
Service
Provider

Service
Requester

Interact

Fig. 1. service oriented architecture

A web service thus offers an arbitrarily complex functionality, which is
described in a global directory structure. It can be used by end users or
other web services and may be composed to form new web services. Web ser-
vices communicate in the global internet, in an organization’s intranet, and
between different intranets. Examples for internet web services include infor-
mation systems such as map or travel services, e-commerce systems such as
web shops, travel agencies, stock brokers, auctioneering houses, and business
grid appliances with a dynamic allocation of business partners. Whereas inter-

6 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

net web services enjoy the greatest public visibility, the biggest current growth
area for web services is in intranets: examples include the above transaction
processing system, organisation of business activities, production scheduling
and supervision, etc. Web services between intranets are not commonly used
because of security concerns.

In contrast to prior service-oriented architectures like DCOM, CORBA
and Enterprise Java Beans, web services connect to each other via XML mes-
sages. More specifically, the web service technology stack defines an upcoming
standard for the communication in service oriented architectures. It is com-
parable to the ISO/OSI layered model for telecommunication and consists of
the following layers: transport, messaging, description, quality of service, and
business process modelling. The transport layer builds on classical computer
network layers with the usual communication via TCP/IP and HTTP. On top
of that is the messaging layer, where XML (the extended markup language)
is used for the exchange of structured data items, and SOAP (the simple ob-
ject access protocol [5]) describes remote procedure calls and return values
with XML. Above these so-called core layers are the emerging layers which
are currently being standardized: in the description layer, WSDL [7] is an
XML-based language for specifying the syntactical interface of a web service
(i.e., its operations and connection possibilities). A WSDL file consists of two
parts: an abstract part defines language independent types, messages, oper-
ations and ports, and a concrete binding part maps abstract elements onto
concrete data structures, protocols, and addresses. The quality of service layer
consists of several optional items which can be used to enhance the connection:
WS-Security is a language for syntactic coding of nonces and authentication
information, as well as integrity and protection level of data. Protocol ele-
ments for tuning the communication between different web services can be
given in the language WS-Coordination, and WS-Transaction is for supervis-
ing a running process and starting corrective measures during the run. There
are several more suggestions for additional languages and protocol elements
on this level. Presently, the top of the stack is formed by BPEL4AWS, the
business process execution language for web services [8], which is used to ac-
tually describe the sequence of interactions which comprise a web service. The
Universal Description, Discovery and Integration language UDDI [4] allows to
describe web services for lookup, similar to yellow pages in a telephone book.

Since the languages and interfaces in this technology stack are standard-
ized, web services can be developed independently and distributed. Thus, it
is possible to focus on the modelling and validation rather than on technical
details of the communication. The situation is similar to the development of
internet home pages, where the designer should focus on the content rather

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 7

BPEL4WS
— WS-Transaction
Emerging 8 WS-
Layers Securit
Y > / WS-Coordination
WSDL
SOAP, XML
Core
Layers
TCP/IP, HTTP

Fig. 2. The web service technology stack

than on particular transport and rendering problems. In particular, for ver-
ification purposes it suffices to build an abstract version of a BPEL4AWS de-
scription, given that the lower layers have been shown to perform correctly.
BPEL4WS provides basic activities such as invoke, receive, and reply, which
are used for communication with other web services, and basic activities which
are elementary actions on XML files such as assign, copy and wait. Structured
activities include the usual control flow elements from programming languages
such as sequence, while, pick, switch, etc., and also flow and link constructs for
parallelism and synchronisation. A particularity is the introduction of scopes
which limit the range of tasks such that retraction of activities is possible via
compensation handlers.

2 Modelling BPEL4WS processes with Petri nets

The original goal of modelling BPEL processes with Petri nets was to give the
language BPEL4WS a formal semantic, and to compare the applicability of
several formalisms for this task (in parallel to a Petri net semantic [21], we
are developing a semantic based on Abstract State Machines [9]). Through
the formalistation of the informal semantic [8], we found several errors, am-
biguities, and weaknesses, mostly originating from the conceptual differences
between IBM’s WSFL [12] and Microsoft’s XLANG [23], the two “parents”
of BPEL4AWS. Some of our comments were included into subsequent working
drafts.

8 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

The Petri net semantic for BPEL4AWS consists of a set of Petri net pat-
terns, one for each BPEL activity. The patterns are place bounded Petri nets.
The boundary places form the interface to other patterns and have a distin-
guished meaning such as incoming and outgoing control flow, successful and
unsuccessful termination as well has fault, compenstation, and event handling.
Furthermore, global variables, modeled as Petri net places, can be accessed.
Fig. 3 shows a particular pattern for a simple activity invoke, responsible for
triggering another process via sending a message.

initial

{guard} [Channel]

<MessageType> | <PropertyType>
% :
obj1) i 1
[Variable] | [CorrelationSet]
(X,CS) |
I
running |
(X,CS) |
p2 5 !
I
I
|
T ! <MessageType>
X |
{!guard} tZJ ! obj3

failed

3 (X,CS) (X,CS)

final

Fig. 3. Pattern for an (asynchronous) invoke activity. When started (pl marked), it reads the
content of a message from a variable and generates, some time later (p2), a message. This process
may (t3) or may not (t2) lead to an error, for instance through a mismatch in BPELs correlation
set mechanism which coordinates different instances of one and the same process description. At
any time, the running activity may be interrupted (p5) as the result of an error occurring elsewhere.
Successful termination (t4-t7) is acknowlegded (p7).

As an example for a structured activity, we show a pattern for BPELs flow
construct, where sub-activities are executed in parallel.

For validating the semantic, we have started a student project for imple-
menting a parser from BPELAWS to Petri nets. As a first step, we built
manually the Petri net corresponding to a simple purchase order business pro-
cess (see Fig. 5) that is used as an example in the specification [8] of the

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3—26 9

negLink initial

running

innerStof,

t6

final

Fig. 4. Pattern for a flow activity. The dashed boxes carry the patterns for sub-activities. When
started (p7), control flow forks (t2), and the sub-activities are started (p3, pll). After successful
termination of both activities (p4,p12), the flow activity itself terminates (p8). When forced to
stop (p15), the inner activities are forced to stop (p5,p13), and upon acknowledgment, flow itself
acknowlegdes (p16). Places pl, p2, and p10 implement BPELs link concept that poses additional
dependencies between concurrent activities. For better readability, we left out the mechanism for
propagating faults thrown from the inner activities.

language. It contains several invoke (sending a message), receive (receive a
message), and reply (answer to a received message) activities. Some of the
activities are arranged in sequences running in parallel. Additional links pose
further causalities between activities that would otherwise run concurrently.
We resulted in a net with 158 places and 249 transitions. Thereby we ab-
stracted from data values. In the validation process, executed with the help of
the Petri net based model checking tool LoLA [17], we verified that the differ-

10 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

receive
v
asyn. _ asyn.
invoke assign invoke
| 4 |
v v
qsyn. < §yn. gsyn.
invoke invoke invoke
v v
receive receive
v
reply

Fig. 5. This process is triggered by an incoming message. Then three activities run in parallel: cal-
culating the final price (left), selecting a shipper (middle), and scheduling production and shipment
(right). Edges between different threads symbolize links.

ent patterns interact properly (e.g., stop leads to stopped, initial leads to final
or failed, linked activities are executed in correct order, and so on). The whole
state space consisted of 9991 states. On the machine used, LoLA can handle
tens of millions of states. Furthermore, LoLA offers several state-of-the-art
state space reduction techniques, including partial order reduction [24,15,18],
the symmetry method [10,22,18], and the sweep-line method [19]. While the

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 11

symmetry method was not applicable in this example, joint application of
partial order reduction and the sweep-line method lead to substantial reduc-
tion, that, however, depends on the particular property. The best reduction,
achieved when checking for termination, boiled the state space down to 1286
states. At this time, we cannot extrapolate these measures to larger examples.
Nevertheless, we could show that there are chances for successful verification
of larger processes. In particular, standard reduction techniques seem to work
well on the generated Petri nets. Furthermore, we have additional ideas for
further state space reduction. For instance, we are investigating the possi-
bility to replace certain patterns by simpler patterns, when the property to
be verified does not concern the pattern, or when static program analysis on
the BPEL source code provides additional information (e.g., impossibility of
errors in inner activities).

3 Usability analysis

For more theoretical issues related to Petri net models of web services, it is
convienient to study simpler models. For this purpose, we proposed workflow
modules [13]. This concept allows us to study questions about well-behaviour
of a service, such as usability, composability, and abstraction.

Usability is a criterion derived from the successful soundness criterion [25]
for workflows: is it possible, from every reachable situation, to terminate prop-
erly, i.e., with no garbage left? For web services, proper termination depends
on suitable interaction with the environment. So the new question is: is it pos-
sible for the environment to extract, from the description of the service itself,
a strategy for sound interaction with the service? For a well-designed process,
the answer should always be “yes”, as web services are usually required to
be self-explaining. Theoretically, this question turns out to be a special kind
of controller synthesis problem, for which we have partial solutions. For the
composability problem, two or more services are given and we ask whether they
interact properly with each other. This is an important problem as praction-
eers intend to offer web services that are arranged just by a composition of
third-party service (e.g., an online travel agency is expected to be little more
than a composition of several online airline booking services, hotel reservation
services, and car rental services). Services that interact properly should en-
joy at least the property that their composition becomes a sound, or usable
service. Finally, abstraction is important as enterprises do not like to publish
their business processes. Instead, they would generate public views that hide
internals but give sufficient information for proper interaction. The relation
between private and public view of a service can be seen as an abstraction

12 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

relation in the process algebraic sense. [13] contains some results on checking
consistency between the views, and for automated public view generation. In
the sequel, we present our results concerning the usability problem.

Definition 3.1 [Petri net] A Petri net N = [P, T, F, mg| consists of two dis-
joint sets P (places) and T (transitions) a relation ' C (P x T) U (T x P)
(arcs), and a marking my (the initial marking). A marking is a mapping
m: P — NU {0},

Definition 3.2 [Behavior of Petri nets| Transition ¢ is enabled in marking
m if, for all places p, [p,t] € F implies m(p) > 1. Transition ¢ can fire in
marking m leading to marking m’ (m[t > m') if ¢t is enabled in m and, for
all p, m'(p) = m(p) — W([p,t]) + W([t,p]) where W(f) =1 for f € F and
W(f)=0for f ¢ F. Denote the set of all reachable states with Ry.

Workflow modules [25] have a distinguished start place o and a distin-
guished end place w. An interface is a set of places. Tokens on interface
places are interpreted as messages sent via asynchronous channels. It is im-
portant to understand that the order in which messages are received may differ
from the order in which they were sent.

Every interface place represents either messages from the service to a part-
ner, or messages from a partner to the interface. That is, the service is con-
nected to the interface place in only one direction. Furthermore, we assume
that a service reads or writes only one message per transition. It may, how-
ever, perform transitions that do not interact with the interface at all. The
concept of module formalizes our view on web services as workflow modules
equipped with an interface.

Definition 3.3 [Module] M = [o,w, Py, Pr, Po, Ty, T1, To, F] is a module if
(i) {o,w} (the start and end place, resp.), Py (the set of internal places), Py
(the set of input ports), and P (the set of output ports) are pairwise disjoint,
(ii) Ths (the set of internal transitions), 77 (the set of read transitions), T
(the set of write transitions) are pairwise disjoint, (iii) [{a,w} U Py U P U
Po, Ty UTr UTp, F,myg) is a Petri net with mg(a) = 1 and mq(p) = 0 for all
other places p, (iv) for all places and transitions z, [«, 2| and [z,w] are in the
reflexive and transitive closure of F, (v) every write transition is connected
to exactly one output port and no input port, (vi) every read transition is
connected to exactly one input port and no output port, (vii) every internal
transition is connected to neither an input nor an output port.

Throughout the remainder of this section, we consider an arbitrary but
fixed module M = [a,w, ij, P], Po, TM, T[, TO7 F]
Usability can be studied in a central as well as in a distributed setting. For

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 13

distributed usability, we need to know which ports belong to one and the same
partner. We restrict ourselves to a setting where every partner has exclusive
access to some ports.

Definition 3.4 [Interface partition] An interface partition of M is a partition
U of {P; U P}

Every class in such a partition is the set of ports one particular partner may
access. In the setting of central usability, U contains just one class P; U Pp.
Fig. 6 depicts a module with internal places (with greek letters as names),
input ports a,b,g h, and output ports c¢,d,e,f. The dashed boxes represent the
interface partition {{a,c,d, g}, {b,e, f,h}}.

Partner 1 Partner 2

Fig. 6.

Informally, we think of a partner as a system that interacts with its dis-
tinguished part of the module’s interface (one particular class of U). We
postulate that such a system has states that control the activation of certain
activities, and that the activities include sending messages to, and receiving
messages from the module. We further postulate that a partner cannot infer
any knowledge about the module’s internal state at a certain stage beyond
the exploitation of the structure of the module (the Petri net) and the history
of communication until that point. That is, we assume that different partners

14 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

do not communicate with each other, that a partner does not have access to
internal places of the module or interface places belonging to other partners,
and that it is not sufficient for usability to “guess” a strategy. We further
want to exclude settings where a strategy is successful only with a certain
probability.

From these postulates it is apparant to think about a partner as an au-
tomaton where transitions trigger interaction with the module’s interface.

Definition 3.5 [Partner] Let L C P; U Py. A partner of M serving L is an
automaton A = [Q, bags(L), d, qo] with a set of states @), multisets of ports as
alphabet, a nondeterministic transition function ¢ : @ x bags(L) — p(Q), and
an initial state qq.

Fig. 7 depicts a partner serving {a,c,d, g} (left), and a partner serving
{b,e, f,h} (right) of the module in Fig. 6. The interaction of partners with
a module is formalized as a transition system. This system is basically the
interleaved parallel composition of all components. In a step of a partner,
the annotated multiset is interpreted as receiving and sending of appropriate
messages (i.e., removal or production of tokens on the port places). We skip
the formal definition, as it is obvious.

Most of our results hold for acyclic modules (i.e., the transitive closure of
F is irreflexive). Some observations simplify our theory for acyclic modules.
First, we may restrict ourselves to finite automata. We may assume a finite
limit [; for the length of the maximum reasonable number of communication
steps. [y can be determined from the workflow net. We may disregard silent
moves and moves that perform more than one send or receive action at a
time. We may further restrict ourselves to free (tree-like) automata. This has
the advantage that a state may code the unique history of communication.
Throughout the section, we write A for the empty word and X* for the set of
finite words over an alphabet X.

Definition 3.6 [Partner of acyclic module] Let L C P; U Pp. A partner of
M serving L is a free automaton A = [Q, L, d, \| with a prefix-closed set @
of words over L that all have length < [, as set of states, the set L as its
alphabet, the partial deterministic transition function ¢ where for all ¢ € Q)

and p € L, 6(q,p) = {gp} if gp € @, and 0(q,p) = 0 if gp ¢ Q, and the empty
word A as its initial state.

Consequently, a partner of an acyclic module is uniquely determined by
its set of states Q.

In [13], we proposed another, more condensed definition for partner be-
havior, called communication graphs. There, a partner would be represented
as a bipartite graph where input and output phases alternate. For central

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 15

Partner 1 Partner 2

Fig. 7.

usability, our approaches are similar, independent of the data structure used
for representing partners. For distributed usability, however, the automata
approach seems to be more successful. We therefore restrict ourselves to this
approach for both central and distributed usability.

Successful control means to interact such that the module is brought from
the initial state (only place « is marked) to a distinguished final state (only
place w is marked).

Definition 3.7 [Successful control] Let U be an interface partition U =
{Ly,...,Ly}. Let m, be the marking where m,(w) = 1, and m,(p) = 0 for
all other places p. Let Ay, ..., Ay be partners with A; serving L;. Ay, ..., Ay
control M successfully if from every state s it is possible to reach a state where
the component belonging to M is my,.

For readers familiar with temporal logic, succesful control corresponds to
the validity of the CTL formula AGEF's|y; = m,, in the composed system
(see next section).

The problem tackled here is: Given the (acyclic!) module M and a fixed
interface partition U, do partners exist which control M sucessfully?

Intuitively, states of a partner represent knowlegde the automaton has
about its environment. The following definition reveals this knowledge which
is in this case knowledge about the possible states that the connected module
can be in.

Definition 3.8 [Knowlegde function| Let A be a partner of module M serving
L. Let Q C Lx be the set of states of A. The knowledge function K : @ —
©(Ryr) is defined by: K(q) = {m | [m,q,...] € C} where C' is the union of the
state sets of all composed systems that involve M, involve A as first partner,
and arbitrary further partners.

K(q) can be easily computed for arbitrary ¢, using the given workflow

16 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

net. For several considerations in the sequel, we distinguish three kinds of
deadlocks in the module.

Definition 3.9 [Deadlocks| A deadlock of a Petri net is a marking that does
not activate any transition. In a module, a deadlock my is

(i) final iff my = m,, (the latter marking as defined in Def. 3.7);

(ii) an internal deadlock iff it is not the final marking, no output port place
is marked in my, and every transition ¢ in M has an internal input place
pin M (i.e. p € Py and [p,t] € F) that is unmarked in myg;

(iii) an external deadlock iff there is a transition where the only unmarked
places are port places (i.e. input port places), or an output port of m is
marked.

Central usability is the question whether a module can be controlled by a
single partner that accesses all ports of the module. We characterize success-
fully controlling partners and show the existence of a universal strategy, i.e. a
partner that embeds all successfully controlling partners.

Theorem 3.10 (Successful control of acyclic modules) Let A= [Q, L, 9, \|
be a partner (acc. to Def. 3.6) of the acyclic module M. Let A serve all ports
of M. Then A controls M successfully if and only if all of the following is
true for all states ¢ € Q: (i) K(q) does not contain internal deadlocks. (ii)
For every external deadlock my in K(q), there is an active port place p such
that 6(q,p) # 0. Thereby, an input port is always active while an output port
s active in mgq if it carries a token.

It can further be shown that, if M is usable, M has a unique universal
partner. Thereby, universal means that every successfully controlling partner
is embedded in the universal partner. The existence is proven by construction.
We start with a partner that exhibits all behaviors permitted by Def. 3.6.
Then we remove, step by step, everything that violates the characterization
given in Thm. 3.10. It remains either nothing—then M is not usable—or the
universal partner.

Fig. 9 illustrates the construction of a universal partner for the module in
Fig. 8. The filled states are the universal partner. In the depicted values of the
knowledge function, (e) marks external deadlocks, and (i) internal deadlocks.
All states except a and aa are removed due to internal deadlocks. aa is
removed since the external deadlock cannot be left. State a is removed since,
after removal of ab, no successor is present to leave the external deadlock.
The successors of b are not drawn as all successors of states ¢ with internal
deadlocks in K'(g) contain internal deadlocks in their K-values, too. Fig. 10
shows another construction of a universal partner. The universal partner of

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 17

Fig. 9.

the module depicted left has states with the empty set as K-values. These
states satisfy trivially the conditions of Thm. 3.10. Empty K-values indicate
that the partner can never be in such a state (here: b cannot be received
without having sent a in advance). We might be tempted to remove such
“dead code” from the universal partner. However, keeping these states in the
universal partner turns out to be crucial for our results about coordinated
distributed usability. There, we take up this example again.

Next we consider the capability of controlling a module that has an inter-
face partition consisting of more than one class of ports. Assume, throughout
the remainder of this section, an arbitrary but fixed partition U = {L, ..., Ly}
andlet L=L;U...U L.

It turns out that at least two different scenarios can be distinguished. In
the first scenario, we have a set of partners that know how the remaining
partner act. That is, they may know the algorithms according to which the
other partners run. They do not, however, know the states of the remaining

18 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

oa
a (e) <§ b D
aaQ/ ab @ ba bb
O
= @0 O
2 @
b (e) w ab
S

Fig. 10.

partners at run-time (otherwise, distributed usability would be equivalent to
central usability).

In the second setting, the task is to interact with the module without
knowing anything about the other partners beyond the general assumption
that they would not willingly defect. We start with results for the first setting,
called coordinated usability.

Definition 3.11 [Coordinated usability] Module M is coordinated usable if
there exist partners Ay, ..., Ay with A; serving L; (i € {1,...,k}) such that
they control M successfully.

Every distributed strategy corresponds to a central strategy: the set of
partner automata can be replaced by an equivalent product automaton. This
interleaved product construction can be done easily for automata but not as
easy for the bipartite partner model mentioned earlier in this section.

Techniques known from Petri net region theory [3,14] can be used to char-
acterize “distributable” central strategies. Basically, we look for a central
strategy that has “product shape”, i.e. where transitions belonging to differ-
ent parts of the interface do not disable or enable each other.

In the resulting algorithm, we start with the universal central strategy
and then remove situations where transitions enable or disable transitions
concerning other parts of the interface. We thereby may remove either the
source or the target state of the influencing transition. This results in a

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 19

nondeterministic algorithm which can, however, hardly be avoided, as the
following consideration suggests.

.
a
SEnER G

®
A A A
@ @
a b@
Strategy 1 Strategy 2

Fig. 11.

Fig. 11 shows a possible result of the algorithm The two partners are
the only two pairs of successfully controlling partners for the interface par-
tition {{a}, {b}}. Since, starting with a symmetrical module, we obtain two
asymmetrical solutions (they are symmetric to each other, but not symmetric
in themselves), we have some kind of indication that every algorithm that
enumerates product partners explicitly needs to have some instrument for
breaking symmetry, such as the choose-and-backtrack in our solution.

Now we consider the situation where a partner needs to act without knowl-
edge about how the remaining partners act. We call this setting uncoordinated
usability. In such a setting, the module in Fig. 11 cannot be usable. Remind
that we fixed a module M and an interface partition U.

Though we want to study a partner’s behavior in isolation, it is still neces-
sary to pose some requirements on the remaining partners. Obviously, without
any restriction on the other partners, almost every nontrivial module becomes
unusable. Consider, for instance, the case where the remaining partners just do
nothing or send unrequested messages. For a reasonable definition it is thus
necessary to assume that the partners act reasonably, from their particular
knowledge about the module. This “reasonable” behavior is formalized in the

20 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

concept of local consistency. We can show that a module is controlled success-
fully whenever all partners act locally consistent. This justifies our definition
of uncoordinated usability as the existence of locally consistent strategies for
all involved interface classes.

In first approximation, we consider “reasonable” any partner that behaves
as if it were the only partner, i.e. as if all other interface transitions of M were
internal transitions. This includes avoidance of internal deadlocks as well as
help in leaving external deadlocks. However, a few adjustments are necessary.
First, a partner cannot control ports belonging to other involved partners.
That is, we cannot make a partner responsible for the marking on those ports.
The objective of a partner must therefore be limited to bringing the module
internally to its final state (to mark the final place w while cleaning all other
internal places), and to clean all its own port places. We cover this observation
be a modified classification of deadlocks.

Definition 3.12 [New classification of deadlocks] Let L; C L. A deadlock m
of M is locally final w.r.t. L;, if m(w) =1 and m(p) =0 for all p € Py, U L;.
m is locally internal w.r.t. L; if it is internal but not locally final.

Note that the concept of external deadlock remains unchanged.

A second modification concerns treatment of external deadlocks. In central
usability (cf. Thm. 3.10) we required a partner to provide an action for
every external deadlock that module M can be in. This is not reasonable for
distributed usability, since there may be external deadlocks that need to be
resolved by other partners. Consequently, we change the concept of active
input ports to: an input port p is active in a marking m if m(p) = 0 and for
least one transition ¢ of M connected to p ([p,t] € F'), p' € Py and [p/,t] € F
imply m(p’) > 0 (i.e. all internal pre-places of ¢ are marked). In other words,
an input port is active in m if sending a message to that port can help to
leave that deadlock. An output port remains active if it is marked. We are
now ready to define local consistency. Remember the definition of function K
(Def. 3.8).

Definition 3.13 [Local consistency] Let A; be a partner serving L;, and Q;
be its set of states. A; is locally consistent if all of the following conditions
hold for all ¢ € Q;.

(i) K(q) does not contain locally internal deadlocks;

(i) for every external deadlock m € K(q) that has an active input port p in
L;, there is an active (input or output) port p’ € L; such that gp’ € Q;.

Thereby, “active” concerns the conditions described above.

The conditions of local consistency are similar to the requirements of Thm.

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 21

3.10.

Theorem 3.14 Let M be an acyclic module. If all of A1, ..., Ay with A; serv-
ing L; for all i are locally consistent then Ay, ..., Ay control M successfully.

With this theorem, it is justified to define uncoordinated usability as fol-
lows.

Definition 3.15 [Uncoordinated usability] Acyclic module M is uncoordi-
nated usable if, for every class L; of the given interface partition, there exists
a locally consistent partner.

Consider the module in Fig. 6. Among the two partners depicted in Fig. 7,
the left partner is locally consistent while the right one is not. For the module
in Fig. 11, it is easy to see that there are no locally consistent partners. Intu-
itively, it is impossible to control the module without an agreement between
the partners about which of them is responsible for sending a message.

4 Usability and alternating-time logic

The notion of usability can be formulated in alternating-time temporal logic
ATL* as defined in [1]. This logic was designed to formulate correctness
properties for open systems, which are to be proved correct with respect to
an arbitrary environment. However, in ATL* also the controller synthesis
problem ([16], [11]) can be formulated: For a given system with controlled
and uncontrolled states, construct a controller which always keeps the system
within some safe set of states. As we will show, this problem is very close
to the problem of constructing an environment which correctly uses a given
workflow module.

For sake of presentational completeness, we recall the definition of game
structures and the semantics of alternating-time logics. Conceptually, we are
dealing with two-player turn-based asynchronous game structures with incom-
plete information and perfect recall. Such structures can be described as tuples
S = (M, P,v,§, turn) where

e M is a nonempty set of states,

e P is a nonempty set of propositions,

e v C M x P is a propositional valuation,
e 0 C M x M is a transition relation, and

o turn: M — {sys, env} is a function indicating for each state whether the
system or the environment may choose the next state.

22 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

Thus, game structures are just classical Kripke structures with an addi-
tional component conferring in each state the nondeterministic choice of the
next state onto some “player” from © = {sys, env}.

A strategy with perfect recall o for 6 € © is a function which selects for each
finite sequences (mo, ..., m,) of states such that turn(m,) = 6 and §(m,,) # 0
some successor state m,.; € M (that is, (my, m,11) € 0).

In other words, a strategy for the system selects, whenever it is the system’s
turn, one out of the various choices which the system could make to resolve
nondeterminism. This selection may take into account the complete history of
the computation so far. Similarly, a strategy for the environment determines
the moves in states with turn(m,,) = env.

A computation of a game structure S from state mg € M under the
strategy oy is a finite or infinite sequence (mg, m1,ma, ...) of states such that
(m;, miy1) € 0 for each i, and if turn(m;) = 6, then m;,; is chosen according
to 0y. Given a strategy for the environment and a strategy for the system,
there is exactly one possible computation under both strategies.

In a distributed system, each global state is composed of several sub-states,
one for each distributed component. Often, a player can observe and influence
only particular sub-states. For example, the environment E of a web service
W can observe only the outputs and influence the inputs of W. While E
can choose its own state and outputs according to some strategy, it has no
knowledge or control of the internal state of W.

Formally, a game structure with incomplete information contains for each
player 8 € © an equivalence partitioning ~ of the set of states which satisfies
the following requirements:

o If my ~p mo, then turn(state,) = 0 iff turn(states) = 6.

o If my ~ my and turn(state;) = 6, then for each m} such that (my,m}) € §
there exists an m} such that (mq, mj) € 6 and m) ~p mj,.

The first of these two conditions guarantees that in each equivalence class, the
active player is uniquely determined. The second says that equivalent states
have the same set of successor classes. (As usual, we call an equivalence class
[m/] the successor of a state m, if there is some representative m’ € [m/] such
that (m,m’) € 4.)

A strategy with incomplete information gy for 8 € © is a function which
selects for each finite sequences ([myg], ..., [m,]) of equivalence classes of states
such that turn(m,) = 6 and 6(m,) # 0 some successor class [m,1]. Given
a concrete state m,,, the second condition above guarantees that a concrete
successor state in the chosen successor class exists.

Now we describe a logic to reason about game structures with incomplete

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 23

information. The syntax of the temporal logic ATL* is given by the following
clause.

ATL =P | 1L | (ATL* — ATL*) | (ATL* 4 ATL*) | (©)ATL*

That is, each proposition is a well-formed formula, the logic is closed under
boolean operators, contains the temporal until-operator and an additional
modality for quantification of strategies. As usual, [f]¢ is short for =((6))—¢p.
Traditionally, F ¢ stands for (-L) U ¢ and G ¢ for = F —p.

The semantics is defined with respect to a particular state m and strategies
geny and ogys of a game structure (with or without complete information)

S = (M,P,v,d, turn).
* (S,m,0env, osys) = piff (m,p) € v for pe P

(S, m, oenv, Usys) B L
* (S,m,0env, osys) | (1 — o) iff

(57m706nv,0'sy5) = 1 implies (S, m, cenw, Usys) 2

o (S,m,0env,0sys) F (g1 U o) iff there exists a finite nonempty sequence
of states (mg, mi,...,my,) such that m = mg, each m;;1 is selected ac-
cording to the appropriate strategy of the player whose turn it is in m;,
(S, m;, 0env, O'Sys)): Y1 fOI' all O < 7 < n, and (S, My, 0env, O'Sys) ’: ©2.
(S,m,oenv,0sys) = ((env)g iff there exists a strategy opp, such that
(S, m, oeny, osys) ¢
(S, m, oenv, osys) = (sys) e is defined likewise

We say that (S,m) = ¢ iff (S,m,0env, osys) = @ for all strategies oeny
and O'gys.

Intuitively, the ()) quantifier fixes one particular strategy or subtree for
the evaluation of the formula. In a game structure with complete information
where both the strategies of player and environment are fixed, there is only one
possible computation path; therefore in this case ((env))((sys)¢ is equivalent
to the CTL* formula E¢. The dual quantifier [f] “overrides” any previous
binding of the strategy for #: whenever it is #’s turn, any alternative can be
taken. Thus, e.g. the CTL formula A F ¢ can be expressed as [env][sys] F ¢.

The model checking problem is to determine whether (S, m) | ¢ for any
given any S, m and . This problem is decidable for finite game structures with
complete information in doubly exponential time, but undecidable in general
for strategies with incomplete information ([1]). However, for specific instances
and sublanguages, decidable efficient model checking algorithms exist.

Now we associate a game structure with every module M as described
in section 3. Generally, a state in a Petri net is identified with a mark-
ing, i.e. a function from places into natural numbers. However, in our con-

24 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

text, we also have to model partners and interfaces. Assume a module M =
[, w, Py, Pr, Po, Tar, Tr, To, F| and a partner which in any step can put a to-
ken into any input place or subtract a token from any nonempty output place.
The set of states is {f : P — N} x {sys, env}. The transition relation is
given by the behavior of the Petri net and its partner, where (m, (f, sys)) € 0
iff (m, (f, env)) € 4. Of course, turn((f,0)) = 6.

Now we give equivalence partinionings for both the environment and the
system. The environment can observe only Py. Hence, for the environment all
states are equivalent which differ only in P, U P;. The system can observe its
internal places and inputs. Thus, for the system all states are equivalent which
differ only in Pp. With this definition, the two requirements on strategies with
incomplete information are met.

To formulate properties of a module in ATL*, we allow all formulas (p = n)
as atomic propositions, where p is a place in the net and n is a natural number.
Thus,

w=(w=)AAP=0)
pFw
is a formula describing the final state in a succesfully controlled module.
With this definition, usability of a workflow module can be characterized
as an ATL* formula. Let

¢ = ((en)) G (sys)) F w

be the formula which states that there exists a strategy for the (unspecified)
environment which guarantees that for any state reachable under this strategy
the system has a strategy to bring the module eventually to the distinguished
final state. Then M is usable iff (S, mg) = ¢, where S is the game structure
associated with M and mq is the state associated with the initial marking of
the net.

Other properties mentioned above such as coordinated usability can be
characterized in a slightly extended framework with several players.

5 Conclusion

We described an approach to modeling web services specified in the language
BPEL4WS with the help of Petri nets. We modeled an example process and
were able to validate several features of the Petri net semantic using state
space exploration techniques. We further were able to modelcheck correctness
requirements of the process. We then proposed the notion of workflow module
as a simple Petri net equivalent for web services and defined a notion of cor-
rectness for these modules, called usability. We presented results concerning

H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26 25

computer aided usability analysis for acyclic workflow modules. The analysis
covers scenarios of central as well as distributed usability. Finally, we related
the usability problem to the model checking problem for alternating temporal
logic.

Currently, we are implementing an automated translation from BPEL4WS
to Petri nets, giving as access to larger examples. We are developing state
space reduction techniques applicable to the decision procedure for central and
distributed usability. Ultimately, we want to build up an integrated modeling,
verification, and testing environment for web services.

On the theoretical side, we are investigating generalizations of our usability
criteria to cyclic web services. This would enable us to verify a larger class
of web services. Furthermore, we are developing methods for the automated
generation of test cases from models of BPEL specifications. Finally, we are
exploring the capabilities of alternating logics for the specification of relevant
correctness criteria in the context of web service technology.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. Journal of
the ACM 49:672-713, 2002.

[2] D.K. Barry. Web Services and Service-Oriented Architectures. Morgan Kaufmann (2003).

[3] E. Badouel and P. Darondeau. Theory of regions. Lectures on Petri neets 1: basic models, pp.
529-258. LNCS 1491, 1998.

[4] T. Bellwood, L. Clement, and C. von Riegen. UDDI
- Universal Discovery, Description, and Integration, Version 2.0. Standard UDDI.org, 2002.
http://www.uddi.org/ipubs/uddi_v3.htm

[5] Box, Ehnebuske, Kakivaya,Layman,Mendelsohn,Nielsen, Thatte, Winer. SOAP - Simple
Object Access Protocol. Version 1.1. Standard W3C. 2000. http://www.w3.org/TR/soap/

[6] C.G.Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer 1999.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL - Web Service
Description Language, Version 1.1. Standard. W3C, 2001. http://www.w3.org/TR/wsdl/

[8] Curbera, Goland, Klein, Leymann, Roller, Thatte, and Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Technical report, BEA Systems,
Interantional Business Machines Corporation, Microsoft Corporation, May 2003.

[9] D. Fahland. Ein Ansatz einer formalen Semantik der Business Process Execution Language for
Web Services mit Abstract State Machines. Studienarbeit. Humboldt-Universitat zu Berlin,
2004.

[10] Huber, A. Jensen, Jepsen, and K. Jensen. Towards reachability trees for high—level petri nets.
In Advances in Petri Nets 1984, Lecture Notes on Computer Science 188, pages 215-233, 1984.

[11] A. Ichikawa and K. Hiraishi. Analysis and control of discrete-event systems represented as
Petri nets. In P. Varaiya and B. Kurzhanski, editors, Discrete Event Systems: Models and
Applications, ITASA Conference, Soprpon Hungary, August 3-7, 1987, number 103 in Lecture
Notes in Control and Information Sciences, pages 115134. Springer- Verlag, 1988.

http://www.uddi.org/ipubs/uddi_v3.htm
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl/

26 H. Schlingloff et al. / Electronic Notes in Theoretical Computer Science 126 (2005) 3-26

[12] F. Leymann. WSFL — Web Service Flow Language. Whitepaper: IBM Software Group, 2001.
http://ibm.com/webservices/pdf/WSFL.pdf

[13] A. Martens. Verteilte Geschéftsprozesse — Modellierung und Verifikation mit Hilfe von Web
Services. Dissertation, Humboldt-Universitat zu Berlin, 2003.

[14] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems. Theoretical
Computer Science 96(1992), pp. 3-33.

[15] D. Peled. All from one, one for all: on model-checking using representitives. 5th Int. Conf.
Computer Aided Verification,Elounda, Greece, LNCS 697, pages 409-423, 1993.

[16] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J.Control and Optimization 25(1), pp. 206-230, 1987.

[17] K. Schmidt. LoLA - A Low Level Analyzer. Proc. Int. Conf. Application and Theory of Petri
nets, LNS 1825, pp. 465ff, 2000.

(18] K. Schmidt. Explicit State Space Verification. Habilitation thesis. Humboldt-Universitat zu
Berlin, 2002.

[19] K. Schmidt. Automated generation of a progress measure for the sweep-line method. Proc.
TACAS 2004, LNCS 2988, pp. 192ff, 2004. Submitted to a journal.

[20] K. Schmidt and C. Stahl. A Petri net semantics for BPEL4AWS — validation and application.
Workshop Algorithmen und Werkzeuge fiir Petrinetze, Paderborn, September 2004.

[21] C. Stahl. Transformation von BPEL4AWS in Petrinetze. Diplomarbeit, Humboldt-Universitat
zu Berlin, April 2004.

[22] P. Starke. Reachability analysis of Petri nets using symmetries. J. Syst. Anal. Model. Simul.,
8:294-303, 1991.

(23] S. Thatte. XLANG - Web services for Business Process Design. Initial public draft: Microsoft
Corporation, 2001. http://www.gotdotnet.com/team/xml_wsspecs/xlang-c

[24] A. Valmari. Error detection bu reduced reachability graph generation. Proc. of the 9th
European Workshop on Application and Theory of Petri Nets, Venice, 1988.

[25] W.M.P. van der Aalst. The application of Petri nets to workflow management. Journal of
circuits, systems, and computers 8(1) pp. 21-66, 1998.

http://ibm.com/webservices/pdf/WSFL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c

	Introduction
	Modelling BPEL4WS processes with Petri nets
	Usability analysis
	Usability and alternating-time logic
	Conclusion
	References

