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Abstract— We argue that essential facets of web services,
and especially those useful to understand their interaction,
can be described using process-algebraic notations. Web service
description and execution languages such as BPEL are essentially
process description languages; they are based on primitives for
behaviour description and message exchange which can also be
found in more abstract process algebras. One legitimate question
is therefore whether the formal approach and the sophisticated
tools introduced for process algebra can be used to improve the
effectiveness and the reliability of web service development. Our
investigations suggest a positive answer, and we claim that process
algebras provide a very complete and satisfactory assistance
to the whole process of web service development. We show
on a case study that readily available tools based on process
algebra are effective at verifying that web services conform
their requirements and respect properties. We advocate their
use both at the design stage and for reverse engineering issues.
More prospectively, we discuss how they can be helpful to tackle
choreography issues.

I. INTRODUCTION

Developing web services (WSs) raises many software en-
gineering issues, some of which are new and some of which
have been recurrent problems already encountered in previous
programming paradigms. Implementing WSs is error-prone,
because of the complex interactions and message exchanges
that have to be specified. E-commerce applications also need
to match the requirements expressed by their users, and it
is therefore needed that these requirements be stated accu-
rately. A more unusual specificity that distinguishes them
from more traditional software components is their being
accessed through the internet. WSs are distributed, indepen-
dent processes which communicate with each other through
the exchange of messages, and the central question in WS
engineering is therefore to make a number of processes work
together to perform a given task.

Due to this specificity, it has already been argued by other
authors (e.g., [17]) that WSs and their interaction are best
described using process description languages. Indeed, it is
clear that most emerging standards for describing and com-
posing WSs (for instance BPEL4WS [1] - hereafter shortened
to BPEL) are actually such languages. Here we advocate the
benefits of more abstract notations provided by process algebra
(PA) [5], [18]. Being simple, abstract and formally defined, PA
make it easier to formally specify the message exchange be-
tween WSs, and to reason on the specified systems. Advanced
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automated tools have been developed to support both of these
tasks, and it is therefore natural to investigate their usefulness
for WS development.

In our opinion, abstract service descriptions based on PA
can be used at several levels:

o During the design stage, PA can be used to describe
an abstract specification of the system to be developed (a
graphical front-end similar to the one described in [21]
can ease this task); this gives a preliminary, validated
model to be used as a reference for implementation. A
mapping from the algebra into the executable language
is needed for the automatic generation of code skeletons.

« For reverse engineering purposes, a translation in the
other direction is needed to extract an algebraic descrip-
tion from existing web services.

Verification tools can help in both cases, either on a service
to be designed or on an existing one which is reverse-
engineered. These tools can be used to check whether interact-
ing services correspond to user needs, or to detect that they fail
to ensure important properties, like the absence of deadlock.

An application of the reverse engineering aspect concerns
choreographic issues. As made explicit by the W3C chore-
ography working group [26] it is now accepted that, in a
near future, the interface of WSs should evolve and that a
description of their observable behaviour should be provided
in addition to their sole WSDL interface. This description will
be based on an XML-based standard like WSCI [25] or BPEL
[1]. As a particular case of our reverse engineering proposal,
extracting a process-algebraic descriptions of services would
enable us to reason on choreographic problems.

Theorem proving
Verification tools Model checking

proc Pa =rec.Pa WSDL
mapping +send.0 mapping BPEL
== ==
proc Pb ="send.Pb | rec.0

WSCI

Web services

Graphical front—end Process algebra

Fig. 1. Proposal overview

A global picture of the approach we envision for the use
of PA in a WS setting is shown in Fig. 1. Central to our
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approach is the need for a sound, two-way mapping between
the language used by the automated reasoning tools and
the languages that the industrial standards will impose. The
latter will typically be XML-based languages like BPEL or
WSCI, while the tools need a more abstract, process-algebraic
representation.

This paper is structured as follows. In Section II, we
introduce PA and the way we use them to describe and
reason on web services. Section III shows how a practical
case study (a sanitary agency service) is described using the
CCS PA, and how the CWB-NC tool is used to ensure some
properties, like the correctness of a composition. Section IV
gives some guidelines to map abstract descriptions from/into
more concrete ones; we especially illustrate this point with
CCS and BPEL. Related work is discussed in Section V and
concluding remarks are drawn up in Section VI.

II. PROCESS ALGEBRA FOR DESCRIBING AND REASONING
ON WEB SERVICES

PAs [5] are formal description techniques to specify soft-
ware systems, particularly those constituted of concurrent
and communicating components. Numerous PAs have been
proposed; well-known calculi are CCS [18], ACP [3], CSP
[11] and all their extension like the w-calculus [22], LOTOS
[6] or Timed CSP [24]. These languages share the same
ingredients: simple contructs to describe dynamic behaviours,
compositional modelling, operational (and/or axiomatic, deno-
tational) semantics, behavioural reasoning via model checking
and process equivalences.

A. What is a Process Algebra?

In this subsection, our purpose is to give a flavour of what
a PA is made up of. The algebra chosen in this paper is CCS
[18] whose set of operators is small yet sufficiently expressive
for the presentation of our approach.

Defining processes in CCS requires to first agree on a set of
action names which represent the messages used in the system,
for instance {askProductlnfo, buy, cancel}, or {a,b,c}. The
basic actions in CCS are to receive a message (this is noted by
simply writing its name) ot to emit a message (this is written
by its name prefixed by the quote symbol, e.g., ‘a).

Processes are constructed as follows. A process which is
terminated is written 0: “do nothing”. A process can execute
a sequence of the form a.P, where a is an action and
P a process: “execute a then P”. A process can perform
a nondeterministic choice (P + @Q: “execute P or execute
Q7). The coexistence of several processes P, ..., P, whose
execution is interleaved is written P | ...|P, (“run P, ..., P,
in parallel”). The “|” symbol, called parallel composition, is
therefore used to define a global process made up of sev-
eral subprocesses. Last, the restriction operator, noted P\sm
where P is a process and sm is a set of names, imposes
that an emission of m (m € sm) by one subprocess of P
can occur only if another subprocess does a reception of the
same message name (synchronization). In practice, it is used
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to declare all the names on which synchronizations occur in
the whole system. Here is an example of CCS process:

proc S = ((b.a.0 + c.a.0)|'a.’c.0)\{a}

This process is the parallel composition of two simple
behaviours, and it imposes that the sending of message a
be synchronous due to the restriction. The first subprocess
can evolve either through the sequence of input messages b.a
(“receive a then receive b”) or through the sequence c.a. The
second can perform the sequence of output messages ‘a.’c.

We additionally need a symbol 7, denoting hidden actions.
It is basically needed because processes can be described at
different levels of abstraction, and a 7 action can be used
by an abstract process to hide some actions performed by a
more concrete equivalent process. Practically, a T action occurs
when two processes synchronize together on a concrete action.

CCS is formalised using axiomatic and operational seman-
tics [18]. The operational semantics describes the possible
evolutions of a process; more precisely, it defines a transition
relation P % P’ meaning intuitively that “P can evolve to
P’ in one step through action o” (where « is the emission
of a message, the reception of a message or a 7 action). This
relation is defined by the set of rules presented below', which
give a precise meaning to each operator.

g ’
_FSF ype
_ SEQ F+G — F
a.FF = F
F&F
« —_— PC1
F*? Flc 2 F|a
F\LafF’\L RES !
g a / a /
F—=F _ G—=G PC2
F|G — F'|G’

For instance, the SEQ rule states that a process a.F can
evolve to a process F' by performing «, and the NDC rule
states that a process involving a choice can evolve following
one of the processes of the choice. Let us illustrate how these
rules can be used to figure out a possible trace starting from
the behaviour S introduced before. Intuitively, the trace below
is obtained by the application of the sequence on the b action
(the other possible evolution would be to fire the ¢ action),
then both processes evolve through a synchronization on a
(the visible result is a 7 action), and finally 'c is performed to
complete the behaviour.

S L (@ofa’coNa} = (co)\{a} - 0

B. Specifying Web Services as Processes

We already claimed that WSs are essentially processes and
that any meaningful representation of services should take into
account behavioural information (this need has already been
pointed out by several people in the community [17], [4], [12],
[1]). An essential reason behind this need is that the interaction
between WSs is typically more complex than, for instance,
simple (Remote) Procedure Calls. Knowing the signature of

IBoth “|” and + are commutative, the symmetrical rules are omitted here.
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the parameters expected by a RPC is essentially sufficient to
use it (a WSDL file would in this case be sufficient). On the
contrary, even very simple services like the basic hotel booking
service shown on Fig. 2 involve more complex interactions,
since the service can dialogue with the caller, for instance to
ask for complementary information.

refusal

o

askInfo

confirmation acceptance

)

Fig. 2.

A WS for a hotel

Clearly, it is not sufficient to know that this service receives
three types of messages (booking requests, confirmation and
extra information) to understand the way it interacts with
other services, because its behaviour may follow different
scenarii depending whether free rooms are available, whether
the reservation form was filled correctly, etc. One needs to
know that the booking request comes first, and that it can be
followed by a number of requests for more information, by a
refusal or by a confirmation.

PAs are an effective and unambiguous way to represent such
behaviours. In fact, the graphical notation used in the previous
example is easily translated into the following CCS expression
(the following syntax is directly accepted by the CWB-NC
tool [8] and is also used in Section III):

proc Hotel = request.InteractionLoop

proc InteractionLoop =
"askInfo.recInfo.InteractionLoop
+ ( 'refusal.Hotel
+’acceptance.confirmation.Hotel))

The textual syntax is more adapted to proof-writing and
formal reasoning, as well as to the description of large-scale
systems. Graphical notations are anyway complementary and
can be used by user-friendly front-ends [21]. We use them in
this section for illustration purposes.

We note that the abstract descriptions we consider here
are internal since we describe the body of WSs. External
interfaces in their current acceptation (protocols and signatures
of the messages received and emitted by the service, as
specified in the WSDL files) can be easily extracted from these
descriptions. However, the need for more expressive interfaces
is now recognized, because of choreography issues. In a near
future, processes could be viewed as interfaces abstracting
away from part of the implementation details.

When describing software, the question of the level of
details reflected by the abstract description always arises, and
WSs are no exception. Behavioural aspects are unavoidable,
they are the strict minimum of what needs be represented.
In our opinion, there is usually little need to model imple-
mentation or networking issues (e.g., server location, URL or
URI) because these concepts are too low-level and do not add
to the global understanding of a system. But in some cases,
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other features like data or time allow to have a more faithful
representation of a service. In all cases where messages and
action names are enough, simple algebras like CCS can be
recommanded. Richer languages exist which can be used, for
instance, to address the following needs:

e Abstract data can be manipulated by algebras like
LOTOS [6]. They are used if there is a need to describe values
of message parameters, local data (attached to a specific WS),
or predicates guarding a piece of behaviour. In the case of the
business trip, we can imagine a WS whose task is to book
a hotel (among several ones) while respecting a limit price
which guards the application of some of the actions (Fig. 3).

recLimit [p>lp] askPrice

L

[p<=Ip] confirmation recPrice

Fig. 3.

e Timed PAs like Timed CSP [24] allow the description
of temporal constraints. As an illustration, it is easy to specify
a waiting time for a specific event, and to verify afterwards
that the concerned web service will never wait for a response
for longer than the specified duration. This could be useful,
for instance, for a hotel which does not wish to wait for more
than one day for a confirmation (Fig. 4).

Booking a hotel respecting a limit price

refusal

o =
reques
>24h) &cceptanc

t<=24h askInfo

confirmation, refusa)

Fig. 4. A WS for a hotel with a confirmation delay

We last mention briefly that other PAs have been proposed
for specifying many other aspects like stochastic behaviour,
fault tolerance, mobility (particularly for dynamic evolution
and reconfiguration), etc. Thereby, PA offers a great set of
possible languages suitable to specify basic WSs, as well as
more advanced ones involving different constructs depending
on the application domain. The last reason, and not the least,
to consider the use of PA is their well-foundedness, their
formality, the experience acquired in this domain through some
25 research years, and therefore the existence of powerful
reasoning tools issued from this theoretical and practical effort.

C. Automated Reasoning on Web Services

A major interest of using abstract languages grounded on
a clear semantics is that automated tools can be used to
check that a system matches its requirements and works
properly. Specifically, these tools can help 1) checking that two
processes are in some precise sense equivalent — one process
is typically a very abstract one expressing the specification of
the problem, while the other is closer to the implementation
level; 2) checking that a process verifies desirable properties
— e.g., the property that the system will never reach some
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unexpected state. Revealing that the composition of a number
of existing services does not match an abstract specification
of what is desired, or that it violates a property which is
absolutely needed can be helpful to correct a design or to
diagnose bugs in an existing service. We introduce the two
general classes of techniques used for verifying processes; the
case study we provide in Section III will illustrate their use.
1) Verifying Equivalences: Intuitively, two processes or ser-
vices are considered to be equivalent if they are indistinguish-
able from the viewpoint of an external observer interacting
with them. This notion has been formally defined in the PA
community, and several notions of equivalence have been
proposed. Here we briefly illustrate them in order for the
reader to be aware of some of their subtleties relevant to the
context of WSs; more on the subject can be found in [18].
A first approach is to consider two processes to be equiva-
lent if the set of fraces they can produce is the same (trace-
equivalence). For instance, the possible executions of the pro-
cesses a.(b.0+c¢.0) and (a.b.0+a.c.0) are shown in Fig. 5 part
(A), where messages a, b and ¢ can be respectively understood
as requests for reservation, editing data and cancellation. Both
of these two processes will have a.b and a.c as possible traces:
they will either receive the messages a then b, or a then c.
Nevertheless, it is not fully satisfactory to consider these two
processes equivalent since they exhibit the following subtle
difference. After receiving message a, the first process will
accept either message b or c. The second process behaves
differently: on receiving message a, it will either choose to
move to a state where it expects message b, or to a state where
it expects message c. Depending on the choice it makes, it will
not accept one of the messages whereas the first process leaves
both possibilities open. The second process does not guarantee
that a request for reservation (a) followed by e.g., cancellation
(c) will be handled correctly (c might not be received if the
process has chosen the left-hand side branch). The notion of
equivalence called bisimulation [18] is a refinement of trace
equivalence which takes these differences into account.

(A) a a (B) tau
a
& b c < b
b c b c c

Fig. 5. Classical examples of processes not observationally equivalent. For
instance, a represents a request for hotel reservation, b asks for the information
regarding the booking, while c represents cancellation.

Further subtleties arise when one has a partial knowledge of
the behaviour of a process. This may happen for two reasons:
1) during the design stage, where the specification which is
being defined is necessarily abstract and incomplete; 2) when
one finds or reuses an existing WS, and only an interface or
a partial description hiding private details is available. This is
expressed in CCS using the 7 symbol, which states that hidden
actions take place. T actions must be taken into account when
reasoning on the equivalence of two processes, as evidenced
by Fig. 5 part (B). Both of the processes depicted here can
receive b (edition of reservation data) or ¢ (cancellation). But
whereas the first one can receive any of the two, the second

one can choose to first execute some unobservable actions
which will lead it to a state where it can only receive message
c. Once again it cannot be guaranteed that the second service
will accept cancellation requests, and this depends on some
decisions it takes secretly.

Weak? bisimulation (a.k.a. observational equivalence) is
therefore widely acknowledged as the finest and most appro-
priate notion of process equivalence, and is implemented in
tools like CWB-NC, which can automatically check that two
algebraic expressions denote the same observational behaviour.

2) Verifying Properties: The properties of interest in con-
current systems typically involve reasoning on the possible
scenarii that the system can go through. An established formal-
ism for expressing such properties is given by temporal logics?
like CTLx [14]. These logics present constructs allowing to
state in a formal way that, for instance, all scenarii will respect
some property at every step, or that some particular event will
eventually happen, and so on.

An introduction to temporal logic goes beyond the aims of
this paper, but it suffices to say that a number of classical
properties typically appear as patterns in many applications.
Reusing them diminishes the need to learn all subtleties of a
new formalism. The most noticeable examples are:

o Safety properties, which state that an undesirable situa-
tion will never arise. For instance, the requirements can forbid
that the system reserves a room without having received the
credit information from the bank;

e Liveness properties, which state that some actions will
always be followed by some reactions; a typical example is to
check that every request for a room will be acknowledged.

The techniques used to check whether a system described in
process-algebraic notations respects temporal logic properties
are referred to as model checking methods [7].

III. CASE STUDY: THE SANITARY AGENCY

In this section, the goal is to illustrate how PA can be used
to specify concrete WS problems and to reason about such
interacting processes using existing verification tools. There-
fore, this section should be viewed as disconnected of any
development way (design approach or reverse engineering).
We experiment our approach on a sanitary system. In this
study, we chose CCS and the CWB-NC tool.

A. Informal Requirements

This case study is related to the field of public welfare and
extracted from a larger domain analysis concerning the local
government of Trentino (Italy). It was first dealt with in [23].
This software system aims at supporting elderly citizens in
receiving sanitary assistance from the public administration.
This problem involves several actors. First, we formalize the

2 Another notion called strong bisimulation exists. It is nevertheless too
restrictive in our context because it imposes a strict matching of the 7
actions. Also note the notion of congruence, an observational equivalence
which should be preferred when one wants processes to be equivalent in any
context, i.e., in all possible systems using them.

3This name should not give the impression that these logics introduce a
quantitative notion of time, they deal with the future behaviour of a system.
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service to be worked out as a citizen behaviour. A citizen posts
a request, exchanges information with the agency, waits for a
response, and if accepted receives a service and pays fees.
proc Citizen =
'request.askInf.’provInf.
( refusal.Citizen
+ acceptance.

( provT.’paymentPrivateFee.Citizen
+ provM.'’paymentPrivateFee.Citizen))

The goal of the next description is to figure out a right
composition of WSs ensuring such a request. More precisely,
the solution involving several processes (abstracting away
from internal interactions) should be equivalent to the request
modelled here as a citizen behaviour.

B. Description and Composition

The whole system is composed of services involved when
elderly people apply for a sanitary assistance: the sanitary
agency satisfying requests, the transportation service, the meal
delivery, the bank managing funds. We start with a view of all
the processes (boxes in Fig. 6) involved in this system as well
as synchronizations between these entities. Synchronizations
are denoted using lines joining the involved agents with actions
and their direction (prefixed by a quote for emissions).

*acceptance refusal

request

e

“askInf .
—— @ SanitaryAgency

provinf

! ]

Coop

*provT

*recMoneyPossT TranspCoop

*paymentPublicFee done

paymentPublicFee|

*provM

MealCoop

paymentM

’paymentM

paymentPrivateFee

Fig. 6. Synchronizations in the sanitary agency

A sanitary agency has to manage requests submitted by
elderly citizens. First, it asks some information to the citizen
who has posted the request. Depending on that, it sends either a
refusal and waits for a new request (as reflected by a recursive
definition), or the request is accepted. In the latter case, a
synchronization is performed with the cooperative controller
(it controls in some way both cooperatives) to order the
delivery of concrete (transportation or meal) services. Then,
the agency pays some public fees to the bank and waits from
the bank component for a signal indicating that the transaction*
is completed.
proc SanitaryAgency =

request.’askInf.provInf.

( 'refusal.SanitaryAgency
+ ("acceptance.’'req.’'paymentPublicFee.

4A transaction could be defined as a complete execution of all our
interacting WSs to solve a precise task.
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done.SanitaryAgency ))

Now, we introduce the behaviour of the cooperative. The
transportation (resp. meal) cooperative provides its service,
warns the bank to start the payment, and waits for the reception
of its fees. A controller, called coop, receives a notification of
the agency and launches one of the possible services.

proc TranspCoop =
'provT.’recMoneyPossT.paymentT.Coop

proc Coop =

req. (TranspCoop+MealCoop)

The bank receives a firing message from the cooperative
involved in the current request. The different payments are
then performed: payment of public fees by the agency and
of private fees by the citizen, payment of the cooperative by
the bank. Note that the specified strategy for this service is to
collect the money first and only then to pay for the service.
proc Bank =

recMoneyPossT. (

(paymentPrivateFee.paymentPublicFee.
'paymentT.’done.Bank)
+ (paymentPublicFee.paymentPrivateFee.

'paymentT.’done.Bank ))
+ recMoneyPossM. (

In this experimentation, it is worth noting that CCS is
enough to describe the main requirements of the case study
while remaining at an abstract level. As mentioned previously
and if needed, we could use a more expressive language.
Otherwise, the binary and synchronous communication model
turns out to be enough to specify communications in this
example. In the current specification, the modelling of a citizen
as a process could be criticized because his/her behaviour does
not belong to the system but to the environment. Nevertheless,
its representation is necessary in case of simulation (closed
system). Finally, the solution at hand is sequential (treatment
of one request after the other) and not concurrent (several
requests could be posted and treated at the same time). This
model is close to WS issues where a precise task has to be
worked out by orchestrating different distributed instances of
computational components (notion of transaction).

C. Reasoning

In this subsection, our goal is to show how reasoning
tools (CWB-NC here) could help practitioners to reason on
interacting WSs. The first steps (syntactical parsing when
loading the file containing the processes definitions, finding
deadlock, simulation) have enabled ourselves to raise some
problems: typing error, missing synchronizations, incomplete
behaviours, etc. Roughly speaking, these early checkings are
useful to correct the coarse mistakes in design or writing. Each
of this basic verification steps should be carried out again every
time the specification is modified. We show below definitions
needed to simulate an example of system. Herein, we illustrate
how to build a closed system involving a single citizen. All
the actions should appear in the restriction set.

set closedRestSet4S =
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{ req, done, request, askInf, provInf, provM,
provT, paymentT, paymentM, paymentPublicFee,
paymentPrivateFee, recMoneyPossT,
recMoneyPossM, refusal, acceptance }

proc ClosedSystem =
(SanitaryAgency | Coop
| Bank | Citizen) \ closedRestSet4S

Afterwards, the purpose is to ensure that our proposed
implementation made up of three interacting components
(the agency, the cooperative controller and the bank) is
observational-equivalent to the initial task to be solved (ex-
pressed by the citizen behaviour). To prove such an equiva-
lence, we first define the reverse behaviour of the request (that
is the reverse of the citizen process). This is due to the CCS
synchronization mechanism which holds on complementary
actions. Therefore, the request is the complementary behaviour
of the system, because one citizen interacts with the system
on opposite messages.
proc RCitizen =

request.’askInf.provInf. (

'refusal .RCitizen
+ ’acceptance. (

'provT.paymentPrivateFee.RCitizen
+ ’'provM.paymentPrivateFee.RCitizen))

Hence, our aim is to prove using CWB-NC that both
RCitizen and System are equivalent, that iS eq -S obseq
RCitizen System.
set restSet4S =

{ req, done, paymentPublicFee, paymentT,
paymentM, recMoneyPossT, recMoneyPossM }

proc System =
(SanitaryAgency | Coop | Bank) \ restSet4s

Several versions of the global system have been refined
until the final version introduced in the previous subsection
was obtained. Let us summarize our main errors to give an
insight of the usefulness of automated equivalence checkings.
Our first mistake was to not consider the notion of transaction.
It is necessary to take into account that a task needs a sole
execution of each process to be carried out. This kind of
behaviour can be specified using non recursive processes, or
by enhancing their behaviour so that they agree at the end of a
transaction. The latter case was written down adding the done
action in the sanitaryagency and Bank definitions. The second
error was due to a very general definition of the bank service.
The initial behaviour defined different payments without more
constraints (e.g., it could accept several successive payments
from a citizen at any moment). To ensure the equivalence,
we added a synchronization between the cooperatives and the
bank so that payments be performed only after the delivery
of the service. At this level, trace equivalence is verified
but not the observational one. Indeed, a prior specification
proposed a double possible synchronizations on reqT or regM
to fire respectively the transportation or meal services. Then,
a single synchronization between the sanitary agency and the
cooperative controller leaded to the obtention of the observa-
tional equivalence (see Fig. 7 for a capture of the problem
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at hand). For this last specification, all the basic verification
steps (simulation, no deadlocks, etc.) are satisfactory.

RCitizen System RCitizen System

acceptance acceptance acceptance acceptance

4

provT, provM tau (reqT) taw(reqM) provT, provM

tau (req)

provT provM

Fig. 7. Processes not observational-equivalent (left) and the solution (right)

The last reasoning we used was to prove some temporal
properties of the system. Due to the simplicity of the case
study, there are no critical properties to be satisfied. We
illustrate below the CWB-NC automatic capability with a
couple of properties also guaranteed in [23]. They are written
out in CTLx. The first one attests that a request can be done
in one possible scenario. The second formula expresses that
the firing of the output action acceptance is followed either
by a meal delivery or by a transportation assistance.

prop can request ctl = EF <requeststt

prop MorTafterAcceptance =
AG ( (not [’acceptanceltt) \/
(AF (['provTltt \/ ['provMltt)) )
IV. CORRESPONDENCE BETWEEN ABSTRACT PROCESSES
AND EXECUTABLE APPLICATIONS

As mentioned before, the goal is to develop WSs from
an abstract description or to extract a more abstract rep-
resentation from an XML-based implementation. As far as
the choreography issue is concerned, we remind that abstract
processes would be seen as public interfaces which are abstract
representations of black-box WSs. Ideally, we have to ensure
a semantic-compatible equivalence between abstract specifi-
cations and executable implementations. However, this formal
two-way mapping is difficult to guarantee (especially due to
the absence of a well-admitted semantics for BPEL here). In
this section, and as a first contribution in this direction, we
give some guidelines for the mapping between CCS processes
and BPEL code built on top of WSDL interfaces. This goal
is reached by identifying similar concepts at both abstraction
levels. We illustrate these links by showing pieces of the BPEL
implementation for the sanitary agency system. The reader is
referred to [1] for a description of BPEL.

First of all, some basic notions are defined in WSDL. The
action/message notion in PA finds its equivalent in the message
tag. WSDL operations refer to transmission/communication
primitives; four basic primitives exist in WSDL: one-way
(reception), notification (emission), request-response (two-way
communication starting by a reception) and solicit-response
(two-way communication starting by an emission). BPEL
makes it possible to describe three of these constructs. A
one-way reply (resp. receive) matches a CCS emission
(resp. reception). Synchronizations between WSs are de-
scribed through the invoke construct (request-response prim-
itive).

Let us continue with the BPEL language. The process
notion is shared between both description levels. An overall
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activity is completed when the end of its behaviour is reached
(no explicit construct unlike the termination denoted by 0 in
CCS). Agent recursion (corresponding to the repetition of
their behaviour) could be represented using a while activity.
However, we emphasize that a specific abstract agent works
out a precise task required by a more complex transaction,
and consequently does not need this notion of recursivity at
the implementation level. Such a call of a specific piece of
code is often encoded as a creation of a new instance.

Sequence and nondeterministic choice have straightforward
counterparts in CCS and BPEL (sequence and pick con-
structs in BPEL). In case of a deterministic choice described
as a switch construct, we should use the same CCS choice
operator. Let us remark that less (resp. more) details could
appear at the abstract (resp. executable) level. As an example,
see the condition expressed in the BPEL code below deter-
mining whether the request is accepted or not. Concurrent web
services synchronizing themselves through message exchanges
(particularly using the invoke operation) are declared as CCS
parallel compositions. In a same WS, the £1ow activity enables
one to implement concurrency and synchronization.

Now, we show an excerpt of the BPEL code corresponding
to the sanitary agency WS as written out before in CCS. Be-
low, the behaviour of the sanitaryagency is briefly introduced
(lots of XML details have been removed for lack of space).
We can emphasize the reception of a request (initiating from a
customer), the exchange of information, the refusal or accep-
tance of the service. All the WSDL and BPEL files needed for
an executable description of our case study can be consulted
there: http://www.dis.uniromal.it/~salaun/Pa4ws. Exper-
imentations using the eclipse IDE and the collaxa plug-in for
BPEL are still in progress.

<process name="SanitaryAgencyProcess"

<sequence>

<receive name="receiveRequest"
partnerLink="Citizen"
portType="cit:requestPT"
operation="requestO"
variable="request"
createInstance="yes">

</receive>

<invoke name="invokeCitizen"

</invoke>
<switch>
<case condition="cit:getContainerData (
'provInfC’, ‘aCondition’) = ’‘true’">
<sequences>

<reply name="replyAcceptance"
</reply>

</sequence>
</case>
<otherwise>
<reply name="replyRefusal"

</reply>
</otherwise>
</switch>
</sequence>
</process>
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We stress that some notions do not directly appear in BPEL.
This is the case for the 7 action and for the CCS restriction
operator. However, the CCS notion of synchronization (es-
pecially using restriction and 7 actions) finds its equivalent
in WSDL communication primitives. Furthermore, we can
imagine that the names needed in the CCS restriction set could
be easily extracted from the WSDL files.

V. RELATED WORK

In this paper, we advocate the use of PA to describe and
compose WSs at an abstract level. As previously motivated,
this abstract specification level can be connected to the exe-
cutable level (system development or reverse engineering). The
application layer is made up of all the existing standards. On
top of the WSDL and SOAP well-known standards, different
XML-based languages for WS orchestration/composition have
already been proposed, like DAML-S [2]. An agreement is
emerging to favour the BPEL execution language at this level.
At a more abstract level, many of the WS abstract descriptions
are semi-formal (no formal meaning) and are therefore error-
prone and not supported by tools other than editors. Some
more formal proposals have emerged, grounded for most of
them on transition system models (labelled transition systems,
Mealy automata, Petri nets, etc.) [4], [12], [20], [10], [13].
Our approach could be viewed as an alternative proposal.
Compared to these proposals, PAs are adequate to describe
web services, because they are formal, based on simple
but expressive enough operators, and equipped with tools to
support the design. Additionally, their constructs are adequate
to specify composition due to their compositionality property.

Other related works are proposals dedicated to verifying WS
description to ensure some properties. Some representative
proposals following this idea are [20], [9], [19]. Summariz-
ing these works, they use model checking to verify some
properties of cooperating web services described using XML-
based languages (DAML-S, WSFL, WSDL, BPEL, Con-
Golog). Accordingly, they abstract their representation and
ensure some properties using ad-hoc (KarmaSIM) or existing
(like SPIN, LTSA) tools. As far as the composition issue is
concerned, different techniques have emerged which ensure a
correct composition such as automatic composition [4], [16],
planning [15], [13] or model deduction [20]. However, most
of the existing proposals do not ensure this composition cor-
rectness [9], [12], [10]. Our contribution is the use of powerful
proof theory accompanying PA in general, particularly the use
of (weak) bisimulation is helpful for ensuring correct com-
position, i.e., to readily verify equivalences between possible
requests and composite WS. On a wider scale, usual system
properties (deadlock, safety, liveness) can be also verified.

Last but not least are works connecting abstract representa-
tions of WSs with XML-based standards. As far as we know, a
couple of works [9], [23] proposes some general guidelines to
connect abstract constructs (state diagrams and Formal Tropos
specifications®) and BPEL. So far, we cannot argue to achieve

SFormal Tropos mixes class structures and temporal formulae to specify

early requirements.
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a better result, but we already propose precise guidelines. In
our opinion, a formal correspondence is essential at this level
to preserve properties proved on the abstract specification,
and to extract automatically a semantic-compatible abstract
description from an executable implementation.

In comparison to these existing works, the strenght of
our approach is to work out all these issues (description,
composition, reasoning) at an abstract description level, based
on the use of existing approaches and tools, while keeping a
two-way connection with the application layer. Furthermore,
we advocate a general approach which is not restricted to a
single description technique or reasoning tool.

VI. CONCLUDING REMARKS

WSs are an emerging and promising area involving impor-
tant technological challenges. Some of the main challenges
are to correctly describe WSs, to compose them adequately
and/or automatically, and to discover suitable WSs working
out a given problem. In this paper, we propose a framework
to develop and reason about WSs at an abstract level. The
usefulness of such a representation is manifold: (i) designing
an application based on WSs, (ii) applying reverse engineering
to reason on deployed WSs, (iii) considering such abstract
processes as WS public interfaces and therefore dealing with
them for issues like composition. We advocate the use of
PA as an abstract representation means to describe, compose
and reason (simulation, property verification, correctness of
composition) on WSs. In addition, links have been defined
between abstract and concrete descriptions. We claim that our
approach is general because we do not focus on a specific lan-
guage, but on a whole family of formal description techniques.
Furthermore, all the theoretical foundations underlying PA are
adequate to describe and reason on services, especially to
ensure correct composition as illustrated through the sanitary
agency case study.

A first continuation of our current work is to experiment the
use of process algebras involving more advanced constructs
like LOTOS or the m-calculus. Indeed, it sounds realistic to
represent exchanges of data between processes (for negotiation
means as an example) or to need dynamic reconfiguration.
Another direction is the automatic composition of WSs. In
the current work, equivalence is only used to ensure a correct
composition. A possible idea could be to complement the
bisimulation theory to add automatic capabilities to the current
framework. A last perspective is to intensively work on the
formalisation of connections between abstract and concrete
descriptions. Some ideas in this direction have been sketched
and should be studied thoroughly.
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