
Copyright 1997 IEEE . Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Published in the proceedings of WORDS ‘97, February 5-7, 1997 in Newport Beach, California.

Abstract*

 It is becoming increasingly commonplace for
multiple applications with different quality of service
(QoS) requirements to share the resources of a distributed
system. Within this environment, the resource management
algorithms must take into account the QoS desired by
applications and the ability of the system resources to
provide it. In this paper we present a taxonomy for
specifying QoS for the different components of a
distributed system, from the applications down to the
resources. We specify QoS as a combination of metrics
and policies. QoS metrics are used to specify performance
parameters, security requirements and the relative
importance of the work in the system. We define three
types of QoS performance parameters: Timeliness,
Precision, and Accuracy. QoS policies capture
application-specific policies that govern how an
application is treated by the resource manager. Examples
of such policies are management policies and the levels of
service. In this paper we explore each of these components
of the QoS taxonomy is detail.

1 Introduction
The explosive growth of the internet and intranets has

caused a dramatic increase in the number of users that
compete for the shared resources of distributed system
environments. It is becoming increasingly important for
distributed systems to be able to handle application
demands for resources more intelligently. Since resources
are shared by distributed applications with varying quality
of service (QoS) requirements, these requirements must be
taken into account by the resource allocation and schedul-
ing algorithms.

QoS parameters are expressed in terms of different

*This work is funded by Rome Laboratory under contract number
F30602-95-C-0299

units at different layers of the system. Application QoS
parameters are a function of the application’s goals and
design. Resource-level QoS parameters depend on the
design of the resources and on their control parameters.
Applications running in the system need to be able to
specify their QoS requirements and preferably be able to
operate over a range of QoS values. The system, in turn,
needs to be aware of application QoS parameters and be
able to translate them to resource-level QoS parameters.
For example, the communication resources understand
QoS parameters such as the packet delay and packet jitter,
while a video on demand application understands QoS
parameters such as frame delay and frame jitter. Although
the translation between the two delay parameters is fairly
simple, the translation between the two jitter parameters is
not.

A distributed system that provides QoS guarantees to
general applications, sharing general system resources,
must be based on a QoS framework. Such a framework
consists of a QoS specification taxonomy, and a QoS
architecture that integrates the different components in the
various layers of the system. A general taxonomy leads to
a better understanding of the QoS parameters and their
inter-relationships. The final goal is to have generic trans-
lation schemes that can be the QoS interfaces between the
various system components. The QoS based framework
will help in identifying the functional requirements for the
management and monitoring mechanisms of the distrib-
uted system.

Our current research is directed towards developing
an integrated QoS framework for managing distributed
systems resources in order to provide application-level
QoS guarantees. We specify QoS as a combination ofmet-
rics and policies. Metrics measure specific quantifiable
attributes of the system components. Policies dictate the
behavior of the system components. The system compo-
nents here range from application modules to middleware
objects to resources. The different types of metrics are the

Taxonomy for QoS Specifications*

Bikash Sabata Saurav Chatterjee Michael Davis Jaroslaw J. Sydir Thomas F. Lawrence

SRI International Rome Laboratory
333 Ravenswood Ave. Griffiss Air Force Base
Menlo Park, CA 94025 NY 13441-4505

{sabata, saurav, mdavis, sydir}@erg.sri.com lawrence@cliff.cs.rl.af.mil

performance metrics, the security levels, and the cost met-
rics. Timeliness, precision and accuracy define a classifi-
cation of the QoS performance parameters. The timeliness
metrics measure the specifications that are related to the
timing constraints of the work. Precision metrics measure
the volume of work, and the accuracy metrics measure the
amount of errors in the completion of the work. Depend-
ing on the point of view i.e., the application/user point of
view, or system point of view, or resource point of view,
the QoS specification is either requested by the application
or provided to the application.

In this paper we define and classify the different QoS
attributes and place them into a general QoS taxonomy. In
section 2 we present a brief overview of past work. In sec-
tion 3 we give a brief overview of the QoS-driven resource
management architecture of which the taxonomy is a part.
This is followed by a description of the taxonomy in sec-
tion 4 and finally some conclusions and a discussion of
future work in section 5.

2 Background
Although there has been work in QoS-driven resource

management, most of this work has focused on either the
network or operating system layer [2][6][8][10][13][14].
Resource management at each of these layers has been
done separately, with very little understanding of how the
confluence of resource management at the different layers
can provide end-to-end QoS support to applications. As a
result, these disjoint approaches to resource management
are not sufficient for providing end-to-end application QoS
support. Refer to [12] for a thorough description of previ-
ous work in each of these layers.

Campbell et. al.[1] have been among the first to rec-
ognize the need for an integrated approach to resource
management. They presented an integrated framework that
deals with end-to-end application QoS requirements. The
notion of flow is introduced as an important abstraction
within the framework. Flow is defined to characterize the
production, transmission and consumption of the data
associated with a single media. Flows are either unicast or
multicast and generally require end-to-end admission con-
trol.

Based on the notion of flow, Campbell et al. define
QoS to include specifications forflow synchronization,
flow performance, level of service, QoS management pol-
icy, andcost of service. This taxonomy is the best we have
seen in the literature. However, it fails to include important
concepts such as precision of the data produced, and appli-
cation security and fault handling requirements. The focus
of all work in the area of QoS has been on the timing and
error aspects (timeliness and accuracy) of systems. The
volume of work needed to perform a service has not been
considered to be a dynamic adjustable parameter. A QoS

based system should be able to dynamically adjust the
amount of work performed (e.g., by using hierarchical
encoding of video data, or resizing the video frame). This
would allow the system to make trade-offs between the
various QoS parameters, when sufficient resources are not
available.

3 QoS Driven Resource Management
We define QoS-driven resource management as the

end-to-end allocation and scheduling of resources to appli-
cations, based on the QoS requirements of the applica-
tions. When faced with inadequate resources, the system is
able to make trade-offs between the various aspects of
application QoS because it understands each application’s
resource usage requirements as a function of the QoS that
is provided to the user. There are three different perspec-
tives from which the resource management problem can
be viewed: application, resource, and the system
(Figure1).

Applications want access to enough system resources
to achieve the desired level of QoS; they are not concerned
about how this is done or how it affects other applica-
tions.We call this theapplication perspective. We model
application information using two abstractions. The appli-
cation model captures the structure of the application and
the load that it places on system resources. The benefit
function abstraction captures the application’s QoS
requirements and its specifications regarding the relative
importance of the various QoS metrics, in case the optimal
QoS level cannot be provided by the resource manager.

The individual system resources (such as processors,
disks or communication networks) also have a perspective
on resource management. We call this theresource per-
spective. Each resource is concerned only about managing
access to itself and not about other resources or applica-
tions running on other resources. We model this perspec-

FIGURE 1 Three Resource Management
Perspectives

System
Perspective

Application
Perspective

Resource
Perspective

tive using the resource model, which captures resource-
specific attributes such as local scheduling policies and the
execution/concurrency behavior properties.

The system is composed of resources and supports
applications. We denote this as thesystem perspective.
The system perspective captures all system policies.
Examples of such policies include: end-to-end scheduling
policies, policies to decide which application’s QoS to
degrade when there are not enough resources to provide
the desired QoS to all applications, admissions control
policies, policies governing the amount of effort and time
that should be expended in attempting to find the optimal
resource allocation. The system perspective also includes
all the resource management algorithms that are found at
the middleware level.

The objectives of the individual applications, the indi-
vidual resources, and the system are likely to be in con-
flict; thus, the role of a resource manager is to resolve
these conflicts. QoS-driven resource management is a par-
ticularly interesting problem because it must account for
all three perspectives. Further detail about our QoS-driven
resource management system architecture is presented in
[12].

3.1 QoS Definition
In order to design a system where multiple applica-

tions coexist within a QoS management framework, it is
necessary for them to either have a common understanding
of how QoS should be specified, or to be able to map their
individual specifications into a common one. To this end
we define in a generic fashion the various facets of QoS.
We believe that QoS parameters are grouped intometrics
and policies. The metrics measure quantifiable QoS
attributes in the applications, system, and the resources.
The metrics are further divided into performance metrics,
security levels, and the relative importance. The policies
describe the system behavior specifications. The primary
policies are the management policies, and the levels of ser-
vice. This taxonomy is defined in Section 4.

3.2 Application Model
We model an application using a directed graph,

where graph nodes representunits of work (UoW) and
graph edges representdata flow between these units of
work; the data flow implicitly specifies the order in which
the work must be done. This is shown in Figure2, where

the circles represent the work and the edges represent the

data flow. The UoW represents the smallest granularity of
work for which resources are allocated. A UoW is sched-
uled to be performed by a single resource. QoS require-
ments are defined for each UoW, along with the resource
demand model, which describes the resource usage as a
function of the QoS.

A service is a collection of one or more units of work
that may span multiple resources. A single QoS specifica-
tion is provided for the entire service. QoS parameters are
defined for each service, so that the invoker of a service
negotiates the QoS of the entire service, without having to
understand the UoWs that make up the service. A service
may use other services to complete a task. Each instantia-
tion of the service is defined to be therealization of ser-
vice (RoS). A service may be realized in many different
ways. The application model contains the information that
the resource manager needs in order to allocate and sched-
ule resources to that a given end-to-end QoS can be
achieved. Details of the application model are presented in
[5].

3.3 Benefit Functions
The application demands a certain level of QoS from

the system. We have developed thebenefit function
abstraction to model an application’s QoS requirements
and preferences. The benefit function is a multidimen-
sional graph specifying the benefit that the user receives if
the system provides a certain level of QoS. The system
will therefore attempt to provide QoS in such a manner as
to maximize the application’s benefit; this will be the oper-
ational point. An example benefit function is shown in
Figure3. The dimensions of the benefit function corre-
spond to QoS metrics of interest to the application.

FIGURE 2 Application Model

FIGURE 3 Example of a 2-parameter Benefit
Function

Para
meter B

Benefit Operational Point

Parameter A

The benefit function is especially useful for facilitat-
ing a graceful degradation of the application QoS. If
resources fail or are diverted towards higher-priority appli-
cations, the system may not be able to continue to provide
the desired levels of QoS of all applications. The benefit
function can then be used to make intelligent decisions
regarding which applications’ QoS to degrade, which QoS
metrics to degrade, and by how much. The details of bene-
fit functions are presented in [4].

3.4 Resource Model
The resource model captures information about the

system resources which is required by the allocation algo-
rithms. Examples of resource attributes that appear in the
model are: resource types, performance characteristics,
and scheduling policies. We also associate a cost function
with the resource that describes the performance and the
cost of each resource at the different operational points
(QoS parameter values).

3.5 System Model
The system perspective encompasses both the appli-

cation and resource perspectives, as well as end-to-end
system policies. Because the various application and
resource perspectives may have conflicting goals, the sys-
tem perspective contains policies for reconciling these
conflicting goals.

We model distributed systems by using a subsystem-
resource hierarchical structure. Computing, communica-
tion, and storage resources form the bottom layer. A set of
resources governed by a single resource management
scheme form asubsystem. A set of subsystems governed
by a single resource management scheme form a higher-
level subsystem. This hierarchical structure continues until
the complete system is defined.

Each subsystem is represented by a graph, where the
graph nodes represent resources and other (child) sub-
systems, and graph edges represent the connectivity
(topology) of the resources and child subsystems. The par-
ent subsystem sees all of the resources and child sub-
systems within it as black boxes whose internal
composition is hidden. Each subsystem has aQoS inter-
face that enables the parent subsystem manager to com-
municate QoS information with each child subsystem
manager. Parent subsystem managers convey QoS require-
ments via the QoS interface, and assume that resource and
child subsystem managers will meet their QoS obliga-
tions; how a child subsystem does so is of no concern to its
parent. This hierarchical representation enables us to
model heterogeneous systems running different network
protocols, operating systems, and resource management
schemes. The details of the system model are presented in
[9].

 For the management of heterogeneous resources and
different types of applications, the system defines a set of
system policies. There are a number of different types of
system policies. For example, system policies define the
action that should be taken when a new application is
started and there are not enough resources to perform it
with the desired QoS. Should its QoS be degraded? Should
the QoS of a less important application that is already run-
ning be degraded to free up some resources? There types
of system-wide questions are answered in the system poli-
cies.

3.6 Management Algorithms
The purpose of the application, resource, and system

models is to provide a structure within which the QoS-
driven resource management algorithms can be defined.
The basic problem is to provide appropriate QoS support
to each application. The structure of the application, as
described in the application model, defines the different
combinations of UoWs that can be performed to complete
the task. The management algorithms must choose the best
method for performing the task, determine the resources
on which the individual UoWs should run, reserve the
required amount of these resources and schedule their use.
If the desired resources are not available, the QoS is
degraded in a negotiation with the application.

4 QoS Taxonomy
We classify QoS parameters using the taxonomy

shown in Figure4. The primary categories are metrics and
policies. Metrics specify quantifiable QoS parameters.
Metrics can be further grouped into the following classifi-
cations:performance specifications, security levels, and
relative importance. Policies are divided intolevel of ser-
vice, and management policies.

Performance QoS is defined in terms oftimeliness,
precision,and accuracy. Performance metrics specify the
parameters related to the performance of a task. For exam-
ple end-to-end delay, total volume of computations, and
bit error rate are performance measures. For each perfor-
mance parameter there are absolute specifications and
consistency specifications. Consistency specifications
define the relations between the different task flows and
the different instances of a task flow. For example the jitter
and synchronization metrics measure the consistency of
the delay parameter between different instances of the
task, and between different task flows, respectively.

Relative importance represents the price (cost) that
the user is willing to pay for a service of a given quality (in
a system where the users compete for resources) or a mea-
sure of the importance of the work (in a system of cooper-
ating users).Security levels define the data security level
that need to be provided to the applications [11].

Level of service is defined as the type of QoS commit-
ment given to the application. QoSmanagement policies
define the actions to be taken by the system under different
situations. For example, in case of an unforeseen scarcity
of resource, the application may be willing to go through a
renegotiation and accept a lower quality of service instead
of being denied the service. Management policies also
describe the nature of the interaction between the applica-
tions and the system.

4.1 Performance Metrics

4.1.1 Timeliness
Timeliness parameters define a class of metrics that

measure time related entities. Timeliness is expressed in
units of time. Its definition is straightforward, because
time is understood in the same way by humans and com-
puters, and has roughly the same meaning in all layers of
the system, from the applications down to the network. We
have defined timeliness as a representation of the timing
requirements for performing a given piece of work.

Timeliness parameters are metrics that measure
1. The total time taken to complete (begin to end) a task

(UoW or service). This is measured as the delay, or
latency, or time to complete.

2. The start time (earliest/latest) for a task.
3. The deadline (earliest/latest) for the task to complete.
4. The variability in time to complete a task (jitter). This

measures the internal consistency of the timeliness
parameters.

5. The relationship between the deadlines and the start
times of the different tasks (synchronization). This
measures the mutual consistency of the timeliness
parameters.

6. The statistical distribution of each one of the above
parameters.

The first three are absolute specifications, 4 and 5 are
consistency specifications and finally 6 applies to all the
parameters. The absolute metrics are used by schedulers to
schedule the task at the appropriate time. The consistency
specifications require the introduction of mechanisms that
ensure that the time relationships between the different
task flows and within a task flow are maintained. The sta-
tistical distribution of each parameter considers it to be a
random variable and describes the distribution of the vari-
able. This allows the tolerance associated with each
parameter to be specified. Also, in the case of repeating
tasks the statistical distribution describes how the parame-
ters change over the different instances of the task.

4.1.2 Precision
Precision parameters specify the volume related quan-

tities. Precision and accuracy require more detailed defini-
tion, since the same data can be viewed in different ways
(and understood in different ways) by different compo-
nents of the system. Since precision and accuracy are
attributes of the data that flows through the application, it
is important to distinguish between the content of the data
in and the series of bits that represent the data. We define
data content to be the meaning of the data. For example,
the fact that a floating point number represents a median of
some number of data points is its data content. Since a
piece of data that is manipulated by a computer system
must be represented as a series of bits, we definedata rep-
resentation to be the computer representation of a given
piece of data. Thus, a given piece of data that is under-
stood in terms of its data content can be represented by
one or more data representations that differ in format and
size. Since a data representation is a tangible construct, it
has a spatial characteristic, which we refer to as thevol-
ume of data. Volume of data is an amount of data in terms
of a number of bits or bytes. It is important to note that the

QoS Specifications

Metrics Policies

PerformanceSecurity Relative Management Levels of Service

FIGURE 4 A Taxonom y for QoS Specifications

Timeliness Precision Accuracy

Importance

Combinations

volume of data in a data representation of a given data
content depends on the algorithm used to encode the data.
The same data content can have different representations
whose volumes are different. For example, a floating point
number can be represented in a C program as a float vari-
able or as an ASCII character string.

We recognize that the amount of work that a computer
system has to do to transfer or store data is proportional to
the size of the data. Thus, the volume of data is a measure
of the amount of work required to transfer or store it.
Analogously, we define the volume of computational work
as the total amount of computations (e.g. FLOPS) to com-
plete the task. “Work” is used here in a very broad sense,
to mean the usage of all involved hardware resources.
Similar to the notion of the data content, a given computa-
tion executes a function that can be implemented in one of
many possible ways. Each implementation does a different
volume of computation to do the same amount of “work
content”.

We can now define precision as it applies to content
and representation. In general, theprecision of represen-
tation describes the amount of data or work. Theprecision
of content is defined in terms of the specific data content
or the functional transform. For example, the precision of
the median value for some set of data points may be
defined in terms of the number of decimal places to which
it is calculated. The precision (or volume) of the represen-
tation is defined in terms of its volume (the physical
amount of data in bits or bytes). The precision of content
in one layer translates into a precision of representation in
the next layer, e.g., a data packet in the transport layer is
composed of the payload and the header; this content of
the data structure is understood by the transport system.
But the lower network layer recognizes the data only as a
collection of data bytes and represents that as a series of
bits. The units of volume may change for the different
components of the system, e.g., the number of frames of
video in the application translates to the number of bytes
of data in the middleware and the network layers.

As we did with timeliness, we can define the jitter and
synchronization of precision parameters, to capture con-
sistency requirements. The variation in the volume in suc-
cessive instances of tasks (UoWs or services) measures the
consistency of the precision metric. For example, when
video is compressed the application can choose to have the
same number of bytes for each frame or may vary the total
amount of data. This variation in the total volume of data
between frames is captured in the internal consistency of
the precision metric. The relationship between the preci-
sion of different flows is measured in terms of the consis-
tency between the precision parameters of each flow. This
may be important because the results from two different
computations can be combined and the precision of the

data generated in both flows have to be compatible for
them to be combined. The precision parameters of interest
are
1. The precision of content for input and output data.
2. The precision of representation for input and output

data.
3. Internal consistency of precision over a flow (preci-

sion jitter).
4. Mutual consistency of precision between flows (preci-

sion synchronization).
5. The statistical distribution of the above parameters.

As in the case of timeliness, precision parameters 1
and 2 are absolute specifications; 3 and 4 define the con-
sistency parameters; and 5 defines the statistical distribu-
tion of each precision parameter.

4.1.3 Accuracy
Accuracy measures the errors introduced into the data

by UoWs and services. The accuracy of data content is
also defined in terms of the specific data content. Using the
median example, the precision of the data specifies the
number of decimal places to which the median is calcu-
lated, while the accuracy of the data specifies how many of
those decimal places actually contain correct (accurate)
data. Finally, the accuracy of data representation is defined
as the amount of data volume that is actually correct. (This
amount is most naturally specified as a percentage.) In
both the case of data content and that of data representa-
tion, accuracy is bounded by precision (e.g., a floating
point number calculated to a precision of three decimal
places can be accurate to at most three decimal places).
The accuracy of computations is described in terms of the
accuracy of the data generated by the computations. The
accuracy parameters of interest are
1. The accuracy of content for input and output data.
2. The accuracy of representation for input and output

data.
3. Statistical distribution of accuracy.

Notionally we can define an accuracy jitter and syn-
chronization corresponding to the internal and mutual con-
sistency parameters. However, practically there does not
seem to be any application of such a concept.

4.1.4 Combination
The three classifications, timeliness, precision, and

accuracy, do not represent independent (orthogonal) axes.
Since the timeliness, precision, accuracy components of a
QoS specification must be provided to the application
“simultaneously”, there are cases when QoS can be speci-
fied by a parameter that is a combination of them.
Throughput, defined as precision over time, is one of these
metrics. At this time, we are not aware of any other practi-
cal QoS metrics that are combinations.

4.2 Security
Security metrics deal specifically with policies and

mechanisms related to data security that need to be pro-
vided to the applications [11]. We have defined two secu-
rity parameters, level of confidentiality and level of
integrity. Confidentiality is the problem of insuring that
information doesn’t get into the wrong hands. Integrity is
the problem of making sure that information is and
remains accurate. That is, the persons and processes that
are allowed to modify a given piece of information are
restricted to those that are trusted to do so. Integrity also
applies to system components, making sure that they are
not modified or replaced (presumably in order to violate
one or more aspects of security policy). These two QoS
parameters express the sensitivity of the data being han-
dled with respect to confidentiality and integrity. The units
in terms of which these parameters are specified are spe-
cific to the type of system. For example in military sys-
tems, they might be the military security levels (e.g.,
unclassified, secret).

Availability is commonly used as a third security
parameter. Availability is the problem of insuring that
there are sufficient computing resources to perform the
required work at the desired time. Since the provision of
an availability guarantee involves not only security, but
also fault tolerance and resource management, we place
the availability parameter in the levels of service category.
It is discussed in Section 4.4.1.

4.3 Relative Importance
In order to allocate a resource to multiple, competing

applications the resource management system requires a
way to evaluate the relative importance of the different
applications that are contending for the resource.

In the case of competing users (as in the case of com-
mercial systems) the price (cost) that the user is willing to
pay for a service of a given quality is an effective mecha-
nism for determining application priority. While in the
case of cooperating users (as in the case of military sys-
tems) the importance of the user and the application can be
absolutely defined and used to gauge the relative impor-
tance of the work. We also define resource cost functions
to express a resource’s willingness to provide a given QoS
setting. In the event of a scarcity of a given type of
resource the cost of using that resource increases.

4.4 Policies

4.4.1 Levels of Service
Applications require an assurance about the system’s

level of commitment to providing their QoS needs. This
commitment dictates the policy adopted by the resource
manager to provide the service to the application. The spe-

cific policies can range from a best effort policy (no guar-
antees) to a policy of providing a very high level of
assurance that application QoS will be maintained at all
costs. We definelevel of service to be the level of commit-
ment for a task. A service is either aguaranteed service or
a best effort service. The distinction between the two is
that the system may provide no benefit to the user of a best
effort service, while the user of a guaranteed service is
promised a given level of benefit. Level of service is a
meta-specification of the QoS parameters. It provides a
policy statement about the way each performance parame-
ter needs to be monitored and manipulated.

Different levels of guaranteed service can be provided
by the system. For example, missing even one QoS
requirement can lead to a catastrophic failure for many
control and defense applications. On the other hand, it is
generally not a catastrophe if the system occasionally
misses an audio or video application’s QoS requirements.
We use theavailability QoS metric to let the application
convey what level of guaranteed service it requires. Avail-
ability is expressed as the probability that the QoS assur-
ances will be met, thus it is a meta-attribute for the other
QoS metrics.

4.4.2 Management Policies
QoS management policies define the application--

specific actions to be taken by the resource manager under
different situations. For example, in the case of an unfore-
seen scarcity of resources, the application may be willing
to go through a renegotiation and accept a lower quality of
service instead of being denied the service. There are no
quantifiable metrics that describe these specifications, but
in general, the policies can be classified into different
classes of management functions. The user may specify a
class as part of the application requirements. For example,
the classes might be “renegotiation allowed” and “renego-
tiation not allowed”. This again is a meta-level specifica-
tion for the other QoS metrics.

5 Conclusions and Future Work
We have seen an increase in the utilization of distrib-

uted computing for a wide range of computing tasks. Dis-
tributed computing is not only attractive economically but
also has desirable reliability and fault tolerance properties.
However, since applications ranging from mission critical
to leisure, all coexist in the same large system of systems,
it is important that resources and the applications be man-
aged intelligently to provide an acceptable level of service
to all applications and guarantees to critical applications.

Applications need services from the system to com-
plete their tasks. The needs of an application are best
understood by the application and the mechanism used to
convey the requirements to the system is the language of

QoS. QoS must tie the user’s needs to the amount of
resources required to provide them. Because distributed
systems can be composed of heterogeneous components, it
is important that QoS be defined in a generic fashion. Such
a definition will allow the system designer to define a uni-
form QoS interface to all system components, enabling the
resource manager to provide end-to-end QoS guarantees to
applications running on these heterogeneous components.

In this paper we presented a taxonomy of QoS specifi-
cations that is the starting point for defining the QoS inter-
faces between the different system components. The key
to understanding QoS based distributed systems is recog-
nizing the relationships between the different ways that
QoS concepts are defined by different system components.
The taxonomy that we presented clearly identifies the dif-
ferent classes of QoS parameters. We see that the funda-
mental metrics are those of performance, cost and the
security. The performance metrics have classifications of
timeliness, precision and accuracy. The notion of having
three primary classes of performance is important because
most of the QoS specifications we have seen are just a
statement of one or two of these classes. Within each class
of the QoS specification there are requirements for abso-
lute quantities and consistency measures. This gives a
large dynamic range of parameter specifications. Finally,
the notion of having a statistical distribution of each one of
the parameters allows the specification of parameter toler-
ance and variability. The classification of QoS metrics into
their most basic groupings provides insights into the com-
mon mechanisms for translating QoS specifications
between system layers

We are developing a framework for defining QoS-
driven system architectures, based on this QoS taxonomy.
This framework will be useful in the design and manage-
ment of large systems of systems. Generalizing the notions
of applications, systems, resources, and QoS make it clear
that the many different types of management mechanisms
found in distributed systems are related to one another.
Our unified framework ties together research in the areas
of security and fault management to research in the area of
QoS based resource management. In the next phase of our
research we will take our QoS taxonomy and develop a
complete system model and design management algo-
rithms for each class of QoS parameter.

Acknowledgments
We would like to acknowledge the help of Dr. Ambat-

ipudi Sastry and Elin Klaseen from SRI International,
Charles Hammond, Hien Nguyen, and Pamela Clark from

Stanford Telecom for numerous technical discussions
about the ideas presented in this paper. Their continuous
critique and feedback helped in the clarification of many
concepts.

References
[1] A. Campbell, Aurrecoechea, & Hauw, “A Review of QoS

Architectures,” Proc. of the 4th IFIP International
workshop on Quality of Service (IWQS ‘96), Paris, March
1996.

[2] A. Campbell, Coulson and Garcia, “Integrated QoS for
Multimedia Communications,” Proc. of IEEE InfoCom,
Los Alamitos, CA, 1993, pp 732-739.

[3] A. Campbell, Coulson & Hutchison, “A Quality of Service
Architecture,” ACM SIGCOMM, Computer
Communication Review, Vol. 24, pp 6-27, Apr 1994.

[4] S. Chatterjee, B. Sabata, J. Sydir, and T. Lawrence,
“Benefit functions for QoS trade-offs,”SRI Technical
Report, Forthcoming.

[5] S. Chatterjee, M. Davis, B. Sabata, J. Sydir, and T.
Lawrence,“Modeling Distributed Applications with QoS
requirements,”SRI Technical Report, Forthcoming

[6] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering
and Analysis of Real-Time Microkernels,” Proceedings of
the 9th IEEE Workshop on Real-Time Operating Systems
and Software, 1(1):15-19, May 1992.

[7] K. Nahrstedt & Jonathan Smith, “The QoS Broker,” IEEE
Multimedia, pp 53-67, Spring 1995.

[8] K. Nahrstedt and Ralf Steinmetz, “Resource Management
in Networked Multimedia Systems,” IEEE Computer, May
1995, pp 52-63.

[9] B. Sabata, S. Chatterjee, J. Sydir, and T. Lawrence,
“Hierarchical Modeling of Systems for QoS based
Distributed Resource Management,”SRI Technical
Report, Forthcoming.

[10] D. Stewart, D. Schmitz, and P. Khosla, “Chimera II: A
real-time multiprocessing environment for sensor-based
control,” Proceedings of the IEEE International
Symposium on Intelligent Control, 1989.

[11] J. Sydir, S. Chatterjee, M. Davis, B. Sabata, and T.
Lawrence, “Relationship between security and QoS
driven resource management,”SRI Technical report,
Forthcoming.

[12] J. Sydir, S. Chatterjee, B. Sabata, and T. Lawrence,
“QUASAR: QUAlity of Service Architecture for Resource
management,”SRI Technical Report, Forthcoming.

[13] D. Verma, H. Zhang, and D. Ferrari, “Guaranteeing Delay
Jitter Bounds in Packet-switched Networks,” Proceedings
of Tricomm 91, pp35-46, April 1991.

[14] Vogel, Kerherve, Bochmann, and Gecsei, “Distributed
Multimedia and QOS: A Survey,” IEEE Multimedia,
Summer 1995, pp 10 - 19.

