
WS-FM 2004 Preliminary Version

Requirements-Driven Verification of
Web Services ?

Marco Pistore1,2 and Marco Roveri2 and Paolo Busetta2

1DIT - University of Trento, Via Sommarive 14, I-38050 Trento, Italy
pistore@dit.unitn.it

2ITC-irst, Via Sommarive, 18, I-38050 Trento, Italy
{roveri,busetta}@irst.itc.it

Abstract
We propose a requirements-driven approach to the design and verification of Web services.
The proposed methodology starts from a requirements model, which defines a business
domain at a “strategic” level, describing the participating actors, their mutual dependencies,
goals, requirements, and expectations. This business requirements model is then refined
into a business process model. In this refinement, definitions of the processes carried out
by the actors of the domain are added to the model in the form of BPEL4WS code. We show
how to exploit model checking techniques for the verification of the specification, both at
the requirements and at the process level. At the requirements level, model checking is used
to validate the specification against a set of queries specified by the designer; at the process
level, it is used to verify if the BPEL4WS processes satisfy the constraints described in the
requirements model.

1 Introduction

BPEL4WS [1] is quickly emerging as the language of choice for Web service com-
position. It provides a core of process description concepts that allow for the def-
inition of business processes interactions. This core of concepts is used both for
defining the internal business processes of a participant to a business interaction
and for describing and publishing the external business protocol that defines the
interaction behavior of a participant without revealing its internal behavior.

BPEL4WS opens up the possibility of applying a range of formal techniques
to the verification of the behavior of Web services. For instance, it is possible to
check the internal business process of a participant against the external business
protocol that the participant is committed to provide; or, it is possible to verify
whether the composition of two or more processes satisfies general properties (such

? Research supported in part by the MIUR-FIRB Project RBNE0195K5 (ASTRO).
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



Pistore, Roveri, and Busetta

as deadlock freedom) or application-specific constraints (e.g., temporal sequences,
limitations on resources). These kinds of verifications are particularly relevant in
the distributed and highly dynamic world of Web services, where each partner can
autonomously redefine business processes and interaction protocols. In the long
term, we envision an environment where an agent executing one or more business
processes can autonomously discover new types of services and extends its own
processes accordingly. Before being integrated in the actor’s processes, discovered
resources must be verified against the agent’s own requirements and constraints.

Different techniques have been already applied to the verification of business
processes (see, e.g., [4,6,7,8]). However, current approaches do not address the is-
sues of how to model the requirements that the BPEL4WS processes are supposed
to satisfy, and of how to manage the evolution of processes and requirements. To
this purpose, we propose to extend a BPEL4WS specification with a business re-
quirements model. This provides a “strategic” description of the different actors
in the business domain with their goals and needs and with their mutual depen-
dencies and expectations, and provides the motivations behind business processes.
The business requirements model drives the design of business processes and the
verification that they achieve desired goals. It allows for the selection of partners
and external services that satisfy the expected constraints. Also, it permits to trace
changes in the requirements and in the processes. In the long term, it will give a se-
mantic description to an autonomous agent of what it has to achieve and what may
be provided by external partners, thus enabling dynamic composition of services.

This paper presents some preliminary results of our first steps towards the vision
outlined above. Our starting point is a modeling language, called Tropos [10],
whose objective is to capture the business requirements of the actors of a domain,
their dependencies and expectations. The formal counterpart of Tropos, Formal
Tropos [5] supports the definition of temporal constraints on the evolution of the
modeled domain, and enables the application of a whole set of formal techniques
to Tropos models. In this paper, we show how a business requirements model
expressed in Tropos can be progressively refined into a business process model.
In this refinement, BPEL4WS code is added to define the processes carried out
by the actors of the domain. This BPEL4WS code is a procedural counterpart
of the temporal constraints of the requirements model. We show how to apply
model checking techniques for verifying that the refined process actually satisfies
the original requirements.

This paper is structured as follows. In Section 2 we introduce the Tropos lan-
guage; we show how to use it to model business requirements; and we describe
how model checking techniques are applied to the validation of the requirements.
In Section 3 we illustrate the refinement of the requirements model into a business
process model; we also show how model checking techniques can be applied to
verify whether the BPEL4WS processes satisfy the requirements. Section 4 ends
the paper with concluding remarks and future work directions.

2



Pistore, Roveri, and Busetta

Private
Fee

Payment

Payment

Public
Fee

Provide
Transports

Provide
Meals

Receive
Assistance

Provide
Meals

Being
Payed

Meals
Inc.

Provide
Transports

Being
Payed

Transports
Inc.

Provide
Fair Assistance

Sanitary
Agency

Being
Assisted

Citizen

Bank

Balance

Fig. 1. High level business requirements model.

2 Business Requirements Modeling in Tropos

In this section we propose a language for describing business requirements in a
Web Service framework. This language, called Tropos [10], provides graphical
notations and a formal specification language that have been specifically designed
for requirements. It has been adopted to model requirements of a variety of soft-
ware and organization systems (see http://www.troposproject.org/ for
some examples).

2.1 Modeling Business Requirements: A Case-Study

The Tropos modeling language is founded on the premise that during the require-
ments analysis phase of the software development process it is important to under-
stand and model the strategic aspects underlying the organizational setting within
which the software system will eventually function. By understanding these strate-
gic aspects, one can better identify the motivations for the software system and
the role that it will play inside the organizational setting. For instance, in order
to develop a software system that supports the elder citizens in receiving sanitary
assistance from the public administration, we need first to understand the interde-
pendencies among the citizens and the different actors in the public administration
that underly the process of receiving assistance. In this paper we consider an exten-
sion of Tropos, which is called Tropos4WS, and which is suitable for integration
with business process models.

We introduce Tropos4WS in the context of a case-study in the field of public
welfare, extracted from a larger domain analysis concerning the local government
of Trentino (Italy). Figure 1 is a Tropos diagram that provides a high-level de-
scription of the case-study domain. It represents the main actors and goals of the
domain: the Citizen that aims at being assisted; the SanitaryAgency which aims
at providing a fair assistance to the citizens; the TransportsInc which provides

3



Pistore, Roveri, and Busetta

Fig. 2. Requirements model refinement.

transportation services; the MealsInc which delivers meals at home; and the Bank

which handles the government’s finances. The picture also describes the depen-
dencies and expectations that exist among these actors. For instance, the citizen
depends on the sanitary agency for being assisted, and this is formulated in the
model with dependency ReceiveAssistance from Citizen to SanitaryAgency.

Starting from this high-level view of the organizational or business system, the
Tropos methodology proceeds with an incremental refinement process (see Fig-
ure 2). Goals are decomposed into sub-goals, or operationalized into tasks, tak-
ing into account the dependencies existing among the different actors. For in-
stance, the goals BeingAssisted and ProvideFairAssistance are refined in or-
der to reflect the “contract” that governs the way the assistance is provided by
the SanitaryAgency to the Citizen. More precisely, the Citizen refines the
goal BeingAssisted into the three sub-task of DoRequest, ReceiveService and
Pay. DoRequest is further refined into InitialRequest, ProvideInformation,
WaitAnswer. On the other side, the SanitaryAgency refines the goal
ProvideFairAssistance into the task HandleAssistanceRequest, which is fur-
ther refined into ReceiveRequest, EvaluateRequest and ActivateAssistance.

The refinement procedure ends once we have identified all basic tasks that
define the business process. To these basic tasks we associate messages that de-
scribe the basic interactions among actors. For instance, task InitialRequest

requires to send a message Request to the SanitaryAgency. This message is re-
ceived and processed by the SanitaryAgency task ReceiveRequest. The task
AskAdditionalInfo requires to send a message InfoRequest to the Citizen

which receives and processes it with task ProvideInformation and responds
with an Info message. Once sufficient information has been gathered, the
SanitaryAgency sends a Response message to the Citizen. Figure 2 shows the
refinement for the interactions between Citizen and SanitaryAgency. Similar
refinements need to be done also for the other tasks and interactions in the domain.

4



Pistore, Roveri, and Busetta

ENTITY AssistanceNeed
ENTITY Query

ACTOR Citizen
ACTOR SanitaryAgency

GOAL DEPENDENCY ReceiveAssistance
Mode maintain
Depender Citizen
Dependee SanitaryAgency
Creation condition EXISTS ba: BeingAssisted (ba.actor = depender)
Invariant F EXISTS pfa: ProvideFairAssistance (pfa.actor = dependee & Fulfilled(pfa))
Fulfillment condition FORALL dr: DoRequest (

(dr.actor = depender & Fulfilled(dr) & dr.result) ->
F EXISTS rs: ReceiveService (rs.actor = depender & Fulfilled(rs)))

TASK DoRequest
Mode achieve
Actor Citizen
Super BeingAssisted
Attribute constant need: AssistanceNeed

result: boolean
Invariant F EXISTS ir: InitialRequest (ir.super = self)
Invariant EXISTS ir: InitialRequest (ir.super = self & Fulfilled(ir))

-> F EXISTS pi: ProvideInformation (pi.super = self)
Invariant EXISTS pi: ProvideInformation (pi.super = self & Fulfilled(pi))

-> F EXISTS wa: WaitAnswer (wa.super = self)
Invariant Fulfilled(self) -> EXISTS wa: WaitAnswer

(wa.super = self & Fulfilled(wa) & (result <-> wa.result))
Fulfillment definition EXISTS wa: WaitAnswer (wa.super = self & Fulfilled(wa))

TASK InitialRequest
Mode achieve
Actor Citizen
Super FareRichiesta
Invariant F EXISTS r: Request (r.sender = actor & r.need = super.need)
Fulfillment definition EXISTS r: Request (r.sender = actor & r.need = super.need)

MESSAGE Request
Sender Citizen
Receiver SanitaryAgency
Attribute constant need: AssistanceNeed
Creation condition Exists dr: DoRequest (dr.actor = sender & dr.need = need)

Fig. 3. Formal Tropos specification.

2.2 Formal Specification of Business Requirements

The Tropos graphical models have a formal counterpart described in the Formal
Tropos specification language. Formal Tropos (hereafter FT) has been designed to
supplement Tropos models with a precise description of their dynamic aspects. In
FT the focus is on the circumstances in which the goals and tasks arise, and on
the conditions that lead to their fulfillment. In this way, the dynamic aspects of a
requirements specification are introduced at the strategic level, without requiring
an operationalization of the specification. A precise definition of FT and of its
semantics can be found in [5]. Here we present the most relevant aspects of the
language based on the case-study. An excerpt of its FT specification can be found
in Figure 3.

An FT specification describes the relevant objects of a domain and the relation-
ships among them. The description of each object is structured in two layers. The
outer layer is similar to a class declaration and defines the structure of the instances
together with their attributes. The inner layer expresses constraints on the lifetime
of the objects, using a typed first-order linear-time temporal logic (hereafter LTL).
Several instances of each element may exist during the evolution of the system. To
distinguish among the different instances, a list of attributes is associated to each
class. Each attribute has a sort which can be either primitive (boolean, integer. . . )
or classes. For instance, boolean attribute result of task DoRequest determines

5



Pistore, Roveri, and Busetta

whether the response to the request of the citizen has been positive or not. Attribute
need of goal DoRequest is used to distinguish between the different needs of the
same citizen. Entity classes like AssistanceNeed are added to the FT specifica-
tion to represent the “passive” elements of the domain that are used as attributes
in other classes. An attribute may be marked as constant, which means that the
value of the attribute does not change during the lifetime of the class instance.

Some special attributes are associated to each kind of class in the FT specifica-
tion. Goals and tasks are associated to the corresponding actor with the special at-
tribute Actor. Similarly, Depender and Dependee attributes of dependencies repre-
sent the two parties involved in a delegation relationship. Attribute Super for goals
and tasks denotes the parent goal or task. For messages we use special attributes
to characterize the actor instances corresponding to the sender (Sender) and to the
receiver (Receiver). All these special attributes are constant by definition.

An important aspect of FT is its focus on the conditions for the fulfillment of
goals and tasks. These are characterized by a Mode, which declares the modal-
ity of their fulfillment. The two most common modalities are achieve (which
means that the actor expects to reach a state where, e.g., the goal has been fulfilled)
and maintain (which means that the fulfillment condition has to be continuously
maintained). For instance, dependency ReceiveAssistance is of type maintain, to
capture the fact that this “contract” between citizen and sanitary agency has to be
maintained over time. On the other hand, task DoRequest is of type achieve, since
the citizen aims at reaching a state where this task is terminated.

The inner layer of an FT class declaration consists of constraints that describe
the dynamic aspects of entities, actors, goals, and dependencies. In FT we dis-
tinguish among Creation, Invariant, and Fulfillment constraints. Creation

constraints define conditions that should be satisfied when a new instance of a
class is created. In the case of goals and tasks, the creation is interpreted as the
moment when the associated actor begins to desire the goal or to perform the
task. Invariant constraints define conditions on the life of all class instances.
Fulfillment constraints should hold whenever a goal is achieved or a task is com-
pleted. Creation and fulfillment constraints are further distinguished as sufficient
conditions (keyword trigger), necessary conditions (keyword condition), and
necessary and sufficient conditions (keyword definition).

In FT, constraints are described with formulas in a typed first-order linear-time
temporal logic. Besides the standard boolean and relational operators, the logic
provides the quantifiers Forall and Exists, which range over all the instances
of a given class, and a standard set of linear-time temporal operators. The latter
include operator X, which defines a condition that has to hold in the next state of
the evolution of the system, operator F, which defines a condition that has to hold
eventually in the future, and operator G, which defines a condition that has to hold
in all future states.

In the FT specification of Figure 3, the first three invariants of task DoRequest

describe the expected evolution of the task and its relations with the sub-
tasks. Namely, if the task DoRequest is started, then eventually sub-task

6



Pistore, Roveri, and Busetta

POSSIBILITY P1
Exists dr: DoRequest (Fulfilled(dr))

ASSERTION A1
Forall c: Citizen (

Forall r: Response (r.receiver = c -> ! r.result) ->
Forall rs: ReceiveService (rs.actor = c -> ! Fulfilled(rs)))

ASSERTION A2
Forall dr: DoRequest (
(Exists ra: ReceiveAssistance (ra.depender = dr.actor & Fulfilled(ra)
& Forall r: Request (r.sender = dr.actor & r.need = dr.need -> r.receiver = ra.dependee)))

-> (F Fulfilled(dr)))

Fig. 4. Validation properties on the requirements model.

InitialRequest is entered (1st invariant). After InitialRequest has ended, sub-
task ProvideInformation is eventually entered (2nd invariant). And after also this
sub-task has ended, WaitAnswer is eventually started (3rd invariant). The fourth
invariant constrains the value of attribute result of the task to the value of the
same attribute of sub-task WaitAnswer once this sub-task has ended. Finally, the
Fulfillment definition tells us that the sub-task WaitAnswer has to complete
before we can consider the DoRequest task fulfilled (necessary condition) and that,
if WaitAnswer has completed, then DoRequest will eventually be fulfilled (suffi-
cient condition).

We remark that some temporal constraints are implicit in the semantics of FT
and do not need to appear explicitly in the class declarations. For instance, an
implicit creation constraint for each sub-goal is that the parent goal has not yet
been fulfilled — if the goal has been fulfilled there is no reason to create the sub-
goal. Also, we do not allow two identical instances of the same goal for the same
actor.

2.3 Business Requirements Validation

In FT it is possible to validate a requirements specification by allowing the designer
to specify properties that the requirements model is supposed to satisfy. We distin-
guish between Assertion properties, which describe conditions that should hold
for all valid evolutions of the specification, and Possibility properties, which
describe conditions that should hold for at least one valid evolution.

Figure 4 reports an excerpt of desired properties for the considered case-study.
Possibility P1 aims at guaranteeing that the set of constraints of the formal business
requirements specification allow for the fulfillment of the task of doing a request
in some scenario of the model. Assertion A1 requires that it is not possible for the
citizen to fulfill its goal of receiving assistance services unless a positive answer to a
request from the sanitary agency has been received. Finally, assertion A2 requires
that the task of doing a request is eventually fulfilled along every scenario under
the condition that: there is a sanitary agency that is bounded to provide assistance
to the user (citizen’s dependency ReceiveAssistance); and, the citizen sends the
requests to that particular sanitary agency.

The verification of the FT business requirements model against the properties
specified is performed with the T-TOOL [5]. The T-TOOL uses symbolic model
checking techniques to perform the verification. It is based on the NUSMV [2]

7



Pistore, Roveri, and Busetta

state-of-the-art symbolic model checker. The T-TOOL translates an FT specifica-
tion into the input language of NUSMV, which is then asked to perform the actual
verification. Since model checking requires a finite state model, for translation
purposes, upper bounds need to be specified to the number of instances of the dif-
ferent classes that appear in the formal specification. Given these bounds, a finite
state automaton is built. Its states describe valid configurations of class instances,
according to the class signatures and attributes that appear in the formal specifi-
cation. Its transitions define valid evolutions of these configurations according to
some generic constraints that capture the semantics of FT, e.g., that constant at-
tributes should not change over time, or that, once fulfilled, a goal stays fulfilled
forever. The creation, invariant, and fulfillment constraints of the various classes
are collected in a set {Ci | i ∈ I} of temporal constraints. In this way, the valid
behaviors of a model are those executions of the finite-state automaton that sat-
isfy all temporal constraints Ci. Checking if assertion A is valid corresponds to
checking whether the implication

∧
i∈I

Ci ⇒ A holds in the model, i.e., if all valid
scenarios also satisfy the assertion A. Checking if possibility P holds amount to
check whether

∧
i∈I

Ci ∧ P is satisfiable, i.e., if there is some scenario that satis-
fies the constraints and the property. In both cases, the verification of a property
is translated to the verification of an LTL formula. In [5] we have shown how this
verification can be performed efficiently using NUSMV.

All the properties in Figure 4 are true on the final version of the formal re-
quirements model of the considered case-study. However, this result has required
several revision steps, where both the model and the properties have been adjusted
to capture the intended behaviors of the domain. For instance, assertion A2 had a
crucial role in the process of precisely defining the mutual expectations incarnated
by dependency ReceiveAssistance, and captured by the fulfillment constraints
specified for this dependency as it can be seen in Figure 3.

3 From Business Requirements to Business Processes

3.1 Adding Process Specifications

In this section we show how to refine the business requirements model described
in the previous section into a business process model. The key idea is to asso-
ciate BPEL4WS code to the high-level tasks of the actors of the domain (e.g.,
task DoRequest of actor Citizen, or task HandleAssistanceRequest of the
SanitaryAgency).

The formal business requirements model already contains several pieces of in-
formation that can be exploited to generate a BPEL4WS specification. For instance,
it is possible to automatically generate the definition of messages, ports, and ser-
vices for the business domains — these elements define the WSDL document as-
sociated to the BPEL4WS specification. The description of the process model has
to be completed by defining the body of the business process corresponding to the
task. In Tropos4WS, this is achieved by associating to the task a business process

8



Pistore, Roveri, and Busetta

<variables>
<variable name="need" messageType="Need"/>
<variable name="result" type="boolean"/>
<variable name="vRequest" messageType="Request"/>
<variable name="vInfoRequest" messageType="InfoRequest"/>
<variable name="vInfo" messageType="Info"/>
<variable name="vResponse" messageType="Response"/>
<variable name="waitResponse" type="boolean"/></variables>

<sequence name="DoRequestBody">
<assign name="Initialization" event="Create ir: InitialRequest (ir.super = self)">

<copy><from expression="true()"/><to variable="waitResponse"/></copy>
<copy><from variable="need"/><to variable="vRequest" part="need"/></copy></assign>

<invoke name="SendRequest" operation="oRequest" inputVariable="vRequest"/>
<empty name="PhaseSwitch"

event="Fulfill ir: InitialRequest (ir.super = self) & Create pi: ProvideInformation (pi.super = self)"/>
<while name="Cycle" condition="getVariableData(’waitResponse’)">

<pick name="WaitMessage">
<onMessage name="InfoRequest" operation="oInfoRequest" outputVariable="vInfoRequest">

<sequence name="AnswerToInfoRequest">
<assign name="PrepareInfo">

<copy><from variable="vInfoRequest" part="query"/>
<to variable="vInfo" part="query"/></copy></assign>

<invoke name="Info" operation="oInfo" inputVariable="vInfo"/>
</sequence></onMessage>

<onMessage name="Response" operation="oResponse" outputVariable="vResponse"
event="Fulfill pi: ProvideInformation (pi.super = self) & Create wa: WaitAnswer (wa.super = self)">

<assign name="LeaveLoop">
<copy><from expression="false()"/><to variable="waitResponse"/></copy>
<copy><from variable="vResponse" part="result"/><to variable="result"/></copy></assign></onMessage>

</pick>
</while>
<empty name="DoRequestFulfilled" event="Fulfill wa: WaitAnswer (wa.super = self)"

constraint="Forall wa: WaitAnswer (wa.super = self -> G (wa.result <-> self.result))"/>
</sequence>

Fig. 5. BPEL4WS process for task DoRequest of actor Citizen.

defined in the BPEL4WS language. For instance, the business process correspond-
ing to the task of submitting a request is described by the BPEL4WS specification
in Figure 5.

The process contains the variables need and result, which are already
present in the formal requirements specification, and the additional variables
waitResponse, vRequest, vInfoRequest, vInfo, and vResponse. The process
behaves as follows. First, an initialization step is performed, during which the vari-
able waitResponse is set to true, and the message Request is prepared by setting
its need field. The Request message is sent in the following 〈invoke〉 command. A
〈while〉 loop is then entered, and its body is repeated until variable waitResponse
becomes false. The body consists of a 〈pick〉 instruction which suspends the ex-
ecution of the process until a InfoRequest or a Response message is received.
If a InfoRequest message is received, a corresponding Info message is prepared
and sent. The emitted Info message refers to the query contained in the received
InfoRequest message. If a Response message is received, then the result vari-
able of the process is set to reflect the result field of the received message. More-
over, the waitResponse variable is set to false, so that we can exit from the 〈while〉

loop.
Some additional attributes, which are specific of Tropos4WS, are added to the

BPEL4WS commands. These attributes are used to connect the evolution of the
BPEL4WS process with the evolution of the requirements model. The event at-
tributes describe which sub-tasks of DoRequest are supposed to be created or ful-
filled in the requirements model when a given point is reached in the BPEL4WS
code. For instance, sub-task InitialRequest is created during the initialization
step and is fulfilled after the Request message has been sent (the BPEL4WS com-

9



Pistore, Roveri, and Busetta

mand 〈empty〉 is used to place this fulfillment event in the right position of the
process). The constraint attributes define additional constraints between the re-
quirements layer and the process layer. They are typically used to define the values
of the attributes of the sub-tasks. For instance, the constraint attribute of Fig-
ure 5 binds the value of attribute result of the WaitAnswer sub-task to the value
of variable result of the BPEL4WS process.

3.2 Business Processes Verification

The definition of business processes, together with the bindings that link them to
the corresponding tasks and messages in the formal requirements model, allow
for different forms of verification. A first possibility consists of re-checking the
formal queries that appear in Figure 4 on the more detailed model. Another possi-
bility is checking that the refined model satisfies the requirements described by the
Creation, Invariant, and Fulfillment constraints enforced in the requirements
model for task DoRequest and its sub-tasks.

To support these kinds of verification, we have extended the T-TOOL with a
translation of BPEL4WS processes in NUSMV finite state machines. At the time
of writing, this translation considers only a restricted subset of BPEL4WS, which
covers all the constructs used in Figure 5, but does not include flow commands,
event-, fault-, compensation-handlers, and correlation sets. In the translation, the
current position in the execution of the BPEL4WS process is traced using a pc vari-
able, ranging over the name attributes associated to the commands in the BPEL4WS
code. Transitions between these states are defined according to the semantics of the
BPEL4WS constructs. Fairness conditions are added to the finite state machine in
order to guarantee that the process eventually progresses whenever the next action
to be executed is not blocked. In the case of the process in Figure 5, for instance,
the only point where the process can be blocked forever is on the 〈pick〉 action,
and only if no InfoRequest and Response messages are received. The event and
constraint attributes of the BPEL4WS commands are mapped into the set of tem-
poral logic constraints that restrict the valid behaviors of the finite state machine.

By applying this approach to the verification of the BPEL4WS process of Fig-
ure 5 we obtain that all verification tasks are successful, and hence this process is
a correct implementation of the requirements of task DoRequest. If we modify the
code of the process, e.g., by disallowing the reception of one of the two message
in the 〈pick〉 command, then the verification detects problems. If we disallow the
reception of the InfoRequest message, for instance, assertion A2 turns out to be
false. Indeed, if the sanitary agency is requesting some information, the citizen is
not able to answer to the request and a deadlock in the process is reached. The
counter-example of Figure 6 is generated in this case. If we disallow the recep-
tion of the Response, not only assertion A2, but also possibility P1 becomes false.
Indeed, if we do not receive the response, it is not possible to fulfill DoRequest.

We remark that the approach described in this paper allows also for another
kind of verification. Namely, in order to check that the process model is correct,

10



Pistore, Roveri, and Busetta

-- Assertion A2 is false as demonstrated by the
-- following execution sequence
-> State 3.1 <- ProvideInformation_1.fulfilled = 0

Citizen_1.exists = 1 DoRequest_1.pc = PhaseSwitch
AssistanceNeed_1.exists = 1 Query_1.exists = 1
BeingAssisted_1.exists = 1 ProvideFairAssistance_1.exists = 1
BeingAssisted_1.actor = Citizen_1 ...
BeingAssisted_1.fulfilled = 0 ProvideFairAssistance_1.fulfilled = 1
DoRequest_1.exists = 1 ...
DoRequest_1.actor = Citizen_1 HandleAssistanceRequest_1.exists = 1
DoRequest_1.fulfilled = 0 ...
DoRequest_1.waitResponse = 0 HandleAssistanceRequest_1.fulfilled = 1
DoRequest_1.answer = 0 ReceiveRequest_1.exists = 1
DoRequest_1.pc = Initialization ...
DoRequest_1.need = AssistanceNeed_1 ReceiveRequest_1.fulfilled = 1
DoRequest_1.super = BeingAssisted_1 EvaluateRequest_1.exists = 1

-> State 3.2 <- ...
SanitaryAgency_1.exists = 1 EvaluateRequest_1.fulfilled = 0
InitialRequest_1.exists = 1 -> State 3.4 <-
InitialRequest_1.actor = Citizen_1 ReceiveAssistance_1.exists = 1
InitialRequest_1.fulfilled = 0 ReceiveAssistance_1.dependee = SanitaryAgency_1
InitialRequest_1.super = DoRequest_1 ReceiveAssistance_1.depender = Citizen_1
Request_1.exists = 1 ReceiveAssistance_1.fulfilled = 0
Request_1.need = AssistanceNeed_1 DoRequest_1.pc = Cycle
Request_1.initiator = InitialRequest_1 -> Loop starts here <-
Request_1.sender = Citizen_1 -> State 3.5 <-
Request_1.receiver = SanitaryAgency_1 InfoRequest_1.exists = 1
DoRequest_1.waitResponse = 1 InfoRequest_1.query = Query_1
DoRequest_1.pc = SendRequest InfoRequest_1.ref = Request_1

-> State 3.3 <- InfoRequest_1.sender = SanitaryAgency_1
InitialRequest_1.fulfilled = 1 InfoRequest_1.receiver = Citizen_1
ProvideInformation_1.exists = 1 ReceiveAssistance_1.fulfilled = 1
ProvideInformation_1.actor = Citizen_1 DoRequest_1.pc = WaitMessage
ProvideInformation_1.super = DoRequest_1 -> Loop <-

Fig. 6. An example of counter-example generated by NUSMV.

one can show that it is equivalent to the requirements model according to a suit-
able behavioral equivalence. The NUSMV verification engine, however, does not
support this kind of verification.

4 Future Work and Concluding Remarks

This paper has outlined a methodology for the design and verification of Web ser-
vices as processes generated from business requirements models. The latter are
expressed with a language, called Tropos, whose formal counterpart allows for the
precise definition of goals and requirements of the actors of the domain. A set of
formal techniques are used first to derive process skeletons in BPEL4WS, and then
to verify that the refinements performed by the designer still satisfy the require-
ments.

A number of other approaches that use formal techniques for the definition
and composition of Web services are being proposed in the literature (see [4,6,7,8]
to cite a few). Distinguishing feature of the approach presented here is that we
start from a higher-level, strategic domain model, where processes as such are rep-
resented at a very abstract level and other types of requirements – for instance,
general business rules on resource usage or engagement with other partners – can
be easily represented. This gives us more flexibility in composing processes, and
let us perform a wider range of verifications than directly starting from a business
process or from elementary service definitions.

The work presented here is our first step towards a long term vision where
formal techniques are applied during the entire life cycle of services, from require-
ments analysis to execution. The objective is providing agents with sufficient se-

11



Pistore, Roveri, and Busetta

mantic knowledge and capabilities to discover and adapt to services and processes,
and possibly provide feedback to designers for remodeling.

In the short term, we plan to experiment with model checking tools different
from NUSMV. In particular, we plan to adopt verification tools that are based on
π-calculus (e.g., [3,9]). This will allow for modeling BPEL4WS features (most
notably, dynamic creation of new execution threads) that are difficult to model in
NUSMV. Moving to tools based on π-calculus would also allow for the application
of equivalence checking techniques to compare the business process model wrt the
corresponding requirements model. The most serious obstacle in this direction is
that the property specification languages currently available for the π-calculus are
not adequate for expressing the Formal Tropos constraints.

In the longer term, we will investigate into improving the generation of
BPEL4WS process skeletons in order to capture more details from the domain
model, such as the type of long-term business transaction that is required. An im-
proved BPEL4WS process should also enable an execution engine to relate faults
and exceptions to specific goals or requirements of the domain model, in order to
take appropriate action or provide feedback to the user.

References

[1] T. Andrews, F. Curbera, H. Dholakia, S. Systems, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business
process execution language for web services, version 1.1, 2003.

[2] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NUSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. CAV’02, LNCS 2004. Springer Verlag, 2002.

[3] G. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model checking verification
environment for mobile processes. ACM Transactions on Software Engineering and
Methodology, To appear.

[4] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web
service compositions. In Proc. ASE’03, 2003.

[5] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Specifying
and analyzing early requirements in Tropos. Requirements Engineering, 2003. To
appear.

[6] J. Koehler, R. Hauser, S. Kapoor, F. Wu, and S. Kumara. A model-driven
transformation method. In Proc. EDOC’03, 2003.

[7] S. Nakajima. Model-checking verification for reliable web service. In Proc.
OOPSLA’02 Workshop on OOWS, 2002.

[8] S. Narayanan and S. Mcllraith. Simulation, verification and automated composition
of web services. In Proc. WWW’02. ACM, 2002.

[9] B. Victor and F. Moller. The mobility workbench — a tool for the π-calculus. In Proc.
CAV’94, LNCS 818. Springer Verlag, 1994.

[10] E. Yu. Towards modeling and reasoning support for early requirements engineering.
In Proc. RE’97. IEEE Computer Society, 1997.

12


	Introduction
	Business Requirements Modeling in Tropos
	Modeling Business Requirements: A Case-Study
	Formal Specification of Business Requirements
	Business Requirements Validation

	From Business Requirements to Business Processes
	Adding Process Specifications
	Business Processes Verification

	Future Work and Concluding Remarks
	References

