
Int. J. of Web Engineering and Technology (IJWET), 2006 1

Service-Oriented Design and
Development Methodology
Michael P. Papazoglou*
INFOLAB, Department of Information Systems and Management,
Tilburg University, PO Box 90153, Tilburg 5000 LE, The Netherlands
E-mail: mikep@uvt.nl
*Corresponding author

Willem-Jan van den Heuvel
INFOLAB, Department of Information Systems and Management,
Tilburg University, PO Box 90153, Tilburg 5000 LE, The Netherlands
E-mail: wjheuvel@uvt.nl

Abstract: SOA is rapidly emerging as the premier integration and architectural approach in
contemporary complex, heterogeneous computing environments. SOA is not simply about
deploying software: it also requires that organizations evaluate their business models, come
up with service-oriented analysis and design techniques, deployment and support plans, and
carefully evaluate partner/customer/supplier relationships. Since SOA is based on open
standards and is frequently realized using Web services, developing meaningful Web
service and business process specifications is an important requirement for SOA
applications that leverage Web services. Designers and developers cannot be expected to
oversee a complex service-oriented development project without relying on a sound design
and development methodology. This paper provides an overview of the methods and
techniques used in service-oriented design and development. Aim of this paper is to
examine a service development methodology from the point of view of both service
producers and requesters and review the range of elements in this methodology that are
available to them.

Keywords: service oriented computing; service oriented architecture; business processes;
web services; design and development methodologies.

Biographical notes: Michael P. Papazoglou is a professor of computer science and director
of the INFOLAB at the University of Tilburg in the Netherlands. His research interests
include distributed systems, service-oriented computing and Web services, enterprise
application integration, and e-Business technologies and applications. He received PhD in
computer systems engineering from the University of Edinburgh.

Willem-Jan van den Heuvel is an associate professor of information Systems at the
University of Tilburg in the Netherlands. His research interests include service-oriented
computing, alignment of new enterprise system with legacy systems, and system evolution.
He received a PhD in computer science from the University of Tilburg.

1 INTRODUCTION

SOAs provide a set of guidelines, principles and
techniques in which business processes, information and
enterprise assets can be effectively (re)organized and
(re)deployed to support and enable strategic plans and
productivity levels that are required by competitive business
environments [Papazoglou 2003]. In this way, new
processes and alliances need to be routinely mapped to
services that can be used, modified, built or syndicated.

To achieve such business requirements, the internal
architecture of an SOA needs to evolve into a multi-tier,

service-based system, often with a diversified technical
implementation [Cauldwell 2001]. This diversity is the
result of a very broad spectrum of business and performance
requirements as well as different execution and reuse
contexts. As a consequence, older software development
paradigms for object-oriented and component-based
development cannot be blindly applied to SOA and Web
services.

Many enterprises in their early use of SOA, suppose that
they can port existing components to act as Web services
just by creating wrappers and leaving the underlying
component untouched. Since component methodologies

Copyright © 2004 Inderscience Enterprises Ltd.

2 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

focus on the interface, many developers assume that these
methodologies apply equally well to service-oriented
architectures. As a consequence, implementing a thin
SOAP/WSDL/UDDI layer on top of existing applications or
components that realize the Web services is by now widely
practiced by the software industry. Yet, this is in no way
sufficient to construct commercial strength enterprise
applications. Unless the nature of the component makes it
suitable for use as a Web service, and most are not, it takes
serious thought and redesign effort to properly deliver
components functionality through a Web service. While
relatively simple Web services may be effectively built that
way, a service-based development methodology is of critical
importance to specify, construct, refine and customize
highly volatile business processes from internally and
externally available Web services.

In this paper we concentrate on the workings of a services
design and development methodology that provides
sufficient principles and guidelines to specify, construct and
refine and customize highly volatile business processes
choreographed from a set of internal and external Web
services.

2 CHARACTERISTICS OF SERVICE DEVELOPMENT
LIFE CYCLE METHODOLOGY

A Web Services Lifecycle Development [Papazoglou
2006] methodology should focus on analyzing, designing
and producing an SOA in such a way that it aligns with
business process interactions between trading partners in
order to accomplish a common business goal, e.g.,
requisition and payment of a product, and stated functional
and non-functional business requirements, e.g.,
performance, security, scalability, and so forth.

Service-oriented design and development incorporates a
broad range of capabilities, technologies, tools, and skill
sets, that include [Arsanjani 2004], [Brown 2005]:

• Managing the entire services lifecycle—

including identifying, designing, developing,
deploying, finding, applying, evolving, and
maintaining services.

• Establishing a platform and programming model,
which includes connecting, deploying, and
managing services within a specific runtime
platform.

• Adopting best practices and tools for architecting
services-oriented solutions in repeatable,
predictable ways that deal with changing
business needs.

• Delivering high quality workable service-
oriented solutions that respect QoS requirements.
These solutions may be implemented on best-
practices, such as tried and tested methods for
implementing security, ensuring performance,
compliance with standards for interoperability,
and designing for change.

Fundamental to the above capabilities is that business
goals and requirements should always drive downstream
design, development, and testing to transform business
processes into composite applications that automate and
integrate the enterprise. In this way business requirements
can be traced across the entire lifecycle from business goals,
through software designs and code assets, to composite
applications.

Service design and development is about identifying the
right services, organizing them in a manageable hierarchy of
composite services (smaller grained often supported larger
grained), choreographing them together for supporting a
business process. A business service or process can be
composed of finer-grained services that need to be
supported by infrastructure services and management
services such as those providing technical utility such as
logging, security, or authentication, and those that manage
resources.

 Classifying related business processes that exhibit
common functional characteristics and objectives can raise
the level of abstraction in an SOA. In this way, business
process conglomerations can be created and organized
under a service domain. Classifying business processes into
logical service domains simplifies an SOA by reducing the
number of business processes and services that need to be
addressed. A service domain, also referred to as business
domain, is a functional domain comprising a set of current
and future business processes that share common
capabilities and functionality and can collaborate with each
other to accomplish a higher-level business objective, e.g.,
loans, insurance, banking, finance, manufacturing, human
resources, etc. In this way a business can be portioned into a
set of disjoint domains. Such domains can be leveraged
from multiple architectural reasons such as load balancing,
access control, and vertical or horizontal partitioning of
business logic.

DatabasesDatabases
PackagedPackaged

ApplicationsApplications
LegacyLegacy

ApplicationsApplications
ERPERPCRMCRM

Operational SystemsOperational Systems

ComponentComponent--based service realizationsbased service realizations

Business ServicesBusiness Services

Business ProcessesBusiness Processes

Infrastructure ServicesInfrastructure Services

Business (Service) Business (Service)
DomainDomain

Order ManagementOrder ManagementPurchasing Purchasing InventoryInventory

DistributionDistribution

•• create, modify, suspend, create, modify, suspend,
cancel orders,cancel orders,

•• schedule orders, schedule orders,
•• create, modify, delete create, modify, delete

bulk orders,bulk orders,
•• order progressorder progress

DatabasesDatabases
PackagedPackaged

ApplicationsApplications
LegacyLegacy

ApplicationsApplications
ERPERPCRMCRM

Operational SystemsOperational Systems

ComponentComponent--based service realizationsbased service realizations

Business ServicesBusiness Services

Business ProcessesBusiness Processes

Infrastructure ServicesInfrastructure Services

Business (Service) Business (Service)
DomainDomain

Order ManagementOrder ManagementPurchasing Purchasing InventoryInventory

DistributionDistribution

•• create, modify, suspend, create, modify, suspend,
cancel orders,cancel orders,

•• schedule orders, schedule orders,
•• create, modify, delete create, modify, delete

bulk orders,bulk orders,
•• order progressorder progress

Figure 1 Web Services Development Life Cycle hierarchy.

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 3

Figure -1, shows that a service domain such as distribution

is subdivided into higher-level business processes such as
purchasing, order management and inventory. In this figure,
the order management business process, which we shall use
as a running example throughout the paper, performs order
volume analysis, margin analysis, sales forecasting and
demand forecasting across any region, product or period. It
can also provide summary and transaction detail data on
order fulfilment and shipment according to item, sales
representative, customer, warehouse, order type, payment
term, and period. Furthermore, it can track order quantities,
payments, margins on past and upcoming shipments, and
cancellations for each order. The order management process
in Figure 1 is shown to provide business services for
creating, modifying, suspending, cancelling, querying
orders, and scheduling order activities. Business services
can also create, modify, and delete bulk orders and order
activities, while customers be informed of the progress of an
order and its order activities. Business services in the order
management process are used to create and track orders for
a product, a service or a resource, and is used to capture the
customer-selected service details. Information that is
captured as part of an order may include customer account
information, product offering and quality of service details,
SLA details, access information, scheduling information,
and so forth.

Business services are supported by infrastructure,
management and monitoring services. These services
provide the infrastructure enabling the integration of
services through the introduction of a reliable set of
capabilities, such as intelligent routing, protocol mediation,
and other transformation mechanisms, often considered as
part of the Enterprise Service Bus [Chappell 2004],
[Papazoglou 2006]. This layer also provides the capabilities
required for enabling the development, delivery,
maintenance and provisioning of services as well as
capabilities that monitor, manage, and maintain QoS such as
security, performance, and availability. It also provides
services that monitor the health of SOA applications, giving
insights into the health of systems and networks, and into
the status and behaviour patterns of applications making
them thus more suitable for mission-critical computing
environments. Monitoring services implement all important
standards implementations of WS-Management and other
relevant protocols and standards such as WS-Policy and
WS-Agreement.

All service domains, business processes and services are
automatically populated with financial and operational
functions and data available from resources such as ERP,
databases, CRM and other systems, which lie at the bottom
of the service lifecycle development hierarchy. However,
component implementation is an issue that can seriously
impact the quality of available services. Both services and
their implementation components need to be designed with
the appropriate level of granularity. The granularity of
components should be the prime concern of the developer

responsible for providing component implementations (see
section-4.3).

3 WEB SERVICES DEVELOPMENT LIFE CYCLE
METHODOLOGY BASELINE

This section presents the elements of a service-oriented
design and development methodology that is partly based on
other successful related development models such as the
Rational Unified Process ([RUP 2001], [Kruchten2004]),
Component-based Development [Herzum 2000] and
Business Process Modelling [Harmon2003] and
concentrates on the levels of the Web Services Development
Life Cycle hierarchy depicted in Figure 2.

Analysis
&

Design

Analysis
&

Design

ProvisioningProvisioning

Construction
&

Testing

Construction
&

Testing

DeploymentDeployment

Execution
&

Monitoring

Execution
&

Monitoring

Planning Planning

Analysis
&

Design

Analysis
&

Design

ProvisioningProvisioning

Construction
&

Testing

Construction
&

Testing

ProvisioningProvisioning

Construction
&

Testing

Construction
&

Testing

DeploymentDeployment

Execution
&

Monitoring

Execution
&

Monitoring

DeploymentDeployment

Execution
&

Monitoring

Execution
&

Monitoring

Planning Planning

Analysis
&

Design

Analysis
&

Design

ProvisioningProvisioning

Construction
&

Testing

Construction
&

Testing

DeploymentDeployment

Execution
&

Monitoring

Execution
&

Monitoring

Planning Planning

Analysis
&

Design

Analysis
&

Design

ProvisioningProvisioning

Construction
&

Testing

Construction
&

Testing

ProvisioningProvisioning

Construction
&

Testing

Construction
&

Testing

DeploymentDeployment

Execution
&

Monitoring

Execution
&

Monitoring

DeploymentDeployment

Execution
&

Monitoring

Execution
&

Monitoring

Planning Planning

Figure 2 Phases of the service-oriented design and development
methodology.

A service-oriented design and development methodology
is based on an iterative and incremental process that
comprises one preparatory and eight distinct main phases
that concentrate on business processes. These are planning,
analysis and design (A&D), construction and testing,
provisioning, deployment, execution and monitoring. These
phases may be traversed iteratively (see Figure 2). This
approach is one of continuous invention, discovery, and
implementation with each iteration forcing the development
team to drive the software development project’s artefacts
closer to completion in a predictable and repeatable manner.
The approach considers multiple realization scenarios for
business processes and Web services that take into account
both technical and business concerns.

The planning phase constitutes a preparatory phase that
serves to streamline and organize consequent phases in the
methodology. During the planning phase, the project
feasibility, goals, rules and procedures are set and
requirements are gathered. The analysis phase is based on a
thorough business case analysis that considers various
alternatives for implementing business processes, e.g., by

4 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

wrapping enterprise systems or acquiring new services,
while the design phase aims at identifying and specifying
Web services and business processes in a stepwise manner.
Service construction and testing involves coding Web
services and business processes using the specifications that
were developed during the design phase. It also involves
testing the coded services and processes for functional
correctness and completeness as well as for interoperability.
The service provisioning phase then enforces the business
model for service provisioning, that is chosen during the
planning phase. This activity encompasses such as issues
service metering, service rating and service billing. Once the
provisioning model has been established, the Web services
may be deployed and advertised in a repository system. The
final phase in the methodology deals with the execution and
monitoring of Web services. This phase includes the actual
binding and run-time invocation of the deployed services as
well as managing and monitoring their lifecycle.

The workings of this methodology will concern us for the
rest of this paper and will exemplified by means of the order
management process that we introduced earlier.

4 SERVICE-ORIENTED DESIGN AND DEVELOPMENT
PRINCIPLES

A service-oriented design and development methodology
focuses on business processes, which it considers as
reusable building blocks that are independent of
applications and the computing platforms on which they
run. This promotes the idea of viewing enterprise solutions
as federations of services connected via well-specified
contracts.

The course of designing a business processes goes through
the stages outlined earlier. However, in order to design
useful and reliable business processes that are developed on
the basis of existing or newly coded services we need to
apply sound service design principles that guarantee that
services are self-contained and come equipped with clearly
defined boundaries and service end-points to allow for
service composability. Two key principles serve as the
foundation for service- and business process design: service
coupling and cohesion.

4.1 Service coupling

It is important that grouping of activities in business
processes is as independent as possible from other such
groupings in other processes. One way of measuring service
design quality is coupling, or the degree of interdependence
between two business processes. The objective is to
minimise coupling, that is, to make (self-contained)
business processes as independent as possible by not having
any knowledge of or relying on any other business
processes. Low coupling between business processes
indicates a well-partitioned system that avoids problems of
service redundancy and duplication.

Coupling can be achieved by reducing the number of
connections between services in a business process,
eliminating unnecessary relationships between them, and by
reducing the number of necessary relationships - if
possible.. Coupling is a very broad concept, however, and
for service design can be organized along the following
dimensions:

1. Representational coupling: Business processes

should not depend on specific representational or
implementation details and assumptions of one
another, e.g., business processes do not need to
know the scripting language that was used to
compose their underlying services. These concerns
lead to the exploitation of interoperability and
reusability for service design. Representational
coupling is useful for supporting
interchangeable/replaceable services and multiple
service versions.

2. Identity coupling: Connection channels between
services should be unaware of who is providing the
service. It is not desirable to keep track of the
targets (recipients) of service messages, especially
when they are likely to change or when discovering
the best service provider is not a trivial matter.

3. Communication protocol coupling: A sender of a
message should rely only on those effects
necessary to achieve effective communication. The
number of messages exchanged between a sender
and addressee in order to accomplish a certain goal
should be minimal, given the applied
communication model, e.g., one-way,
request/response, and solicit/response. For
example, one-way style of communication where a
service end point receives a message without
having to send an acknowledgement places the
lowest possible demands on the service performing
the operation..

4.2 Service cohesion

Cohesion is the degree of the strength of functional
relatedness of operations within a service. Service
aggregators should create strong, highly cohesive business
processes; business processes whose services and service
operations are strongly and genuinely related to one another.
A business process with highly related services and related
responsibilities, and which does not do a tremendous
amount of computational work, has high design cohesion.
The guidelines by which to increase service cohesion are as
follows:

1. Functional service cohesion: A functionally

cohesive business process should perform one
and only one problem-related task and contain
only services necessary for that purpose. At the
same time the operations in the services of the
business process must also be highly related to

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 5

one another, i.e., highly cohesive. Consider
services such as get “product price”, “check
product availability”, and “check
creditworthiness”, in an order management
business process.

2. Communicational service cohesion: A
communicationally cohesive business process is
one whose activities and services use the same
input and output messages. Communicationally
cohesive business processes are cleanly
decoupled from other processes as their activities
are hardly related to activities in other processes.

3. Logical service cohesion: A logically cohesive
business process is one whose services all
contribute to tasks of the same general category
by performing a set of independent but logically
similar functions (alternatives) that are tied
together by means of control flows. A typical
example of this is mode of payment.

Like low coupling, high cohesion is a service-oriented

design and development principle to keep in mind during all
stages in the methodology. High cohesion increases the
clarity and ease of comprehension of the design; simplifies
maintenance and future enhancements; achieves service
granularity at a fairly reasonable level; and often supports
low coupling. Highly related functionality supports
increased reuse potential as a highly cohesive service
module can be used for very specific purposes.

4.3 Service Granularity

Service granularity refers to the scope of functionality
exposed by a service. Services may exhibit different levels
of granularity. An implementation component can be of
various granularity levels. Fine-grained component (and
service) implementations provide a small amount of
business-process usefulness, such as basic data access.
Larger granularities are compositions of smaller grained
components and possibly other artefacts, where the
composition taken as a whole conforms to the enterprise
component definition. The coarseness of the service
operations to be exposed depends on business usage
scenarios and requirements and should be at a relatively
coarse-level reflecting the requirements of business
processes.

A coarse-grained interface might be the complete
processing for a given service, such as
“SubmitPurchaseOrder”, where the message contains all of
the business information needed to define a purchase order.
A fine-grained interface might have separate operations for:
“CreateNewPurchaseOrder”, “SetShippingAddress”,
“AddItem”, and so forth. This example illustrates that fine-
grained services might be services that provide basic data
access or rudimentary operations. These services are of
little value to business applications. Services of the most

value are coarse-grained services that are appropriately
structured to meet specific business needs. These coarse-
grained services can be created from one or more existing
systems by defining and exposing interfaces that meet
business process requirements. Web service interfaces may
be invoked via messages, which may likewise be defined as
coarse- or fine-grained entities.

Fine-grained messages result in increased network traffic
and make handling errors more difficult. This significantly
hinders cross-enterprise integration. However, internal use
of Web services may be beneficial in those cases where the
internal network is faster and more stable. A higher number
of fine-grained services and messages might therefore be
acceptable for EAI applications.

From the perspective of service-oriented design and
development it is preferable to create higher-level, coarse-
grained interfaces that implement a complete business
process. This technique provides the client with access to a
specific business service, rather than getting and setting
specific data values and sending a large number of
messages. Enterprises can use a single (discrete) service to
accomplish a specific business task, such as billing or
inventory control or they may compose several services
together to create a distributed e-Business application such
as customised ordering, customer support, procurement, and
logistical support. These services are collaborative in nature
and some of them may require transactional functionality.
Enabling business to take place via limited message
exchanges is the best way to design a Web services interface
for complex distributed applications that make use of SOAs.

5 PHASES OF THE SERVICE-ORIENTED DESIGN AND
DEVELOPMENT METHODOLOGY

The objective of the service-oriented design and
development methodology is to achieve service integration
as well as service interoperability.

5.1 The Planning Phase

The planning phase determines the feasibility, nature and
scope of service-solutions in the context of an enterprise. A
strategic task for any organization is to achieve a service
technology “fit” with its current environment. The key
requirement in this phase is thus to understand the business
environment and to make sure that all necessary controls are
incorporated into the design of a service-oriented solution.
Activities in this phase include analyzing the business needs
in measurable goals, reviewing of the current technology
landscape, conceptualizing the requirements of the new
environment and mapping those to new or available
implementations. Planning also includes a financial analysis
of the costs and benefits including a budget and a software
development plan including tasks, deliverables, and
schedule.

6 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

A business environment is usually large and complex.
Business experts at the service provider’s side provide a
categorization and decomposition of the business
environment into business areas based on the functions
being served by sets of business processes. The stakeholders
in this business environment view the discrete units of work
done within their enterprise organized as business processes,
which are in reality higher-order services that are further
decomposed into simpler services.

The planning phase is very similar to that of software
development methodologies including the RUP [RUP
2001], [Royce 1998], and will be not discussed any further.

5.2 The Analysis Phase

Service-oriented analysis is a phase during which the
requirements of a new application are investigated. This
includes reviewing business goals and objectives that drive
the development of business processes. Business analysts
complete an “as-is” process model to allow the various
stakeholders understand the portfolio of available services
and business processes. The organization designs, simulates,
and analyzes potential changes to the current application
portfolio for potential return-on-investment (ROI) before it
commits to any changes to business processes. This analysis
results in the development of the “to-be” process model that
an SOA solution is intended to implement.

The analysis phase examines the existing services
portfolio at the service provider’s side to understand which
policies and processes are already in place and which need
to be introduced and implemented.

The analysis phase encourages a radical view of process
(re)-design and supports the re-engineering of business
processes. Its main objective is the reuse (or repurposing) of
business process functionality in new composite
applications. To achieve this objective the analysis phase
comprises four main activities: process identification,
process scoping, business gap analysis, and process
realization.

5.2.1 Process Identification

Understanding how a business process works and how
component functionality differs or can get adjusted between
applications is an important milestone when identifying
suitable business process candidates. When designing an
application, developers must first analyse application
functionality and develop a logical model of what an
enterprise does in terms of business processes and the
services the business requires from them, e.g., what is the
shipping and billing addresses, what is the required delivery
time, what is the delivery schedule and so on. Thus the
objective of this step is to identify the services that need to
be aggregated into a business process whose interface has a
high viscosity.

The key factor is being able to recognize functionality that
is essentially self-sufficient for the purposes of a business
process. It is important when designing a business process

to identify the functionality that should be included in it and
the functionality that is best incorporated into another
business processes. Here, we can apply the design principles
of coupling and cohesion to achieve this. For instance, an
order management process has low communication protocol
coupling with a material requirements process.

Process identificationProcess identification

ProcessProcess scopingscoping Planning processPlanning process
integrationintegration

Model Òas-isÓ
baseline process

Analysis Select Òto-beÓ
design

Redesign Òto-beÓ
process alternatives

Process knowledge

Figure 3 Business process identification and scoping (adapted
from [El Sawy 2001]).

Process identification could start with comparing the
abstract business process portfolio with standard process
definitions, such as for example, RosettaNet’s “Manage
Purchase Order” (PIP3A4). This PIP encompasses four
complementary process segments supporting the entire
chain of activities from purchase order creation to tracking-
and-tracing, each of which is further decomposed into
multiple individual processes. A quick-scan of this PIP
reveals that Segment 3A “Quote and Order Entry” and
Segment 3C “Returns and Finance” may be combined into
the process Order Management.

5.2.2 Process Scoping

Defining the scope of business processes helps ensure that a
process does not become monolithic mimicking a complete
application. Unbundling functionality into separate (sub-)
business processes will prevent business processes from
becoming overly large, complex and difficult to maintain.
For example, designing a business processes that handles
online purchasing would require the removal of packaging
and shipping information and costs to different business
processes. In this example the three functions are mutually
exclusive and should be implemented separately. The
functionality included in these business processes is not
only discrete and identifiable but it is also loosely coupled
to other parts of the application.

The scope of a business process is defined as an
aggregation of aspects that include where the process starts

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 7

and ends, the typical customers (users) of the process, the
inputs and outputs that the customers of the process expect
to see, the external entities, e.g., suppliers or logistics
providers, that the process is expected to interface with, and
the different types of events that start an instance of the
process.

Figure 3 illustrates how business identification and
scoping interact and result either in processes that can be
reused and are candidates for design or in processes that
need to be redesigned and re-engineered.

5.2.3 Business Gap Analysis

Gap analysis is a technique that purposes a business
process and Web services realization strategy by
incrementally adding more implementation details to an
abstract service/process interface. Gap analysis commences
with comparing candidate service functionality with
available software service implementations that may be
assembled within the enclosures of a newly conceived
business process. A gap analysis strategy may be developed
in stages and results in a recommendation to do
development work, reuse or purchase Web services. Several
service realization possibilities are discussed later in this
section. For the moment let us assume that there may exist
software components internal to an organization that
provide good match. These may include service
implementations previously developed by the enterprise,
externally supplied service realizations available on a
subscription or pay per use basis. Service realizations may
be a blend of service and service-enabled implementations.
In this way, portfolios of services possibly accessible on a
global scale will complement and sometimes even entirely
replace monolithic applications as the new fabric of
business processes

5.2.4 Process Realization Analysis

Process realization analysis is an approach that considers
diverse business process realization scenarios evaluated in
terms of costs, risks, benefits and return of investment in
accordance with business requirements and priorities.
Service providers consider the following four realization
options (which may be mixed in various combinations) to
develop new business processes [Brittenham 2001]:

1. Green-field development: This step involves
describing how a new interface for a Web
service will be created on the basis of the Web
service implementation. Green field
development assumes that first a service is
implemented and subsequently the service
interface is derived from the new Web service
implementation. During this step the
programming languages and models that are
appropriate for implementing the new Web
service are also determined.

2. Top-down development: Using this realization
option a new service can be developed that
conforms to an existing service interface. This
type of service interface is usually part of an
industry standard that can be developed by any
number of service providers. Processes are
usually deployed top-down from a business
level process blueprint. The main benefit of
the top-down service development is the
consistency of the applications and integration
mechanisms. It is also rather easy to evolve the
service-oriented solution across the enterprise
as the industry evolves. Main problems with
this realization option are the costs involved in
development as well as the costs of achieving
consensus on a high-level SOA architecture
throughout the enterprise [Graham 2005].

3. Bottom-up development: Using this option a
new service interface is developed for an
existing application. The existing application
can be coded as a Java, C++ program,
Enterprise Java Bean (EJB), etc, or could be a
back end legacy application. This option
usually involves creating a Web service
interface from the application programming
interface (API) of the application that
implements the Web service. Bottom is well
suited for an environment that includes several
heterogeneous technologies and platforms or
uses rapidly evolving technologies.

4. Meet-in-the-middle- development: This option
is used when an already existing Web service
interface - for which an implementation
already exists – is partially mapped onto a new
service or process definition. This option
involves service realizations that mix service
and service-enabled implementations. This
approach may thus involve creating a wrapper
for the existing applications that need to be
service-enabled and that are to be combined
with the already existing Web service
interface. Meet-in-the-middle development
realization strategies offer a middle ground
that attempts to take advantage of some of the
benefits of the other approaches while
extenuating some of the most notable
problems and risks.

One of the issues with the top-down, bottom-up and meet-
in-the-middle development options is that they are rather
ambiguous regarding which business processes an enterprise
should start from and how these can be combined to form
business scenarios. To address this problem, service
development solutions need to target specific focal points
and common practises within the enterprise such as those
that are specified by its corresponding sector reference
models. Reference models - a typical example of which is
RosetaNet - address a common large proportion of the basic

8 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

‘plumbing’ for a specific sector, from a process, operational
function, integration, and data point of view. Such a
verticalized development model presents the ideal
architecture for supporting service development. This makes
certain that the development team are aware of known best
practices and standard processes so that they do not reinvent
the wheel. For example, developers could use RosettaNet’s
standard processes PIP4B2 (“Notify of Shipment Receipt”)
and PIP4C1 (“Distribute Inventory Report”) for applications
in which suppliers develop replenishment plans for
consignment inventory at buyers. Product receipt and
inventory information is notified using PIP4B2 and PIP4C1,
respectively between consignment warehouses and
suppliers.

The various options for process realization analysis
emphasize the separation of specification from
implementation that allows Web services to be realized in
different ways, e.g., top-down or meet-in-the-middle
development. It then becomes important to plan effectively
when deciding how to realize or provision services; we need
to carefully examine the diversity of realization alternatives
and make the right choice. The service realization strategy
involves choosing from an increasing diversity of different
options for services, in addition to service reuse, which may
be mixed in various combinations. This includes reusing or
repurposing already existing Web services, business
processes or business process logic; developing new Web
services or business processes logic from scratch;
purchasing/leasing/paying per use for services; outsourcing
service design and implementation regarding Web services
or (parts of) business processes; and, using wrappers and/or
adapters to revamp existing enterprise (COTS) components
or existing (ERP/legacy) systems.

Process realization results in a business architecture
represented by business processes and the set of normalized
business functions extracted from the analysis of these
processes. During process realization, analysis decisions
are made whether to reuse a particular enterprise asset, e.g.,
service or business process. To determine the quality of a
specific asset, quality metrics are used that evaluate its
flexibility, extensibility, maintainability, and level of
cohesion and coupling. The process realization analysis
estimates existing and expected operational costs,
integration costs, service and process customisation costs,
service and process provisioning costs and architecture costs
for each scenario realization scenario. Develops and project
managers could use tools such as, for example, IBM
Rational Portfolio Manager to gain insight into the business
benefits, costs, and risks of the SOA services portfolio
[Brown 2005]. Architecture costs are associated with
acquiring artefacts for realizing the target architecture
including servers, specialized software, training, and
required network bandwidth.

6 THE SERVICE DESIGN PHASE

Service analysis is logically succeeded by service design,
during which conceptual processes and services are
transformed into a set of related, platform-agnostic
interfaces. Designing a service-oriented application requires
developers to model and define well-documented interfaces
for all major service components prior to constructing the
services themselves. Service design is based on a twin- track
development approach that provides two production lines:
one to produce services (possibly out of pre-existing
components), and another to assemble (compose) services
out of reusable service constellations. This calls for a
business process model that forces developers to determine
how services combine and interact jointly to produce higher
level services.

Service design, just like service analysis, has its own
special characteristics and techniques, which we shall
describe in this section. We shall first start by describing a
broad set of service design concerns.

6.1 Service Design Concerns

A number of important concerns exist that influence design
decisions and result in an efficient design of service
interfaces, if taken seriously. These concerns bring into
operation the design principles for service-enabled
processes. Prime concerns include managing service
granularity, designing for service reuse and designing for
service composability.

6.1.1 Managing Service and Component Granularity

Identifying the appropriate level of granularity for a
service or its underlying component is a difficult
undertaking as granularity is very much application context
dependent. In general, there are several heuristics that can
be used to identify the right level of granularity for services
and implementation components. These include clearly
identifiable business concepts, highly usable and reusable
concepts, concepts that have a high-degree of cohesion and
low-degree of coupling and must be functionally cohesive.
Many vertical sectors, e.g., automotive, travel industry and
so on, have already started standardising business entities
and processes by choosing their own levels of granularity.

6.1.2 Designing for Service Reusability

When designing services it is important to be able to design
them for reuse so that they can perform a given function
wherever this function is required within an enterprise. To
design for service reuse one must make services more
generic, abstracting away from differences in requirements
between one situation and another, and attempting to use the
generic service in multiple contexts where it is applicable.
Designing a solution that is reusable requires keeping it as
simple as possible. There are intuitive techniques that
facilitate reuse that are related to design issues such as
identification and granularity of services. These include

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 9

looking for common behaviour that exists in more than one
place in the system and trying to generalize behaviour so
that it is reusable.

When designing a service-based application, it is possible
to extract common behaviour and provide it by means of a
generic services so that multiple clients can use it directly. It
is important, however, that when designing enterprise
services that business logic is kept common and consistent
across the enterprise so that generalization is not required.
Nevertheless there are cases where fine-tuning,
specialization or variation of business logic functionality is
required. Consider for instance, discounting practices that
differ depending on the type of customer being handled. In
those cases it is customary to produce a generalized solution
with customisation points to allow for service variations.

6.1.3 Designing for Service Composability

In order to design useful and reliable services we need to
apply sound service design principles that guarantee that
services are self-contained, modular and support service
composability. The design principles that underlie
component reusability revolve around the two well-known
software design guidelines service coupling and cohesion.

6.2 Specifying Services

A service specification is a set of three specification
elements, all equally important. These are [Johnston 2005]:

• Structural specification: This focuses defining the
service types, messages, port types and operations.

• Behavioural specification: This entails
understanding the effects and side effects of
service operations and the semantics of input and
output messages. If, for example we consider an
order management service we might expect to see a
service that lists "place order," "cancel order," and
"update order," as available operations. The
behavioural specification for this ordering service
might then describe how one cannot update or
cancel an order you did not place, or that after an
order has been cancelled it cannot be updated.

• Policy specification: This denotes policy assertions
and constraints on the service. Policy assertions
may cover security, manageability, etc.

During service design, service interfaces that were identified
during the analysis phase are specified based on service
coupling and cohesion criteria as well as on the basis of the
service design concerns that we examined in section-6.1. In
case that reference models are available business processes
and service interfaces can be derived on their basis. For the
remainder of this section we consider a sample purchase
order business process for supply chain service-oriented
applications that is derived on the basis of RosettaNet’s
order management PIP cluster. By applying the dominant
cohesion criterion, namely functional cohesion, this process

may be decomposed into several sub-processes such as
“Quote and Order Entry”, “Transportation and
Distribution”, and “Returns and Finance”, which conform to
RosettaNet’s segments 3A, 3B and 3C respectively. The
“Quote and Order Entry” sub-process allows partners to
exchange price and availability information, quotes,
purchase orders and order status, and enables partners to
send requested orders to other partners. The “Transportation
and Distribution” sub-process enables communication of
shipping- and delivery-related information with the ability
to make changes and handle exceptions and claims. Finally,
the “Returns and Finance” sub-process provides for
issuance of billing, payment and reconciliation of debits,
credits and invoices between partners as well as supports
product return and its financial impact. By applying
functional cohesion again, the Quote and Order Entry sub-
process may be decomposed into several services such
“Request Quote”, “Request Price and Availability”,
“Request Purchase Order” and “Query Order Status”. These
three services conform to RosettaNet’s PIPs 3A1, 3A2, 3A4
and 3A5, respectively.

6.2.1 Structural and Behavioral Service Specification

In the following we will briefly examine the course of
specifying an interface for a Web service in WSDL
[Chinnici 2004]. Web service interface specification
comprises four steps: describing the service interface,
specifying operation parameters, designating the messaging
and transport protocol, and finally fusing port types,
bindings and actual location (a URI) of the Web-services.
These steps themselves are rather trivial and already
described in-depth in literature, e.g., in [Alonso 2004] a
detailed approach for specifying services is outlined. The
following guidelines and principles are relevant while
developing a WSDL specification:

• The service interface should only contain port
types (operations) that are logically related or
functionally cohesive. For example, the service
“Request Purchase Order” captures the operations
“Purchase Order Request” and
“ReceiptAcknowledgement” as they are
functionally cohesive;

• Messages within a particular port type should be
tightly coupled by representational coupling and
communication protocol coupling. For example,
the operation “Purchase Order Request” may have
one input message (PurchaseOrderID) and one
output message (PurchaseOrder) sharing the same
communication protocol (e.g., SOAP) and
representation (atomic XML Schema datatypes);

• Coupling between services should be minimized.
For example, the services “Request Purchase
Order” and “Query Order Status” are autonomous,
having no interdependencies.

10 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

Figure 4 WSDL excerpt for request purchase order.

Specifying the service interface: A WSDL specification
outlines operations, messages, types and protocol
information. Figure 4 shows an abridged specification for a
service interfaced and operation parameters for the “Request
Purchase Order” service. The WSDL example in Figure 4
illustrates that the Web service defines two <portType>
named "CanReceive3A42_PortType" and
"CanSend3A42_PortType". The <portType>
"CanReceive3A42_PortType" supports two <operation>s,
which are called "PurchaseOrderRequest" and
"ReceiptAcknowledgement".

Specifying operation parameters: After having defined the
operations, designers need to specify the parameters they
contain. A typical operation defines a sequence containing
an input message followed by an output message. When
defining operation parameters (messages) it is important to
decide whether simple or complex types will be used. As
Web services become increasingly more complex, and
message-based SOAP will be more appropriate, complex
schemas need to be created. The <operation>
"PurchaseOrderRequest" in Figure 4 is shown to contain an
output message "PurchaseOrderRequest" which includes a
single part named "PO-body". This part is shown in Figure
5 to be associated with the complex type
"PIP3A4PurchaseOrderRequest" that is further specified to
the level of atomic (XSD) types in the compartment that is
embraced with the <wsdl:types> tag. As Figure 5 indicates,
well-factored Web services often result in a straightforward
<portType> element where the business complexity is
moved into the business data declaration.

Several graphical Web services development
environments and toolkits exist today. These enable
developers to rapidly create, view, and edit services using
WSDL and manage issues such a correct syntax and
validation, inspecting and testing Web services and
accelerating many common XML development tasks
encountered when developing Web service enabled
applications.

6.2.2 Service Programming Style

In addition to structural and behavioural service
specification the service programming style must also be
specified during the service design phase. Determining the
service programming style is largely a design issue as
different applications impose different programming-style
requirements for Web services. Consider for example an
application that deals with purchase order requests, purchase
order confirmations and delivery information. This
application requires that request messages may contain
purchase orders in the form of XML documents while
response messages may contain purchase order receipts or
delivery information again in the form of XML documents.
This type of application uses data-oriented Web services.
Moreover, there is no real urgency for a response message
to follow a request immediately if at all. In contrast to this
consider an application that provides businesses with up-to-
the-instant credit standings. Before completing a business
transaction, a business may require to check a potential
customer’s credit standing. In this scenario, a request would
be sent to the credit check Web service provider, e.g., a
bank, processed, and a response indicating the potential
customer’s credit rating would be returned in real time. This
type of Web service relies on an RPC- or process-oriented
programming style. In these types of applications the client
invoking the Web service needs an immediate response or
may even require that the Web services interact in a back-
and-forth conversational way.

Figure 5 Specifying parameters for operations in Figure 4.

The use of document-based messaging promotes loose
coupling. In general, there is no reason for the Web service
client to know the name of the remote methods. In
document-based messaging, the Web services subsystem
receives the document, invokes the appropriate methods,

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 11

and responds. Using document-based messaging results in
loose coupling, since the message constructs the document,
but does not indicate the steps to process that document.
With document-based messaging, it is the only receiver that
knows the steps to handle an incoming document. Thus, the
receiver can add additional steps, delete steps, and so on,
without impacting the client.

6.2.3 Service Policy Concerns

The design of service-oriented solutions, like any other
complex structure, requires early architectural decisions
supported by well-understood design techniques, structural
patterns, and styles that that go far beyond ensuring
”simple” functional correctness, and deal with non-
functional service concerns. These patterns address common
QoS issues that include performance requirements,
information regarding service reliability, scalability, and
availability, transactional requirements, change management
and notification, and so on. In general, non-functional
service characteristics describe the broader context of a
service, e.g., what business function the service
accomplishes, how it fits into a broader business process as
well as characteristics of the hosting environment such as
whether the component provider ensures security and
privacy, what kind of auditing, security and privacy policy
is enforced by the component provider, what levels of
quality of component are available and so on.

Typical service related non-functional concerns that are
addressed by policies include security issues and
authorization concerns, and policy models. For example, a
service provider could specify a policy stating that a given
Web service requires Kerberos tokens, digital signatures,
and encryption that can be used by clients use such policy
information to determine whether they can use the particular
service under consideration. In another example, an
authentication model may require that a client authenticates
itself by presenting its encoded credentials or may require
that XML signatures be generated for Web service requests.

As a wide range of services is provided across a network it
is natural that services would benefit from the use of policy
management models, which could determine the
configuration of a network of differentiated services
according to business rules or application-level policies.
There are many reasons why enterprises might want to give
different levels of service to different customers or why they
might need different levels of priority to different business
transaction models involving Web services. Therefore, it is
only natural that such criteria constitute important elements
of a service design methodology and are considered to be
equally important to technical policies such as security or
authentication.

6.3 Specifying Business Processes

Designers should be able to compose (or decompose) and
relate to each other process models that are developed in
different parts of the enterprise, or by partners. They also

should be in a position to incrementally refine processes and
export process improvements achieved in one part of the
business to other parts of the business, with adaptation as
required. Industry best practices and patterns must also be
taken into account when designing processes and abstract
process models can act as blueprints for subsequent concrete
models.

Once business processes are extracted and their
boundaries are clearly demarcated, they need to be
described in the abstract. This step comprises four separate
tasks, one deriving the process structure, one linking it to
business roles, which reflect responsibilities of the trading
partners, e.g., a buyer, a seller and a shipper in the order
management process, and one specifying non-functional
characteristics of business processes. The first task is to one
choosing the type of service composition. The choice is
between orchestration versus choreography. If a choice for
orchestration is made three tasks follow to orchestrate a
process. These are defined using the Web services Business
Process Execution Language (BPEL) [Andrews 2003]. In
the following we will place emphasis on orchestration given
that today there are several implementations for BPEL while
the WS-CDL (Choreography Description Language) is still
being specified.

6.3.1 Describing the Business Process Structure

The first step in the business process design is to specify the
business structure and the functions of the business process.
The business process structure refers to the logical flow or
progression of the business process. A business process
reveals how an individual process activity (<PortType>) is
linked with another in order to achieve a business objective.
To assemble a higher-level service (or process) by
combining other Web services, the service aggregator needs
to select potential services that need to be composed
depending on how these services and their operations fit
within the enclosures a business process and how they relate
to one another. Subsequently, the service provider needs to
connect the process interface to the interfaces of imported
services and plug them together. Business processes can be
scripted using BPEL.

The abstract description of a process encompasses the
following tasks:

1. Identify, group and describe the activities that

together implement a business process: The
objective of this action is to identify the services
that need to be combined in order to generate a
business process and then describe the usage
interface of the overall business process. The
functions of a business process are expressed in
terms of the activities or the services that need to
be performed by a specific business process. For
instance, the registration of a new customer is an
activity in a sales order process. The structure of
a business process describes how an individual
process activity (<ProtType>) is linked with one

12 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

another. To assemble a higher-level service by
combining other Web services, the service
designer needs to:
a. Select the services to compose by

looking at how these services and their
operations within a business process
relate to one another.

b. Connect the usage interface of the
business process to the interfaces of
imported services and plug them
together.

2. Describe activity dependencies, conditions or
synchronisation: A process definition can
organise activities into varying structures such as
hierarchical, conditional and activity dependency
definitions. In a hierarchical definition processes
activities have a hierarchical structure. For
instance, the activity of sending an insurance
policy for a shipped order can be divided into
three sub-activities: compute the insurance
premium, notify insurance, mail insurance
premium to the customer. In process definitions
that have a conditional activity structure activities
are performed only if certain conditions are met.
For instance, it may be company policy to send a
second billing notice to a trading partner when an
invoice is more than two months overdue.
Activity dependency definitions signify
dependencies between activities and sub-
activities in a process. In any process definition,
sub-activities can execute only after their parent
activity has commenced. This means that sub-
activities are implicitly dependent on their parent
activity. In other cases there might be an explicit
dependency between activities: an activity may
only be able to start when another specific
activity has completed. For instance, a shipment
cannot be sent to a customer if the customer has
not been sent and invoice.

3. Describe the implementation of the business
process: provide a BPEL definition, that maps
the operations and interfaces of imported services
to those of another in order to create the usage
interface of the business process (higher-level
Web service).

Figure 6 illustrates an abbreviated snippet of the BPEL

specification for the order management process. The first
step in the process flow is the initial buyer request. The
listing shows that three activities are planned in parallel. An
inventory service is contacted in order to check the
inventory, and a credit service is contacted in order to
receive a credit check for the customer. Finally, a billing
service is contacted to bill the customer. Upon receiving the
responses back from the credit, inventory and billing
services, the supplier would construct a message back to the
buyer.

6.3.2 Describing Business Roles

The second step during business process design is to
identify responsibilities associated with business process
activities and the roles that are responsible for performing
them. Roles may thus invoke, receive and reply to business
activities. Each service provider is expected to properly
fulfill the business responsibility of implementing a
business activity as one or more port types of a Web service,
which perform a specific role. The result of this phase
actually constitutes the foundation for implementing
business policies, notably role-based access control and
security policies.

Figure 7 illustrates the different parties that interact within
the business process in the course of processing a client’s
purchase order. This listing describes how the
"PurchaseOrder" service is interfaced with the port types of
associated service specifications including a credit check
and price calculation (billing) service (not shown in this
figure) to create an order management process. Each
<partnerLink> definition in this listing is characterised by a
<partnerLinkType>.

Figure 6 BPEL process flow for Purchase Order Process.

Developers can use automated tools to assist them with
designing and developing business process. Toolsets such as
IBM’s WebSphere Business Modeller enables analysts to
model, simulate, and analyze complex business processes
quickly and effectively. This toolset can be used to model
“as-is” and “to-be” business processes, allocate resources,
and perform “what-if” simulations to optimize and estimate
business benefits [Brown 2005]. These models can then be
can be transformed into UML and Business Process
Execution Language models to jumpstart integration
activities. These descriptions can be used to orchestrate the

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 13

constructed services as part of a business process workflow.
Based on the overall business process model defined in
WebSphere Business Modeller and exported as a BPEL,
developers bring together the overall workflow by wiring
together service implementations. To achieve this they can
use WebSphere Integration Developer to import, create,
enact, and manage business processes described in BPEL.

Figure 7 Defining roles in BPEL.

Specialized graphical notations such as the Business Process
Modelling Notation (BPMN) can also be used for modelling
business processes. BPMN is an attempt at a standards
based business process modelling language that can
unambiguously define business logic and information
requirements to the extent that the resultant models are
executable [White 2004], [Owen 2004]. BPMN is intended
for allowing users to express the complex semantics of
business processes. The net result is that business logic and
information requirements are maintained in a model that is
consistent with and reflects the requirements of business.
BPMN is based on BPML’s process execution meta-model
and can produce directly fully executable BPEL processes.

6.3.1 Non-Functional Business Process Concerns

The process design sub-phase must also deal with non-
functional process design concerns including among other
things performance, payment model, security model, and,
transactional behaviour. In the following we will briefly
mention typical business process related, non-functional
concerns.

Service Level Agreements (SLAs) provide a proven
vehicle for not only capturing non-functional requirements
but also monitoring and enforcing them. SLAs are special
legal agreements that encapsulate multiple concerns, and
symmetrically fuse the perspective of service provider and
client. Besides mutual commitments regarding to-be-
delivered services, e.g., scalability and availability, the SLA
should stipulate penalties, contingency plans for exceptional
situations, and mechanisms for disaster recovery.

As an example consider security policies targeted by an
SLA. Such an SLA can be used to bundle security policies
to protect multi-party collaborations. Knowing that a new
business process adopts a Web services security standard
such as WS-Security [Atkinson 2002] is not enough
information to enable successful composition. The client
needs to know if the services in the business process

actually require WS-Security, what kind of security
tokens they are capable of processing, and which one
they prefer. Moreover, the client must determine if
the service should communicate using signed
messages. If so, it must determine what token type
must be used for the digital signatures. Finally, the
client must decide on when to encrypt the messages,
which algorithm to use, and how to exchange a
shared key with the service. Trying to orchestrate
services without understanding these technical details
will inevitably lead to erroneous results. For example,
the purchase order service in the order management
process may indicate that it only accepts username
tokens that are based singed messaged using X.509
certificate that is cryptographically endorsed by a
third party.

7. THE SERVICE CONSTRUCTION PHASE

The construction phase of the lifecycle methodology
includes development of the Web services implementation,
the definition of the service interface description and the
definition of the service implementation description
[Brittenham 2001]. On the provider side the implementation
of a Web service can be provided by either creating a new
Web service, or by transforming existing applications into
Web services, or by composing new Web services from
other (reusable) Web services and applications. Unlike the
previous phases that focus only the provider, the service
construction phase also considers service requesters. On the
service client side although the service requester progresses
through similar lifecycle elements as the service provider,
different tasks are performed during each construction step.

This phase may involve green-field code development,
however, in most cases it will consist of modifying existing
(J2EE or .NET) services or constructing wrappers on top of
existing legacy applications. Thus, during the construction
phase the process realization scenario identified in section
5.2.4 must be implemented.

8. THE SERVICE TEST PHASE

Service testing is generally characterized as a validation
exercise ascertaining that requirements have been met and
that the deliverables are at an acceptable level in accordance
with existing standards during the analysis, design and
implementation phases of the service-oriented design and
development life cycle. The result of testing is a “healthy”

14 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

service-oriented application that performs well enough to
satisfy the needs of its customers.

The most interesting type of testing for service
implementations is dynamic testing that consists of running
the implementation and comparing its actual to its expected
behaviour before it is deployed. If the actual behaviour
differs from the expected behaviour, a defect has been
found. In the context of services, dynamic testing is used to
perform a variety of types of tests such as functional tests,
performance and stress tests, assembly tests and interface
tests.

Functional testing covers how well the system executes
the functions it is expected to execute—including user
commands, data manipulation, searches and business
processes, and integration activities. Functional testing
covers the obvious surface type of functions, as well as the
back-end system operations, such as security, database
transactions and how upgrades affect the system [Brown
2002].

The focus of performance testing in service-oriented
environments is monitoring the system on-line response
times and transaction rates under peak workload conditions.
It also involves load testing, which measures the system's
ability to handle varied workloads. Performance testing is
related to stress testing, which looks for errors produced by
low resources or competition for resources. It is also related
to volume testing, which subjects the software to larger and
larger amounts of data to determine its point of failure.

The objective of interface testing is to ensure that any
service developed to interface with other service functions
properly outside of its surrounding process. Interface testing
should be performed while testing the function that is
affected, e.g., an order management process calling an
inventory service.

Finally, assembly testing ensures that all services function
properly when assembled into business processes. It also
verifies that services that interact and interoperate function
properly when assembled as apart of business processes.

In addition to functional tests, performance and stress
tests, assembly tests and interface tests, there are a variety of
additional tests that may need to be performed during the
service test phase. These include network congestion tests,
security tests, installability tests, compatibility tests,
usability tests, and upgrade tests. Tests have to be conducted
to ensure that service security requirements such as privacy,
message integrity, authentication, authorization and non-
repudiation.

9. THE SERVICE PROVISIONING PHASE

As Web services become acceptable from industry,
organizations realise that there are several intricate issues
pertaining to the deployment aspects of revenue generating
Web services. Service provisioning is central to operating
revenue generating Web services between organisations.
The provisioning requirements for Web services impose
serious implications for the development methodology of

services. Service provisioning is a complex mixture of
technical and business aspects for supporting service client
activities and involves choices for service governance,
service certification, service enrolment, service auditing,
metering, billing and managing operations that control the
behaviour of a service during its use. We provide an
overview of the most salient features of service provisioning
in what follows.

9.1 Service Governance

The goal of service governance is to align the business
strategy and imperatives of an enterprise with its IT
initiatives [Mitra 2005], [Ports 2003]. When applied to
service-oriented applications service governance may
involve reviews of internal development projects as well
external reviews from the perspective of the service
providers, using results from gap analysis.

Typical issues for internal reviews include whether the
right types of services have been selected, whether all
requirements for new services have been identified and so
forth. To this end service governance may use as input the
findings of the business gap analysis sub-phase. Other
internal reviews issues also include whether the use of a
particular service within an application would conform to
enterprise specific or government mandated privacy rules,
whether service implementation does not compromise
enterprise-specific intellectual property, and so on. To
achieve its stated objectives and support an enterprise’s
business objectives on strategic, functional, and operational
levels, service governance provides a well-defined structure.
It defines the rules, processes, metrics, and organizational
constructs needed for effective planning, decision-making,
steering, and control of the SOA engagement to meet the
business requirements of an enterprise and its customers
[Balzer 2004].

Two different governance models are possible. These are
central governance versus distributed governance.

With central governance, the governing body within an
enterprise has representation from each service domain as
well as from independent parties that do not have direct
responsibility for any of the service domains. The central
governance council reviews any additions or deletions to the
list of services, along with changes to existing services,
before authorizing the implementation of such changes.
Central governance suits an entire enterprise.

With distributed governance each business unit has
autonomous control over how it provides the services within
its own enterprise. This requires a functional service domain
approach. A central governance committee can provide
guidelines and standards to different teams. Distributed
governance suits distributed teams better.

9.2 Service Certification

To establish that a service possesses some desired property
we need to use knowledge to predict properties that an
assembled application may attain. Certification depends on

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 15

compositional reasoning [Bachmann 2000], which identifies
which properties of services are material for predicting or
achieving some end-system properties, such as performance,
safety, scalability and so on, and how to predict the “values”
of end-system properties from service properties. These
contractual specifications must be expressive enough to
capture all of the properties imposed by frameworks that
will lead to measurable end system quality attributes.

9.3 Service Metering and Rating

This process requires that service providers come up with
viable business cases that address factors such as service
metering, rating and billing.

Service metering model: Use of a service by a client must
be metered if the service provider requires usage-based
billing. Then the service provider needs to audit the service
as it is used and bill for it. This could typically be done on a
periodic basis and requires that a metering and accounting
model for the use of the service be established. The model
could allow the establishment of a service contract for each
new subscriber and tacking and billing for using the
subscribed hosted services. To achieve this, the service-
metering model could operate on the assumption that Web
services with a high degree of value are contracted via, for
example, SLAs.

Service rating/billing model: Software organisations that
are used to the traditional up-front license/ongoing
maintenance pricing structure for software should come up
with annuity-based pricing models for the Web services
they provide. The pricing (rating) model could determine
subscriber rates based on subscription and usage events. For
example, the pricing model could calculate charges for
services based on the quality and precision of the service
and on individual metering events based on a service-rating
scheme. The billing model associates rating details with the
correct client account. It provides adequate information to
allow the retrieval and payment of billing details by the
client and the correct disbursement of payments to the
service provider’s suppliers (who are in turn service
providers offering wholesale services to the original
provider).

9.4 Service Billing Strategies

Increasingly, business models for commercial Web service
provisioning will become a matter of concern to service
providers. From the perspective of the service provider a
complex trading Web service is a commercializable
software commodity. For example, a service provider may
decide to offer simple services (with no quality of service
guarantee) for free, while it would charge a nominal fee for
use of its complex (added value) Web services. With
complex trading Web services the quality of service plays a
high role of importance and the service is offered for a
price. These types of services are very different from the
selling of shrink-wrapped software components, in that
payment should be on an execution basis for the delivery of

the service, rather than on a one-off payment for an
implementation of the software. For complex trading Web
services, the service provider may have different charging
alternatives. These may include: payment on a per use basis,
payment on a subscription basis, payment on a leasing basis,
lifetime services, free services:, free services with hidden
value.

10. THE SERVICE DEPLOYMENT PHASE

Deployment means rolling out new processes to all the
participants, including other enterprises, applications and
other processes. The service-oriented development
methodology promotes a separation between development
and deployment activities, which are grouped into separate
phases that can occur at different times, and that different
individuals with different skills can perform. This yields a
true separation of concerns, enabling developers to
repurpose software components, services and business
processes.

The tasks associated with the deployment phase of the
Web service development lifecycle include the publication
of the service interface and service implementation
definition. Services are deployed at the service provider side
according to the four service realization option that we
examined in section 5.2.4.

11. THE SERVICE EXECUTION PHASE

Execution means ensuring that the new process is carried
out by all participants – people, other organisations, systems
and other processes. During the execution phase, Web
services are fully deployed and operational. During this
stage of the lifecycle, a service requester can find the
service definition and invoke all defined service operations.
The run-time functions include static and dynamic binding,
service interactions as a function of Simple Object Access
Protocol (SOAP) serialization/deserialization and messaging
and interactions with back-end legacy systems (if
necessary).

12. THE SERVICE MONITORING PHASE

The service monitoring phase concerns itself with service
level measurement and monitoring is the continuous and
closed-loop procedure of measuring, monitoring, reporting
and improving the quality of service of systems and
applications delivered by service-oriented solutions. Service
level monitoring is a disciplined methodology for
establishing acceptable levels of service that address
business objectives, processes and costs.

The service monitoring phase targets continuous
evaluation of service level objectives and performance. To
achieve this objective service monitoring requires that a set
of QoS metrics is gathered on the basis of SLAs, given that

16 M.P. PAPAZOLGLOU AND W.J. VAN DEN HEUVEL

an SLA is an understanding of expectation of service. In
addition, workloads need to be monitored and the service
weights for request queues might need to be readjusted. This
allows a service provider to ensure that the promised
performance level is being delivered, and to take
appropriate actions to rectify non-compliance with an SLA
such as reprioritization and reallocation of resources.

To determine whether an objective has been met SLA
QoS metrics are evaluated based on measurable data about a
service - e.g., response time, throughput, availability, and so
on - performance during specified times, and periodic
evaluations. SLAs include other observable objectives
which are useful for service monitoring. These include
compliance with differentiated service-level offerings, i.e.,
providing differentiated QoS for various types of customers
(gold, silver, bronze), individualized service-level offerings,
and requests policing which ensures that the number
requests per customer stay within a predefined limit. All
these need to be also monitored and assessed. A key aspect
of defining measurable objectives is to set warning
thresholds and alerts for compliance failures. This results in
pre-emptively addressing issues before compliance failures
occur. For instance, if the response time of a particular
service is degrading then the step could be automatically
routed to a backup service.

OUTLOOK

In this paper we have described an experimental

methodology for service-oriented design and development.
The methodology that we presented reflects an attempt in
defining a foundation of design and development principles
that applies equally well to Web services and business
processes. The methodology takes into account a set of
development models (e.g., top-down, bottom-up and
hybrid), stresses reliance on reference models, and considers
several service realization scenarios (including green field
development, outsourcing and legacy wrapping). During
service and process design, not only the functional
requirements of services and processes are considered but
also their non-functional characteristics, e.g., security,
transactional properties and policies, are taken into account.

In contrast to traditional software development
approaches, the methodology that we introduced in this
article emphasizes activities revolving around service
provisioning, deployment, execution and monitoring. We
believe that that these activities will become increasingly
important in the world of services as they contribute to the
concept of adaptive service capabilities where services and
processes can continually morph themselves to respond to
environmental demands and changes without compromising
on operational and financial efficiencies. In this way,
business processes could be analysed in detail
instantaneously, discovering and selecting suitable external
services, detecting problems in the service interactions,
searching for possible alternative solutions, monitoring

execution step by step, upgrading and versioning
themselves, and so on.

Service adaptivity is particularly useful for integrated
supply chains as it implies that an integrated supply chain
solution can leverage collaborative, monitoring and control
abilities to manage product variability and successfully
exploit the benefits of available-to-promise (ATP)
capabilities. For example, consider the case where an
enterprise receives a direct request from its customer order-
entry service. An order promising service routes this request
instantaneously to all sites that could fulfil the order.
Frequently there are multiple, hierarchically ordered
partners with facilities in different geographic regions. The
ATP service for available and planned inventory is then
checked against the date requested by the customer and the
appropriate quantities. If necessary, substitute choices are
offered. The ATP results are then sent to a transportation-
planning business process of a logistics service provider to
determine transportation time and delivery dates. The results
are subsequently relayed to the order-promising service,
which selects the fulfilment site and responds to the
customer-order service for approval. Order acceptance is
then propagated back through the system, driving the
acceptances. However, if the material is not available, the
order promising service can use the capable-to-promise
functionality to contact a production-scheduling service and
establish a date for the products promised. All these steps
involve conversation between processes that span
enterprises, with customized alerts set up across the network
to track exceptions and provide manual intervention if
necessary.

We intend to further strengthen and refine the approach by
conducting several real-life case studies in different sectors,
from which experience will be gained and more design
concerns may be derived. In addition, we plan to develop an
integrated toolset to effectively support the methodology.

REFERENCES

[Andrews 2003] T. Andrews et al., Business Process Execution
Language for Web Services, Version 1.1, 2003

[Alonso 2004] G. Alonso and F. Casati and H. Kuno and V.
Machiraju, Web Services: Concepts, Architectures and
Applications, Springer, Heidelberg, 2004

[Arsanjani 2004] A. Arsanjani “Service-oriented Modeling and
Architecture”, IBM developerworks, Novemeber 2004,
available at: http://www-
106.ibm.com/developerworks/library/ws-soa-design1/.

[Atkinson 2002] Bob Atkinson et al. Web Services Security (WS-
Security), International Business Machines Corporation,
MicrosoftCorporation, VeriSign, Inc., Version 1.0, April 2002

[Bachmann 2000] F. Bachmann et. al. “Technical Concepts of
Component-Based Software Engineering”, Technical Report,
Carnegie-Mellon Univ., CMU/SEI-2000-TR-008 ESC-TR-
2000-007, 2nd Edition, May 2000.

[Balzer 2004] Y. Balzer “Strong governance principles ensure a
successful outcome”, IBM developerworks July 2004, available
at: http://www-106.ibm.com/developerworks/library/ws-
improvesoa/.

http://www-106.ibm.com/developerworks/library/ws-soa-design1/
http://www-106.ibm.com/developerworks/library/ws-soa-design1/
http://www-106.ibm.com/developerworks/library/ws-improvesoa/
http://www-106.ibm.com/developerworks/library/ws-improvesoa/

SERVICE-ORIENTED DESIGN AND DEVELOPMENT METHODOLOGY 17

 [Brown 2002] C. Brown, G. Cobb, R. Culbertson “Testing … “,
Prentice Hall, April 2002.

[Brown 2005] A. Brown et. al., “SOA Development Using the
IBM Rational Software Development Platform: A Practical
Guide”, Rational Software, September 2005.

[Brittenham 2001] P. Brittenham “Web-services Development
Concepts”, IBM Software Group, May 2001, available at:
http://www-06.ibm.com/software/solutions/webservices/

[Cauldwell 2001] P. Cauldwell, et. al. “XML Web Services”,
Wrox Press Ltd., 2001.

 [Chappell 2004] D. Chappell, “Enterprise Services Bus”,
O’Reilly, 2004

[Chinnici 2004] R. Chinnici and M. Gudgin and J.-J. Moreau and
J. Schlimmer and S. Weerarana, Web Services Description
Language (WSDL) Version 2.0, March 2004, w3c.org 4.

[Deora 2003] V. Deora et al. A Quality of Service Management
Framework based on User Expectations Proceedings of the First
International Conference on Service Oriented Computing ,pp.:
104-114, Springer-Verlag, 2003

[Harmon 2003] P. Harmon “Second Generation Business Process
Methodologies”, Business Process Trends, vol. 1, no. 5, May
2003.

[Herzum 2000] P. Herzum, O. Sims “Business component
Factory”, J. Wiley & Sons Inc., 2000.

[Johnston 2005] S. Johnston “Modelling Service-oriented
Solutions”, IBM developerworks, July 2005, available at:
http://www128.ibm.com/developerworks/rational/library/johnst
on/.

[Kruchten 2004] P. Kruchten “Rational Unified Process—An
Introduction”, 3rd edition, Addison-Wesley, 2004.

[Mitra 2005] T. Mitra “A Case for SOA Governance”, IBM
developerworks August 2005, available at: http://www-
106.ibm.com/developerworks/webservices/library/ws-soa-
govern/index.html.

[Owen 2004] M. Owen, J. Raj “BPMN and Business Process
Management: An Introduction to the New Business Process
Modelling Standard”, Business Process Trends, March, 2004,
available at: www.bptrends.com.

[Papazoglou 2003] M.P. Papazoglou and G. Georgakapoulos,
Introduction to the Special Issue about Service-Oriented
Computing, CACM, October 2003, 46(10): 24-29.

[Papazoglou 2006] M.P. Papazoglou, Principles and Foundations
of Web Services: A holistic view, Addison-Wesley, to appear:
2006.

 [Ports 2003] M. Potts et. al ”Web Service Manageability –
Specification (WS-Manageability)”, OASIS, September 2003.

[Royce 1998] W. Royce “Software Project Management ⎜ A
Unified Framework”, Addison-Wesley, 1998.

[RUP 2001] Rational Software Corporation “Rational Unified
Process: Best Practices for Software Development Teams”,
Technical Paper TP026B, Rev. 11/01, November 2001,
available at http://www.therationaledge.com.

 [White 2004] S. A. White “Introduction to BPMN”, Business
Process Trends, July, 2004, available at: www.bptrends.com

[Zimmerman 2004] O. Zimmerman, P. Korgdahl, C. Gee
"Elements of Service-oriented Analysis and Design", IBM
developerworks, June 2004, available at: http://www-
106.ibm.com/developerworks/library/ws-soad1/.

http://www-06.ibm.com/software/solutions/webservices/
http://www.bptrends.com/
http://www.bptrends.com/
http://www-106.ibm.com/developerworks/library/ws-soad1/
http://www-106.ibm.com/developerworks/library/ws-soad1/

