

The authors
© - 1 - 1 March 2006

Service-Oriented Computing

Research Roadmap

Michael P. Papazoglou1, Paolo Traverso2, Schahram Dustdar3, Frank Leymann4

Executive Summary

Service-Oriented Computing (SOC) is a new computing paradigm that utilizes services as the basic
constructs to support the development of rapid, low-cost and easy composition of distributed
applications even in heterogeneous environments. The visionary promise of Service-Oriented
Computing is a world of cooperating services where application components are assembled with little
effort into a network of services that can be loosely coupled to create flexible dynamic business
processes and agile applications that may span organisations and computing platforms. SOC is being
shaped by, and increasingly will help shape, modern society as a whole, especially in the areas of
dynamic and on-demand business, health and government services.

The subject of Service Oriented Computing is vast and enormously complex, spanning many concepts
and technologies that find their origins in diverse disciplines that are woven together in an intricate
manner. In addition, there is a need to merge technology with an understanding of business processes
and organizational structures, a combination of recognizing an enterprise's pain points and the
potential solutions that can be applied to correct them. The material in research spans an immense
and diverse spectrum of literature, in origin and in character. As a result research activities at both
worldwide as well as at European level are very fragmented. This necessitates that a broader vision
and perspective be established—one that permeates and transforms the fundamental requirements of
complex applications that require the use of the Service-Oriented Computing paradigm. This will
further enhance the value proposition of Service-Oriented Computing and will facilitate the formulation
of a Services Research Roadmap leading to more effective and clearly inter-related solutions and
better exploitation of research results.

A Services Research Roadmap will help overcome the present fragmentation of Europe’s research
efforts in the area of Service Oriented Computing by establishing a common research agenda,
ensuring consolidation, as well as integration and exploitation of research results from European
research initiatives and projects.

This document provides the necessary background for deciding on potential future research
programmes in Service Oriented Computing and places on-going research activities and projects in the
broader context of a Service Oriented Computing Roadmap. This research roadmap launches four
pivotal, inherently related, research themes to Service Oriented Computing: service foundations,
service composition, service management and monitoring and service-oriented engineering.

Each theme is introduced briefly from a technology, state of the art and scientific challenges
standpoint. From the technology standpoint a comprehensive review of state of the art, standards,
and current research activities in each key area is provided. From the state of the art the major open
problems and bottlenecks to progress are identified. Several of these obstacles arise due to the
current lack of interdisciplinary research in the field, which is considered to be a major impediment
that limits added economic growth through deployment and use of services technology. Finally, the
scientific challenges that tackle the found obstacles are formulated. These are long-term visions that
serve as integration platforms and demonstrators for an holistic approach to Service Oriented
Computing in the identified key areas. These future research activities form a sound background for
deciding on potential future programmes in Service Oriented Computing. The Service Oriented
Computing Research Roadmap is directly related and supportive of the implementation of European
initiatives such as i2010: European Information Society 2010, NESSIE and Ambient Intelligence.

1 Tilburg University, Tilburg, The Netherlands, e-mail: mikep@uvt.nl.
2 Istituto per la Ricerca Scientifica e Tecnologica (IRST), Trento, Italy, e-mail: traverso@itc.it.
3 Technical University of Vienna, Vienna, Austria, e-mail: dustdar@infosys.tuwien.ac.at.
4 University of Stuttgart, Stuttgart, Germany, e-mail: Frank.Leymann@informatik.uni-stuttgart.de.

The authors
© - 2 - 1 March 2006

Service-Oriented Computing Research Roadmap

1. Overview

Today’s business climate demands a high rate of change with which Information Technology
(IT)-minded organizations are required to cope. Organizations face rapidly changing market
conditions, new competitive pressures, new regulatory fiats that demand compliance, and
new competitive threats. All of these situations and more drive the need for the IT
infrastructure of an organization to respond quickly in support of new business models and
requirements. Only in this way can an organization gear towards the real world of fully
automated, complex electronic transactions. As most enterprise applications were not
designed to enable rapid adaptation of application functionality, this adds another level of
intricacy to an already complex IT landscape. At the same time it increases infrastructure
complexity and limits its ability to quickly change application features or functions.

Integration and infrastructure management are the key elements of an on demand
operating IT environment. Integration enables the efficient and flexible combination of
resources to optimize operations across and beyond the boundaries of an organization and
enables them to interoperate seamlessly. Integration is about seamlessly interlinking on one
hand people and on the other hand processes and information that may transcend
organizational boundaries despite the existence of multiple - and possibly heterogeneous -
platforms and protocols, and numerous access devices, while leveraging the potential of the
Internet. Infrastructure management address two objectives: automation and virtualization
of the environment. Automation of the environment is achieved by the capability to reduce
management complexity to enable better use of assets, improve availability and resiliency,
and reduce costs based on business policy and objectives. Virtualization of the environment
is achieved by the capability to provide easy access to and a single consolidated view of all
available resources in a network—no matter where the resources or information reside.
Service orientation provides the underlying implementation that can make an on demand IT
operating environment a reality by supporting the functions of both integration and
infrastructure management [Lymann 2005a].

Service-Oriented Computing (SOC) utilizes services as the constructs to support the
development of rapid, low-cost and easy composition of distributed applications. Services
are autonomous, platform-independent computational entities that can be used in a
platform independent way. Services can be described, published, discovered, and
dynamically assembled for developing massively distributed, interoperable, evolvable
systems. Services perform functions that can range from answering simple requests to
executing sophisticated business processes requiring peer-to-peer relationships between
possibly multiple layers of service consumers and providers. Any piece of code and any
application component deployed on a system can be reused and transformed into a
network-available service. Services reflect a "service-oriented" approach to programming,
based on the idea of composing applications by discovering and invoking network-available
services rather than building new applications or by invoking available applications to
accomplish some task [Papazoglou 2003]. Services are most often built in a way that is
independent of the context in which they are used. This means that the service provider and
the consumers are loosely coupled.

The authors
© - 3 - 1 March 2006

This "service-oriented" approach is independent of specific programming languages or
operating systems. It allows organisations to expose their core competencies
programmatically over the Internet or a variety of networks, e.g., cable, UMTS, XDSL,
Bluetooth, etc., using standard (XML-based) languages and protocols, and implementing a
self-describing interface. Web Services are the current most promising technology based on
the concept of Service Oriented Computing [Weerawarana 2005]. Web services provide the
basis for the development and execution of business processes that are distributed over the
network and available via standard interfaces and protocols. Web services may use the
Internet as the communication medium (as well as other transport protocols) and open
Internet-based standards, such as the Simple Object Access Protocol (SOAP) as
transmission medium, the Web Services Description Language (WSDL) for service definition
and the Business Process Execution Language (BPEL) for orchestrating services.

The visionary promise of services technologies is a world of cooperating services where
application components are assembled with little effort into a network of services that can
be loosely coupled to create dynamic business processes and agile applications that span
organizations and computing platforms [Leymann 2005c]. Services hold the promise of
moving beyond the simple exchange of information – the dominating mechanism for
application integration today – to the concept of accessing, programming and integrating
application services that are encapsulated within old and new applications. An important
economic benefit of the Service Oriented Computing paradigm is that it enables application
developers to dynamically grow application portfolios more quickly than ever before, by
creating compound application solutions that use internally existing organisational software
assets which they appropriately combine with external components possibly residing in
remote networks. Previously isolated Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), Supply Chain Management (SCM), Human Resource
Management (HRM), financial, and other legacy systems can now be converted to service
enabled architectures and integrated more effectively than when relying on custom, point-
to-point coding or proprietary Enterprise Application Integration technology. The end result
is that it is then easier to create new composite applications that use pieces of application
logic and/or data that reside in the existing systems. This represents a fundamental change
to the socio-economic fabric of the software developer community that improves the
effectiveness and productivity in software development activities and enables enterprises to
bring new products and services to the market more rapidly [Leymann 2003].

Key to this concept is the service-oriented architecture (SOA). SOA is a logical way of
designing a software system to provide services to either end-user applications or to other
services distributed in a network, via published and discoverable interfaces. A well-
constructed, standards-based Service Oriented Architecture can empower a business
environment with a flexible infrastructure and processing environment. SOA achieves this
by provisioning independent, reusable automated business process and systems functions
as services and providing a robust and secure foundation for leveraging these services.
Efficiencies in the design, implementation, and operation of SOA-based systems can allow
organizations to adapt far more readily to a changing environment.

Services technologies are being shaped by, and increasingly will help shape, modern society
as a whole, especially in vital areas such as dynamic business, health, education and
government services. Applying services technologies leads to reduced complexity and costs,
exposing and reusing core business functionality, increased flexibility, resilience to
technology shifts and improving operational efficiency. For all these reasons, it is expected
that the Service Oriented Computing paradigm will exhibit a steeper adoption curve, as it
solves expensive and intractable business and technology problems, and will infiltrate more
of the applications portfolio, than previous application technologies.

The authors
© - 4 - 1 March 2006

2. Need for a Services Research Roadmap

As Service Oriented Computing is very much an emerging field, there is no such thing as a
“general audience” for Service Oriented Computing -- there are many people (researchers
and practitioners) with many different (and probably conflicting) levels of understanding and
uses for Service Oriented Computing.

The subject of Service Oriented Computing is vast and enormously complex, spanning many
concepts, protocols and technologies that find their origins in disciplines such as distributed
computing systems, computer networking, computer architectures and middleware, grid
computing, software engineering, programming languages, database systems, security,
artificial intelligence and knowledge representation that are interwoven in an intricate
manner. In addition there is a need to merge technology with an understanding of business
processes and organization structures, a combination of recognizing an enterprise's pain
points and the potential solutions that can be applied to correct them. The material in
research spans an immense and diverse spectrum of literature, in origin and in character.
As a result research activities are very fragmented and do not contribute to a mutually
acceptable, joint research agenda.

Only through adaptation of an holistic approach to Service Oriented Computing research it is
considered likely that new industries and economic growth factors can be provided. Thus to
unleash the full potential of SOC research a broader vision and perspective is required—one
that permeates and transforms the fundamental requirements of complex applications that
require the use of the Service-Oriented Computing paradigm. This will further enhance the
value proposition of SOC and will facilitate the formulation of a Services Research Roadmap
leading to more effective and clearly inter-related solutions and better exploitation of
research results.

Purpose of the Services Research Roadmap is to facilitate efficient and effective use of
research funds by consolidating, streamlining and strategically inter-relating the current
research results and agenda and prioritizing attention to gaps, encouraging interdisciplinary
research that might otherwise be overlooked, and coordinating existing and future research
work and projects. This will overcome the present fragmentation of Europe’s research
efforts in the area of service-oriented computing by establishing a common research
agenda, ensuring consolidation, as well as integration and exploitation of research results
from European research initiatives. Its aim is to achieve visibility and exploitation of
research results at a global scale both throughout Europe and internationally.

The Services Research Roadmap that is described in section-3 was built using advice
provided by panels of experts representing many disciplines including distributed
computing, database and information systems, software engineering and design, computer
architectures and middleware and knowledge representation. These experts have repeatedly
met during the past three years at the International Conference on Service Oriented
Computing (ICSOC) (see icsoc.org) at workshops and Dagstuhl seminar series meetings
(see http://www.dagstuhl.de/05462/ and http://www.dagstuhl.de/06291/) and on other
separate occasions.

3. Research Roadmap for Service Oriented Computing Research

Services Research Roadmap introduces a stratified logical service-based architecture
(known as extended Service Oriented Architecture [Papazoglou 2003], [Papazoglou 2005a])
to create a reactive and adaptive IT environment. This environment has the ability to
represent detailed business policies and rules abstracted from fixed functional and
operational capabilities and delivering these abstracted capabilities in the form of
customizable service-oriented solutions. Its objective is to provide facilities for ensuring

The authors
© - 5 - 1 March 2006

consistency across the organization, high availability of services, security of non-public
services and information, orchestration of multiple services as part of mission-critical
composite applications – all essential requirements for business-quality services. Thus it
strives to improve systems and business visibility and provide greater control and flexibility
in defining and adjusting business rules and parameters.

The architectural layers in the Services Research Roadmap, which are depicted in Figure 1,
describe a logical separation of functionality in such a way that each layer defines a set of
constructs, roles and responsibilities and leans on constructs of its preceeding layer to
accomplish its mission. The logical separation of functionality is based on the need to
separate basic service capabilities provided by a services middleware infrastructure and
conventional SOA from more advanced service functionality needed for dynamically
composing (integrating) services and the need to distinguish between the functionality for
composing services from that of the management of services and their underlying
infrastructure.

As shown in Figure 1, the Services Research Roadmap has three planes with the bottom
plane utilizing the basic service middleware and architectural constructs and functionality for
describing, publishing and discovering services, while the service composition and
management planes are layered on top of it. The perpendicular axis indicates service
characteristics that cut across all three planes. These include semantics, non-functional
service properties and Quality of Service (QoS). As cross cutting concerns permeate all
three planes (see Figure 1) we shall introduce them briefly below before focussing on the
Services Research Roadmap planes in the following subsections.

Quality of Service encompasses important functional and non-functional service quality
attributes, such as performance metrics (response time, for instance), security attributes,
(transactional) integrity, reliability, scalability, and availability. Delivering QoS on the
Internet is a critical and significant challenge because of its dynamic and unpredictable
nature. Applications with very different characteristics and requirements compete for all
kinds of network resources. Changes in traffic patterns, securing mission critical business
transactions and the effects of infrastructure failures, low performance of Web protocols and
reliability issues over the Web create a need for Internet QoS standards. Often, unresolved
QoS issues cause critical transactional applications to suffer from unacceptable levels of
performance degradation. Traditionally, QoS is measured by the degree to which
applications, systems, networks, and all other elements of the IT infrastructure support
availability of services at a required level of performance under all access and load
conditions. While traditional QoS metrics apply, the characteristics of Web services
environments bring both greater availability of applications and increased complexity in
terms of accessing and managing services and thus impose specific and intense demands on
organisations, which QoS must address.

For Web services to interact properly with each other as part of composite applications that
perform more complex functions by orchestrating numerous services and pieces of
information, the requester and provider entities must agree both on the service description
(WSDL definition) and semantics that will govern the interaction between them. A complete
semantic solution requires that semantics are addressed not only at the terminology level
but also at the level that Web services are used and applied in the context of business
scenarios, viz. at the business process-level. This implies that there must be agreement
between a service requester and provider as to the implied processing of messages
exchanged between interacting services that are part of a business process.

Finally, Figure 1 illustrates that service modelling and service oriented engineering, i.e.,
service oriented analysis, design and development techniques and methodologies, are
crucial elements for the developing meaningful services and business process specifications
and an important requirement for SOA applications that leverage Web services. Service
oriented engineering activities help develop meaningful services, service compositions and

The authors
© - 6 - 1 March 2006

techniques for managing services. In other words they apply to the three service planes
shown in Figure 1.

Figure 1 The research planes in the Services Research Roadmap.

Table 1 Overview of state of the art and grand challenges in Services Research.

The authors
© - 7 - 1 March 2006

The Services Research Roadmap in Figure 1 is also shown to define several roles. In
addition to the classical roles of service client and provider it also defines the roles of
service aggregators and service operator (which will be explained in the material that
follows).

In the following we shall concentrate on the individual planes found in the Services Research
Roadmap, motivate and explain them, introduce current standards, state of the art as well
as characteristic research activities within each plane, highlight open problems and describe
major emerging trends and opportunities, identify relevant technological driving forces and
finally concentrate on proposing a number of challenging research activities for the near
future. Table-1 summarizes our findings regarding the state of the art and grand challenges
in Services Research.

3.1 Service Foundations

The bottom plane in the Services Research Roadmap is the service foundations plane that
provides a service oriented middleware backbone that realizes the runtime SOA
infrastructure that connects heterogeneous components and systems, and provides
multiple-channel access to services, e.g., via mobile devices, hand held devices, over
variety of networks including the Internet, cable, UMTS, XDSL, Bluetooth, and so on. This
runtime infrastructure allows defining basic interactions involving the description,
publishing, finding and binding of services.

In a typical service-based scenario employing the service foundations plane a service
provider hosts a network accessible software module (an implementation of a given
service). The service provider defines a service description of the service and publishes it to
a client (or service discovery agency) through which a service description is published and
made discoverable. The service client (requestor) discovers a service (endpoint) and
retrieves the service description directly from the service (through meta-data exchange) or
from a registry or repository (like UDDI); it uses the service description to bind with the
service provider and to invoke the service or to interact with the service. Service provider
and service client roles are logical constructs and a service may exhibit characteristics of
both. In Figure 1 service aggregators group services that are provided by other service
providers into a distinct value added service and may themselves act as service providers.
For reasons of conceptual simplicity, in Figure 1 we assume that service clients, providers
and aggregators can act as service brokers or service discovery agencies and publish the
services they deploy. The role actions in this figure also indicate that a service aggregator
can become (or rather is a special type of) provider.

3.1.1 State of the Art

The requirements to provide an appropriately capable and manageable integration
infrastructure for Web services and SOA are coalescing into the concept of the Enterprise
Service Bus (ESB). There are two key ideas behind this approach [Graham 2005]: loosely
couple the systems taking part in the integration and break up the integration logic into
distinct easily manageable pieces.

The Enterprise Service Bus is an open-standards based message backbone designed to
enable the implementation, deployment, and management of SOA-based solutions. An ESB
is a set of infrastructure capabilities implemented by middleware technology that enable an
SOA and alleviate disparity problems between applications running on heterogeneous
platforms and using diverse data formats. It supports service, message, and event-based
interactions with appropriate service levels and manageability. In other words, the ESB
provides the distributed processing, standards-based integration, and enterprise-class
backbone required by the extended enterprise. The ESB is designed to provide
interoperability between larger grained applications and other components via standards-

The authors
© - 8 - 1 March 2006

based adapters and interfaces. The bus functions as both transport and transformation
facilitator to allow distribution of these services over disparate systems and computing
environments

Conceptually, the ESB has evolved from the store-and-forward mechanism found in
middleware products and now is a combination of Enterprise Application Integration, e.g.,
application servers and integration brokers, Web services, XSLT, and orchestration
technologies [Papazoglou 2006b]. An ESB provides an implementation backbone for an SOA
that treats applications as services. It establishes proper control of messaging as well as
applies the needs of security, policy, reliability and accounting, in an SOA.

Figure 2 Enterprise service bus connecting diverse applications and technologies.

One model that is emerging as appropriate and successful for the ESB is the container

model. In this model, there is a “container” for the service implementation taking care of
exposing the service functionalities and non-functional properties to the external world via
the network. The basic (core) functions of the container are as follows:

• establishing connectivity and Message Exchange Patterns (MEPs)
• providing support and provision facilities such as transactions, security, performance

metrics, etc, in a declarative and composable manner,
• providing support for dynamic configuration,
• monitoring of internal behaviour and state to management systems (services)
• performing data and protocol adaptation,
• providing support for services discovery.

Figure 2 shows a simplified view of an ESB that integrates a J2EE application using JMS, a
.NET application using a C# client, an MQ application that interfaces with legacy
applications, as well as external applications and data sources using Web services. An ESB,
as represented in Figure 2, enables the more efficient value-added integration of a number
of different application components, by positioning them behind a service-oriented façade
and by applying Web services technology to the problem. In Figure 2 a distributed query
engine, which is normally based on XQuery or SQL, enables the creation of data services to
abstract the complexity of underlying data sources. As shown in Figure 2, a primary use
case for ESB is to act as the intermediary layer between a portal server and the backend

The authors
© - 9 - 1 March 2006

data sources that the portal server needs to interact with. A portal in Figure 2 is a user-
facing aggregation point of a variety resources represented as services, e.g., retail,
divisional, corporate employee, and business partner portals.

To design effective SOA solutions it is desirable that service developers build self-
configuring service architectures that can use distributed components to dynamically create
an optimal service-based architectural run-time style according to particular application
requirements and existing system characteristics. To this end the grid services community
has attempted to address the support of dynamically reconfigurable service architectures by
directing research efforts into two categories of problems. Service specific architectures that
are designed for particular classes of services/applications [L´opez 2001], [Liu 2002],
[Poladian 2004]. Examples include resource selection for resource-intensive applications and
resource allocation for services consisting of a set of multi-fidelity applications. Others
proposed generic architectures that can compose different services using “type-based
architectural composition” [Ivan 2002], [Ponnekanti 2002] . Components have well-defined
input/output (requires/provides) interfaces, so a service composition module can
automatically generate a service configuration providing the requested interface(s) – all in
all, the overall direction to compose applications from services is accepted in this domain
too [Leymann 2005c].

Other research activities in the services foundation layer to date have targeted mostly
formal service description language(s) for enhanced service definitions addressing, besides
functional aspects, also behavioural as well as non-functional aspects associated with
services [Deora 2003], [Ran 2003], [Deora 2004]. Research activities have also
concentrated on providing an open, modular, extensible framework for service discovery,
publication and notification mechanisms across distributed, heterogeneous, dynamic
(virtual) organizations as well as unified discovery interfaces and query languages for
multiple pathways [Wang 2003], [Jaeger 2004], [Ding 2004], [Sahin 2005].

The AI and semantic Web community has concentrated their efforts in giving richer
semantic descriptions of Web services that describe the properties and capabilities of Web
services in an computer-interpretable form [Hepp 2005]. Such activities target the use of
formal languages for semantically describing all relevant aspects of Web services in order to
facilitate the automated discovery, combination and invocation of services over the Web
[Patil 2004], [Roman 2005].

3.1.2 Grand Challenges

Major research challenges for the near future include:

Dynamically (re-)configurable run-time architectures: The run-time service infrastructure
should be able to configure itself and be optimized automatically in accordance with specific
application requirements and high-level policies — representing business-level objectives,
for example—that specify what is desired (such as particular security and privacy
requirements) and not how it is to be accomplished. A self-reconfiguring services
architecture can automatically leverage distributed service components and resources to
create an optimal architectural configuration according to both the requirements of a
particular user and application characteristics. For instance, the run-time environment must
posses the critical ability to route service interactions through a variety of protocols, and to
transform from one protocol to another where necessary. Another important aspect is the
ability to support diverse service messaging models consistent with the SOA interfaces, and
capable of transmitting and homogenizing the required interaction context, such as security,
transaction, or message correlation information. In particular, the run-time environment
should be able to configure itself in accordance with an extensible set of QoS properties and
policies for security, for transactional behaviour, and so on.

The authors
© - 10 - 1 March 2006

Dynamic connectivity capabilities: Dynamic connectivity is the ability to connect to Web
services dynamically without using a separate static API or proxy for each service. Service-
based applications today operate on a static connectivity mode, requiring some static piece
of code for each service. Dynamic service connectivity is key capability for a successful
runtime environment. The dynamic connectivity API is the same regardless of the service
implementation protocol (Web services, JMS, EJB/RMI, etc.).

Topic and content-based routing capabilities: The run-time service infrastructure should be
equipped with routing mechanisms to facilitate not only topic-based routing but also, more
sophisticated, content-based routing. Topic-based routing assumes that messages can be
grouped into fixed, topical classes, so that subscribers can explicate interest in a topic and
as a consequence receive messages associated to that topic while content-based routing on
the other hand, allows subscriptions on constraints of actual properties (attributes) of
business events. Content based routing forwards messages to their destination based on the
context or content of the service.

End-to-end security solutions: Validating the security aspects in SOA-based applications
requires a full system approach to test end-to-end security solutions from both network
level and application level security angles. This requires the development of a set of services
security technologies can create a unifying approach for dealing with protection for
messages exchanged in service-based environments. Their purpose is to construct
authentication, authorization, auditing, privacy and trust, as well as higher-level key
exchange mechanisms, while providing integrating abstraction framework allowing systems
and applications to surmount different security systems and technologies. Similar
considerations can be found in the WS-Roadmap jointly developed by IBM and Microsoft
[WS-Roadmap 2002].

Infrastructure support for application integration: The run-time environment should possess
the ability to support service-based application integration by enabling better-structured
integration solutions that deliver applications comprised of interchangeable parts,
evolutionary application portfolios that protect investment and can respond rapidly to new
requirements and business processes and facilitate ‘best of breed’ portfolio strategies which
automatically combine legacy applications, acquired packages, external application
subscriptions and newly built components.

Infrastructure support for data integration: The run-time environment should possess the
ability to provide consistent access to all the data by all the applications that require it, in
whatever form they need it, without being restricted by the format, source, or location of
the data. This requirement might involve self-configurable adapters and transformation
facilities, aggregation services to merge and reconcile disparate data, e.g., merging two
customer profiles, and validation to ensure data consistency, e.g., minimum income should
be equal to or exceed a certain threshold.

Infrastructure support for process integration: The run-time environment should possess
the ability to provide automated facilities that provide solutions for business processes,
integration of applications into processes, and integrating processes with other processes.
Process-level integration may include the integration of business processes and applications
within the enterprise context (viz. Enterprise Application Integration solutions) and should
also support the integration of end-to-end processes involving external sources, such as
supply chain management or financial services that span multiple institutions (viz. e-
Business integration solutions). The service level provides the necessary infrastructure that
enables effective process compositions (see section 3.2).

Enhanced service discovery: The main challenge of service discovery is the use of
automated means for accurate discovery of services in a manner that demands minimal
user involvement. Improving service discovery requires explicating the semantics of both
the service provider and the service requester. Improving service discovery involves adding

The authors
© - 11 - 1 March 2006

semantic annotations and including descriptions of QoS characteristics (for example in
DAML/OWL or other semantic markup languages) to service definitions in WSDL and then
registering these descriptions in registries. The use of standard ontologies that support
shared vocabularies and domain models for use in the service description also facilitates
service discovery by making the semantics implied by structures in service descriptions
explicit. To achieve automated discovery of services, the needs of service requesters have
to be explicitly stated. We expect such needs to be expressed as goals, which correspond to
the description of what services are sought, in some formal request language.

3.2 Service Composition

The service composition plane in the Services Research Roadmap encompasses necessary
roles and functionality for the aggregation of multiple services into a single composite
service. Resulting composite services may be used by service as basic services in further
service compositions or may be offered as complete applications/solutions to service clients.
Service aggregators accomplish this task. Service aggregators thus become service
providers by publishing the service descriptions of the composite service they create.
Service aggregators develop specifications and/or code that permit the composite service to
perform functions that are based on features such as meta-data descriptions, standard
terminology and reference models and service conformance. Service aggregators perform
service coordination to control the execution of the composite services (viz. processes),
services transactions and manage both the dataflow as well as the control flow between
composite services. They also enforce policies on aggregate service invocations.

3.2.1 State of the Art

The full potential of Web services as a means of developing dynamic e-Business solutions
will only be realised when applications and business processes are able to integrate their
complex interactions into composite added value services. Services technologies offer a
viable solution to this problem since they support coordination and offer an asynchronous
and message oriented way to communicate and interact with application logic. However,
when looking at Web services, for example, it is important to differentiate between the
baseline specifications of SOAP, UDDI and WSDL that provide the infrastructure that
supports publishing, finding and binding operations in the service-oriented architecture and
higher-level specifications required for e-Business integration. These higher-level
specifications provide functionality that supports and leverages services and enables
specifications for integrating automated business processes.

Currently, there are competing initiatives for developing business process definition
specifications, which aim to define and manage business process activities and business
interaction protocols comprising collaborating services. The terms “orchestration” and
“choreography” have been widely used to describe business interaction protocols comprising
collaborating services.

Orchestration describes how services can interact with each other at the message level,
including the business logic and execution order of the interactions from the perspective and
under control of a single endpoint. Orchestration refers to an executable business process
that may result in a long-lived, transactional, multi-step process model. With orchestration,
the business process interactions are always controlled from the (private) perspective of one
of the business parties involved in the process.

Choreography is typically associated with the public (globally visible) message exchanges,
rules of interaction and agreements that occur between multiple business process
endpoints, rather than a specific business process that is executed by a single party.
Choreography is more collaborative in nature than orchestration. It is described from the
perspectives of all parties (common view), and defines the complementary observable

The authors
© - 12 - 1 March 2006

behaviour between participants in business process collaboration. Choreography offers a
means by which the rules of participation for collaboration can be clearly defined and agreed
to, jointly. Choreography tracks the sequence of messages that may involve multiple parties
and multiple sources, including customers, suppliers, and partners, where each party
involved in the process describes the part they play in the interaction and no party “owns”
the conversation.

Orchestration is targeted by a family of XML-based process standard definition languages
most representative of which is the Business Process Execution Language for Web Services
[Andrews 2003]. Service choreography is targeted by Web Services Choreography
Description Language (WS-CDL) [Kavantzas 2004], which specifies the common observable
behaviour of all participants engaged in business collaboration. This sharp distinction
between orchestration and choreography is rather artificial and the consensus is that they
should both coalesce in the confines of a single language and environment.

On the research front, activities have mainly concentrated on dynamic compositions [Yang
2004], on modularizing compositions [Charfi 2004], [Yang 2004], on enhancing service
descriptions (with, for instance, compositional assertions) so that compositions can be
assessed and formally verified [Solanki 2004] and on providing context aware services to
enable compositions. In the AI field there has been some work in the area of applying AI
planning techniques to automate the retrieval and composition of Web services ([Paoloucci
2002], [Ambite 2004], [Lazovik 2004], [Traverso 2004], [Pistore 2005], [Lazovik 2006]),
verification [Kazhamiakin 2006], and monitoring of service oriented applications [Barbon
2006], and so forth, but these efforts are still either at the specification-level or at very
preliminary stage of development. Many of the existing approaches towards service
composition largely neglect the context in which composition takes place. It is only recently
that research approaches have focussed on developing context-aware methodologies that
take into account the business and social context of service compositions as the basis for
process specification and verification [Colombo 2005].

3.2.2 Grand Challenges

One of the major challenges for industry-wide adoption of the service-oriented approach is
the automated composition of distributed business processes, i.e. the development of
technology, methods and tools that support an effective, flexible, reliable, easy-to-use, low-
cost, dynamic, time-efficient composition of electronic distributed business processes.
Standards such BPEL and WS-CDL that operate at the service composition plane in the
Services Research Roadmap provide the basis for the composition of services and the
integration of business processes that are distributed among the most disparate entities,
both within an organization (e.g., different departments) and across organizational borders
(e.g. consumers interacting with different businesses or government departments providing
complementary services).

However, so far, the automated composition of distributed business processes is still far
from being achieved: no effective, easy-to-use, flexible support is provided that can cope
with the life cycle of distributed business processes, with their inevitable evolution and
required adaptation to changes in, e.g., business strategies and markets, customers and
providers relationships, interactions, and so on. Service composition is today largely a
static affair. All service interactions are anticipated in advance and there is a perfect match
between output and input signatures and functionality. More ad hoc and dynamic service
compositions are required very much in the spirit of lightweight and adaptive workflow
methodologies. These methodologies will include advanced forms of coordination, instance
based modification of process models, less structured process models, and automated
planning techniques as part of the integration/composition process. On the transactional
front, although standards like WS-Transaction, WS-Coordination and the Web Service
Composite Application Framework (WS-CAF) are a step in the right direction, they fall short
of describing different types of atomicity needs for e-Business and e-government

The authors
© - 13 - 1 March 2006

applications. These do not distinguish between transaction phases and conversational
sequences, e.g., negotiation. Another area that is lacking research results is advanced
methodologies in support for the service composition lifecycle. Some of the major
limitations of state-of-the-art technologies that prevent effective automated composition
are:

• Lack of tools for supporting the evolution and adaptation of business processes. It is
hard to define compositions of distributed business processes that work properly
under all circumstances. Misunderstandings in the agreement between different
organizations, as well as errors in the specification and implementation of the
interaction protocols, easily occur, especially for complex processes and interaction
protocols. Typical problems are business processes that wait forever, or for too long,
to receive an answer from another process, or that expect a different answer; or,
business processes that fail to invoke another process as required and do not allow
the distributed business to correctly proceed. Moreover, even in the case business
interactions are initially correctly defined and implemented, they frequently stop
working when some processes involved in the interactions are autonomously
redefined by an external organization; this kind of evolution is very common in
distributed, highly dynamic environments.

• Lack of integration of business requirements in the business process life cycle. While

BPEL and WS-CDL are adequate for the specification of the detailed message
exchanges in orchestrations and choreographies, there is the need for languages that
define both the internal business needs of an organization and its requirements over
external services, and for a systematic way of linking them to business processes.
Indeed, without explicit requirements, it is not possible to motivate the choices that
lead to the specification of a certain flow of activities within a business processes and
of its interactions with other processes. Traceability, i.e. determining how a process
is related to and affect business requirements and needs, cannot be supported if the
two are not linked, which is of utmost importance in supporting legal requirements
by IT [Agrawal 2006]. Finally, and most importantly, if requirements are not
accessible, there is no way to drive the automated composition of distributed
business processes so that it could support the evolution and adaptation of the
processes.

Some of the most notable research challenges for the near future include:

Composability analysis for replaceability, compatibility, and conformance for dynamic and

adaptive processes: Service conformance ensures the integrity of a composite service by
matching its operations with those of its constituent component services, imposes semantic
constraints on the component services (e.g., to ensure enforcement of business rules), and
ensures that constraints on data exchanged by component services are satisfied. Service
conformance comprises both behavioural conformance as well as semantic conformance.
The former guarantees that composite operations do not lead to spurious results and that
the overall process behaves in a correct and unambiguous manner. The latter, by
annotating services and operations with (possibly domain-specific) semantic descriptions,
ensures that they preserve their meaning when they are composed and can be formally
validated.

Adaptive and emergent service compositions: Automated composition task is traditionally
described as the problem of supporting the aggregation of component services that are
available and published, e.g., in the Web, as they are. However, most often, when different
organizations, e.g., companies, financial or public administration bodies, decide to
cooperate, rarely their services or their business processes, can be aggregated without a
change, an adaptation of the local services and processes. In such a distributed
environment, with autonomous actors, knowledge exchange/sharing and process
interoperability/composition cannot be often forced in a top-down manner. They emerge

The authors
© - 14 - 1 March 2006

after a negotiation process where each actor has to deal with two opposite and driving
forces: the “impedance” to change its business assets and the need to evolve towards
common and shared assets. A typical example nowadays in Europe is the financial sector,
where different banks have to merge and integrate their own business processes in order to
be more competitive and offer better services to clients. Networks of small medium
enterprises are a further significant example, where each company has its own local
business needs and strategies, and at the same time it has the need to join in a network to
be more competitive on the market. The result, the shared knowledge and the interoperable
processes, the common models and objectives, are not known a priori, they emerge from a
distributed negotiation process where each actor accepts to give up some of its assets, if
this is compensated by some advantage due to being part of a network. This negotiation
has to be human-driven, since it often concerns the strategic interests of the involved
actors. All of this requires techniques and tools supporting the process of defining the
emergent common model, processes and objectives and supporting the negotiation among
actors.

Autonomic composition of services: One of the main fundamental ideas of Service-Oriented
Computing is that applications should be developed by composing services that are
available, e.g., on the Web. Given some business level and strategic requirements for the
composition, the idea is to automatically generate the electronic business process
implementing it. In this framework, the challenge is the autonomic composition of services,
e.g., service composition that are self-configuring, self-optimizing, self-healing, and self-
adapting. Self-configuring compositions are, e.g., composite services that are capable of
automatically discovering new partners to interact with, to automatically select among
available suppliers, to choose among different options available for contracts, etc. Self-
optimizing Web service compositions should automatically select partners and options that
would, e.g., maximize benefits and reduce costs. Self-healing compositions should be able
to automatically detect that some business composition requirements are no longer satisfied
by the implementation and react to requirement violations. Self-adapting service
compositions should be able to function in spite of changes in behaviours of external
composite services, they should reduce as much as possible the need of human intervention
for adapting services to subsequent evolutions.

QoS-aware service compositions: To be successful service compositions need to be QoS-
aware, i.e., understand and respect each other’s policies, performance levels, security
requirements, SLA stipulations, and so forth. For example, knowing that a new business
process adopts a Web services security standard such as one from the stack of WS-Security
specifications is not enough information to enable successful composition. The client needs
to know if the services in the business process actually require WS-Security, what kind of
security tokens they are capable of processing, and which one they prefers. Moreover, the
client must determine if the service should communicate using signed messages. If so, it
must determine what token type must be used for the digital signatures. Finally, the client
must decide on when to encrypt the messages, which algorithm to use, and how to
exchange a shared key with the service. For example, a purchase order service in an order
management process may indicate that it only accepts username tokens that are based
singed messaged using X.509 certificate that is cryptographically endorsed by a third party.

Business-driven automated compositions: One of the main ideas of service oriented
applications is to abstract away the logic at the business level from its non-business related
aspects, the “system level”, e.g., the implementation of transaction, security, and reliability
policies. This abstraction should make easier and effective the composition of distributed
business processes. However, the provision of automated composition techniques, which
make this potential advantage real, is still an open problem. Business-driven automated
compositions should exploit business and system level separation in service compositions.
According to this view, service composition at the business level should pose the
requirements and the boundaries for the automatic composition at the system level. While
the service composition at the business level should be supported by user-centred and

The authors
© - 15 - 1 March 2006

highly interactive techniques, system level service compositions should be fully automated
and hidden to the humans. System level compositions should be QoS-aware, should be
generated and monitored automatically, and should also be based on autonomic computing
principles (see also challenges for service management and monitoring in section 3.3.2).

3.3 Service Management and Monitoring

Managing loosely coupled applications in an SOA is an absolute requirement. Composite
service developments necessitate the use of mechanisms that provide them insights into the
health of systems that implement Web services and into the status and behaviour patterns
of loosely coupled applications. Failure or change of a single application component can
bring down numerous interdependent enterprise applications. The addition of new
applications or components can overload existing components, causing unexpected
degradation or failure of seemingly unrelated systems. Application performance depends on
the combined performance of cooperating components and their interactions. To counter
such situations, enterprises need to constantly monitor the health of their applications. The
performance should be in tune, at all times and under all load conditions. A consistent
management and monitoring infrastructure is thus essential for production-quality Web
services and applications and provided by the management and monitoring plane in
Services Research Roadmap. The rationale is very similar to the situation in traditional
distributed computing environments, where systems administrators rely on
programs/tools/utilities to make certain that a distributed computing environment operates
reliably and efficiently.

The management and monitoring in Services Research Roadmap requires that a critical
characteristic be realized: that services be managed and monitored. Service management
encompasses the control and monitoring of SOA-based applications throughout their life
cycle. Service management spans a range of activities from installation and configuration to
collecting metrics and tuning to ensure responsive service execution. It includes many
interrelated functions such as Service-Level Agreement negotiation, management, auditing,
monitoring, and troubleshooting, service lifecycle/state management, performance
management, services and resources provisioning, and includes aspects like scalability,
availability and extensibility and others.

3.3.1 State of the Art

Services Research Roadmap's service operations management typically gathers information
about the managed service platform, services and business processes and managed
resource status and performance, and supporting specific management tasks (e.g., root
cause failure analysis, SLA monitoring and reporting, service deployment, and life cycle
management and capacity planning). Operations management functionality may provide
detailed application performance statistics that support assessment of the application
effectiveness, permit complete visibility into individual business processes and transactions,
guarantee consistency of service compositions, and deliver application status notifications
when a particular activity is completed or when a decision condition is reached.
Considerations need also be made for modelling the scope in which a given service is being
leveraged individual, composite, part of a long-running business process, and so on. Service
monitoring allows monitoring events or information produced by the services/processes,
monitoring instances of business processes, viewing process instance statistics, including
the number of instances in each state (running, suspended, aborted or completed), viewing
the status, or summary for selected process instances, suspend, and resume or terminate
selected process instances. Of particular significance is the ability to be able to spot
problems and exceptions in the business processes and move toward resolving them as
soon as they occur. We refer to the role responsible for performing such operation
management functions as the service operator (see Figure-1). Depending on the
application requirements a service operator could be a service client or service aggregator.

The authors
© - 16 - 1 March 2006

It is increasingly important for service operators to define and support active capabilities
versus traditional passive capabilities. For example, rather than merely raising an alert
when a given service is unable to meet the performance requirements of a given service-
level agreement, the management framework should be able to take corrective action itself.
This action could take the form of rerouting requests to a backup service that is less heavily
loaded, or automatically provisioning a new application server with an instance of the
software providing the service if no backup is currently running and available.

Finally, service operations management also provides global visibility of running processes,
comparable to that provided by Business Process Management tools. Management visibility
is expressed in the form of real-time and historical reports, and in triggered actions. For
example, deviations from key performance indicator target values, such as the percent of
requests fulfilled within the limits specified by a service level agreement, might trigger an
alert and an escalation procedure, or might propose changes to affected process models
enabling them to achieve their goals.

Figure 3 Web services management architecture.

Figure 3 highlights the elements of a conceptual architecture that combines a service
management and an application channel developed in accordance to SOA principles
[Papazoglou 2005b]. This architecture provides a continuous connection between the Web
services application channel and directs it into the management channel. Example
management applications include availability and performance management, configuration
management, capacity planning, asset protection, job control, and problem determination.

Service management in this conceptual architecture involves a collection of services that
communicate with each other—passing data to each other or coordinating some activity
together—all with the aim of facilitating the delivery of one or more business services. In
fact, this architecture does not prescribe a particular management protocol or
instrumentation technology because it needs to work with the various computing
technologies and standards that exist in the industry today, such as Simple Network
Management Protocol (SNMP), Java Management Extensions (JMX), WBEM -- as well as
future technologies.

In Figure 3, manageable resources are as usual hardware and software resources, both
physical and logical, e.g., software applications, hardware devices, servers, and so on,

The authors
© - 17 - 1 March 2006

whose management capabilities are exposed as Web services that implement various
management interfaces, such as those defined in Web Services Distributed Management
specification (see below). A management interface of a resource is described by a WSDL
document, resource properties schema, meta-data documents, and potentially a set of
management related policies. Manageable resources can be accessed directly by resource
managers, as part of a business processes and/or a management processes. In Figure 3, a
business process is composed of integrating basic services such as credit validation,
shipping, order processing, and inventory services originating from two collaborating
enterprises.

At the level of standards services management considers consistent management of end-to-
end Web services. Such activities are the target of the Web Services Distributed
Management (WSDM) specification. WSDM essentially defines a protocol for interoperability
of management information and capabilities in a distributed environment via Web services.
WSDM focuses on two distinct tasks in its attempt to solve distributed system management
problems [Kreger 2005]. The first activity area, called Management Using Web Services
(MUWS) addresses the use of Web services technologies as the foundation of a modern
distributed systems management framework. This includes using Web services to facilitate
interactions between managed resources and management applications. In particular,
MUWS defines how to describe the manageability capabilities of managed resources using
WSDL documents. Expressing capabilities enables more efficient discovery of and
introspection of resources since managers, typically focus on a particular management task
or domain, and therefore need to be able to easily and efficiently determine the relevant
capabilities of a manageable resource [Papazoglou 2005b]. In addition, WSDM addresses
the specific requirements for managing Web services themselves just like any other
resource. This activity is called Management of Web Services (MOWS).

The most recent wave of management product categories does not have the business-
awareness that services management will require. The finer grained nature of services (as
opposed to applications) requires evaluating processes and transactions at a more
magnified rate and in a more contextually aware manner. Research activities have
concentrated on assessing the impact of service execution from a business perspective and,
conversely, to adjust and optimize service executions based on stated business objectives
[Casati 2003]. This is a crucial issue as corporations strive to align service functionality with
business goals.

One crucial aspect of management entails monitoring. Here research activities traditionally
focus on dynamic monitoring techniques that are capable of employing monitoring rules
governing the control of composite services [Baresi 2005], e.g., such as those generated
using BPEL processes. Other approaches concentrate on capturing and monitoring
negotiations that incorporate security policies and policy models that facilitate service life-
cycle management [Skogsrud 2004].

The ability to gauge the quality of a service is critical if we are to achieve the Service
Oriented Computing paradigm. Many techniques have been proposed and most of them
attempt to calculate the quality of a service by collecting quality ratings from the users of
the service, and then combining them in one way or another. Collecting quality ratings
alone from the users is not sufficient for deriving a reliable or accurate quality measure for a
service. To this end, research activities have concentrated on using QoS metrics for
selecting Web-services and for establishing trust between trading partners [Maximilien
2004].

Ideally, services are collaborating in highly distributed environments, naturally cutting
across various enterprise boundaries. This environment demands that contracts are set up,
stipulating agreements between services regarding their collaboration, both at the functional
and non-functional level, in a concise manner. These contracts may serve as the basis for
process monitoring and adaptation. Research activities in this front concentrate on

The authors
© - 18 - 1 March 2006

standardizing on agreements between enterprise domains offering agreement templates,
and facilities to dynamically check the state of an agreement [Ludwig 2004].

3.3.2 Grand Challenges

Seeding autonomic capabilities for service level management is an evolutionary service level
management approach where autonomic computing capabilities anticipate IT system
requirements and resolve problems, with minimal human intervention. The function of any
autonomic capability is a control loop that collects details from the system and acts
accordingly [Kephart 2003], [Kreger 2005], [Leymann 2005c]. Although there can be
numerous types of control loops in a system, they can be naturally divided into five
categories: self-configuring, self-adapting, self-healing, self-optimizing and self-protecting,
each of which represents a major research challenge for future research in services
management and monitoring. Some of the most notable research challenges for the near
future include:

Self-configuring management services – Self-configuring services configure themselves
automatically to adapt to different environments in which they can be installed and can
operate to optimize for particular kinds of their use.

Self-adapting management services —Self-adapting services adapt dynamically to changes
in the environment, market and so on, using policies provided by the IT professional. Such
changes could include the deployment of new instances of a particular kind of services or
the removal of existing ones, or dramatic changes in the system characteristics.

Self-healing management services — Self-healing services can discover, diagnose and react
to disruptions. They can detect system malfunctions and initiate policy- based corrective
action without disrupting the IT environment. Corrective action could involve a product
altering its own state or effecting changes in other components in the environment. In this
way, service-based solutions as a whole become more resilient because day-to-day
operations are less likely to fail.

Self-optimizing management services — Self-optimizing services can monitor and tune
resources automatically. Self-optimizing components can tune themselves to meet end-user
or business needs. The tuning actions could mean reallocating resources—such as in
response to dynamically changing workloads—to improve overall utilization, or ensuring that
particular business transactions can be completed in a timely fashion. Self-optimization
helps provide a high standard of service for both the system’s end users and a business’s
customers. Without self-optimizing functions, there is no easy way to divert excess server
capacity to lower priority work when an application does not fully use its assigned
computing resources. In such cases, customers must buy and maintain a separate
infrastructure for each application to meet that application’s most demanding computing
needs.

Self-protecting management services — Self-protecting services can anticipate, detect,
identify and protect against threats. Self-protecting components can detect hostile
behaviours, e.g., unauthorized access and use, virus infection and proliferation, and denial-
of-service attacks, as they occur and take corrective actions to make themselves less
vulnerable. Self-protecting capabilities allow businesses to consistently enforce security and
privacy policies.

3.4 Service Design and Development (Service Oriented Engineering)

Service oriented applications start from the premise that all businesses have a business
design. A business design describes how that business works – the processes that it
performs; the organizational structure of the people and finances within that business; the

The authors
© - 19 - 1 March 2006

business’ near-term and long-term goals and objectives; the economic and market
influences that affect how that business achieves its goals; the rules and policies that
condition how the business operates [Papazoglou 2006a]. The foundations of business
design are business processes that are part of the fabric of a business and contribute to how
the business functions and responds to its customers, opportunities, internal and external
threats [Leymann 2000].

Service orientation utilizes services as the constructs to support the development of rapid,
low-cost and easy composition of distributed applications [Papazoglou 2003]. Key to this
concept is the service-oriented architecture (SOA), which is a logical way of designing a
software system to provide services to either end-user applications or to other services
distributed over a network, via published and discoverable interfaces. A well-constructed
SOA can empower a business environment with a flexible infrastructure and processing
environment by provisioning independent, reusable automated business processes (as
services) and providing a robust foundation for leveraging these services. SOAs rely on an
evolutionary software engineering approach that partly builds upon earlier development
processes including component-based development and business process modelling
[Harmon 2003]. Older software development paradigms for object-oriented and component-
based development [Bachmann 2000], [Herzum 2000], cannot be blindly applied to SOA
and Web services as they do not address the key elements of SOA: services, flows of
information and components realizing services [Arsanjani 2004]. While relatively simple
Web services may be built that way, a service-based development methodology is of critical
importance to specify, construct, refine and customize highly volatile business processes
from internally and externally available Web services.

What is required is a service-engineering methodology that allows enterprises to effectively
design and deploy services and which can more easily embed changes into service-based
applications at the rate and pace of change in the business design. It is from this
correspondence that Service Oriented Architectures deliver on the promise of more flexible
businesses through a more flexible IT environment. This correspondence is represented as
the service-oriented engineering methodology, in which business processes are modelled,
analyzed, assembled (possibly out of pre-existing components), deployed and monitored in
an continuous and iterative manner. Figure 1 also illustrates that the Services Research
Roadmap planes require the support of a SOA lifecycle methodology (service-oriented
engineering), which starts with analyzing and modelling the business environment including
key performance indicators of business goals and objectives, translating that model into
service design, deploying that service system, managing that deployment.

3.4.1 State of the Art

A service-oriented design and development methodology focuses on business processes,
which it considers as reusable elements that are independent of applications and the
computing platforms on which they run. This promotes the idea of viewing enterprise
solutions as federations of services connected via well-specified contracts that define service
interfaces in the context of SOAs.

Many researchers and developers in their early use of SOA, think that they can port existing
components to act as Web services just by creating wrappers and leaving the underlying
component untouched. Since component methodologies focus on the interface, many
developers assume that these methodologies apply equally well to service-oriented
architectures. Thus, implementing a thin SOAP/WSDL/UDDI veneer on top of existing
applications or components that implement the Web services is by now widely practiced by
the software industry. Yet, this is in no way sufficient to construct commercial strength
enterprise applications. Unless the nature of the component makes it suitable for use as a
Web service, and most are not, it takes serious thought and redesign effort to properly
deliver components functionality through a Web service. While relatively simple Web
services may be effectively built that way, a methodology is of critical importance to specify,

The authors
© - 20 - 1 March 2006

construct, refine and customize highly volatile business processes from internally and
externally available Web services.

Conventional development methodologies such as Object-Oriented Development (OOD) and
Component Based Development (CBD) do not address the three key elements of an SOA:
services, service assemblies (composition), and components realizing services. These
methodologies can only address part of the requirements of service-oriented computing
applications. These practices fail when they attempt to develop service-oriented solutions
while being applied independently of each other. For instance, although both CBD and
service-oriented computing offer a “separation-of-internal and external perspectives” and
the motivation for both components and services is often expressed in terms of reusability,
composability and flexibility, they are quite diverse in nature. Components and services
present differences along the dimensions of type of communication, type of coupling, type
of interface, type of invocation, and type of request brokering. However, in so far as
development is concerned, they also differ fundamentally in the way that they approach
flexibility and reusability. Services are subject to continuous maintenance and improvement
in scope and performance so that they can be offered to an ever-increasing number of
consumers. The selection of a service is usually done dynamically on the basis of a set of
policies. Use of installed components does not allow for the same kind of reuse and dynamic
behaviour. Moreover, the view that components are merely distributable objects, deployed
on some middleware server, carries with it all the difficulties of object modelling and yet
multiplies the complexity by increasing the scale of the model [Papazoglou 2006a]. Let
alone if models are extended across enterprise boundaries.

Service-oriented design and development requires an inter-disciplinary approach fusing
elements of object-oriented and component design with elements of business modelling.
OOD and CBD can contribute general software architecture principles such as information
hiding, modularization, and separation of concerns. On the other hand, business modelling
can contribute conventions that help analyse the structuring of value-chains and improve
processes, help define amongst other things standardized business processes and operating
procedures, and create a shared understanding of how a business functions so that
workflow implementations are tested before design and implementation.

As regards research, it is only recently that we see some initial results. Activities have
mainly concentrated on two fronts on developing a methodology for service-oriented
engineering and on design-time models.

On the first activities concentrated on proposing elements of a methodology for services
design and development. Research activities have concentrated on how to provide sufficient
principles and guidelines to specify, construct and refine and customize highly volatile
business processes choreographed from a set of internal and external Web services [Ghezzi
2005], [Papazoglou 2006c].

On the second front activities have concentrated on developing design-time models using
goal-oriented requirements analysis techniques [van Lamsweerde 2000]. According to
these, requirements analysis begins by identifying stakeholder goals (needs). The goals are
refined through AND/OR decompositions to identify collections of actions which together can
satisfy each root-level goal. Web services are designed for each one of these actions. The
goal models can then be made available at run-time to augment UDDI and other discovery
infrastructure in identifying and selecting what Web services to compose in order to fulfil a
user need [Kaabi 2004], [Penserini 2006].

The authors
© - 21 - 1 March 2006

3.4.2 Grand Challenges

Business processes and services in a service-oriented application are implemented as
components in terms financial and operational functions and data available from resources
such as ERP, databases, CRM and other systems. It is thus convenient to distinguish
between business processes and business services as comprising the logical part of services

development life cycle and the physical part of services development life cycle that
comprises infrastructure services and component implementations that map logical services
to existing resources [Papazoglou 2006c] (this is analogous to the distinction between
business and system level separation in section 3.2.2). The logical part is shown in Figure 4
to comprise business processes, and business services, such as an order management
process that provide business services (which are indivisible services) for creating,
modifying, suspending, cancelling, querying orders, and so on. Infrastructure services are
usually management and monitoring services woven in by a container and in the services
management and monitoring infrastructure such as those providing technical utility such as
logging, security, transactionality or authentication, and those that manage resources.
These services provide the infrastructure enabling the integration of services through the
introduction of a reliable set of capabilities, such as intelligent routing, protocol mediation,
and other transformation mechanisms, often considered as part of the Enterprise Service
Bus. The implementation part provides through component implementations the financial
and operational functions and data available from resources such as ERP, databases, CRM
and other systems, which lie at the bottom of the service lifecycle development hierarchy,
which automatically populate the service domains, business processes. Both business
services and their implementation components need to be designed with the appropriate
level of granularity.

Figure 4 The Web Services Development Life Cycle hierarchy.

The authors
© - 22 - 1 March 2006

The above issues raise a plethora of interesting research challenges that need to be
addressed in older to develop sound service engineering methodologies. Major research
challenges for the near future include:

Engineering of Service Compositions: One of the main challenges in the development of
Services Oriented systems is the provision of methodologies that support the specification
and design of compositions of services. Traditional software engineering methodologies
hardly apply in this scenario, where the environment is highly dynamic, the uncertainty is
high and several decisions cannot be taken at design time but must be postponed at run-
time, where the control is highly distributed, and we have different stakeholders with
possibly conflicting business needs. Novel techniques must be developed to support the
refinement from the early phases of requirement analysis to the final steps of
implementation and deployment. Similarly, novel techniques must be devised to construct
compositions of Web services that at run-time can provide feedback and significant
information to business analysis and stakeholders, who can use this information to devise
new business strategies or take strategic decisions at design time.

Associating a services engineering methodology with standard software development and

business process modelling techniques: Most representative current conventional software
development techniques is the Rational Unified Process (RUP) whose aim is to support the
analysis and design of iterative software development. RUP has the principles of object-
oriented analysis and design and CDB as its foundation, and therefore, does not lend itself
readily to be aligned to SOA design [Zimmerman 2004]. Research activities could focus on
how to blend several of the RUP milestones and connect them with business modelling
approaches such as the Supply Chain Operations Reference (SCOR) Framework proposed by
the Supply Chain Council (http://www.supply-chain.org/) to provide a sound basis for
supporting the corresponding phases of a services development methodology. SCOR is a
modelling approach that provides standard guidelines for companies that help to examine
the configuration of their supply chains, identify and measure metrics in the supply chain.
can be appropriately adjusted and fitted in the context of service-oriented solutions. In
addition it should be examined how emerging business modelling notations such as BPMN
can aid in capturing software development activities rather than using UML.

Flexible gap analysis techniques: Gap analysis is a technique that purposes a business
process and services realization strategy by incrementally adding more implementation
details to an abstract service/process interface. Gap analysis commences with comparing
candidate service functionality with available software service implementations that may be
assembled within the enclosures of a newly conceived business process. A gap analysis
strategy may be developed in stages and results in a recommendation to do development
work, reuse or purchase services. It considers several service realization possibilities such
as green field development, top down and bottom up development, meet in the middle
development and development on the basis of reference models.

Design principles for engineering service applications: in order to design useful and reliable
business processes that are developed on the basis of existing or newly coded services we
need to apply sound design principles that guarantee that services are self-contained and
come equipped with clearly defined boundaries and service end-points to allow for service
composability and loose coupling. Key principles that serve as the foundation for service
design: service coupling, cohesion and granularity.

Automated, transparent user centred support to the entire business process lifecycle of

composed services: The challenge is to automatically perform the time consuming and error
prone task of analyzing business processes in detail, discovering and selecting suitable
external services, detecting problems in the interactions, searching for possible alternative
solutions, monitoring execution step by step, and so on. There is a need for techniques that
operate in a transparent and user centred way by suggesting solutions that can be adopted,

The authors
© - 23 - 1 March 2006

refused, or refined by stakeholders, managers, business analysts, designers, and
programmers.

Design techniques for managing service versioning and adaptivity: adaptive service
capabilities need to be seeded into services and processes so that they can continually
morph themselves to respond to environmental demands and changes without
compromising on operational and financial efficiencies. Business processes could be
analysed in detail instantaneously, discovering and selecting suitable external services,
detecting problems in the service interactions, searching for possible alternative solutions,
monitoring execution step by step, upgrading and versioning themselves, and so on. An
integral part of adaptive services is service version control. A service interface version is a
specific instance of a service interface at a particular point in time that came into existence
due to a revision or a change. Currently, versioning has not been built into the Web services
architecture. This means that in situations where the interface of a particular service needs
to change with a new version WSDL cannot convey the change to the service requester. If a
developer makes a change to a service interface, all older requestors would fail, and the
failure would be undetectable to the Web services infrastructure.

Service Governance: The cross-organizational nature of end-to-end business processes that
are composed out of variety of service fragments that may need to be maintained
separately by different organizations makes service governance a challenging issue. The
potential composition of services into business processes across organizational boundaries
can function properly and efficiently only if the services are effectively governed for
compliance to requirements dictated by QoS factors. Services that flow between enterprises
must have defined owners with established ownership and governance responsibilities.
These owners are responsible for gathering requirements, development, deployment, the
boarding process, and operations management for any mission critical or revenue
generating service [Bieberstein 2005]. The service must meet the functional and QoS
objectives within the context of the business unit and the enterprises within which it
operates. Ownership of a specific service is usually associated with a business scope. Typical
examples of such business scopes are customer relationship management, customer
information and entitlements, order management, financing, taxes, and so forth.
Consequently, identifying, specifying, creating, deploying enterprise services, and
overseeing their proper maintenance and growth needs SOA governance to oversee the
entire life cycle of an enterprise's service portfolio [Mitra 2005].

4. The Services Research Roadmap and EU Initiatives

The Services Research Roadmap aims to support the implementation of major EU initiatives
related to the IST priority. These include i2010: European Information Society 2010,
NESSIE and Ambient Intelligence which are all directly addressed by the Services Research
Roadmap activities.

The European Union recently launched a new initiative “i2010: European Information
Society 2010” to foster growth and jobs in the information society and media industries.
i2010 is a comprehensive strategy for modernising and deploying all EU policy instruments
to encourage the development of the digital economy. Three important priority policies are
outlined in this initiative. To create an open and competitive single market for information
society and media services within the EU. To increase EU investment in research on
information and communication technologies (ICT) by 80% by identifying steps to invest
more and get better results from ICT research. For instance, by means of trans-European
demonstrator projects to test out promising research results and by integrating small and
medium sized enterprises better in EU research projects. And finally, to promote an
inclusive European information society by proposing amongst other things action plans on e-
Government for citizen-centred services and advanced technologies for an ageing society.
The Services Research Roadmap directly addresses i2010 priorities. The service-oriented

The authors
© - 24 - 1 March 2006

paradigm addresses the requirements of media services and alternative modes of user
interaction, (e.g., portals and voice), innovative business models (e.g., e-marketplaces and
auctions), access methods (wireless services), and devices (PDAs and cellular phones) and
can associate a security and regulatory framework with such media services and user
interactions by attaching security and regulatory policies to services that manage these
facilities. Service oriented computing could aid an effective inclusion of different
organizations, including small and medium sized enterprises, to better exploit research
results. It can achieve this by providing an inexpensive, lightweight infrastructure that
allows for better integration and automation of the business processes that span
organisations. SOC allows for allows for integrated solutions and demonstrator projects –
crossing diverse platforms, transaction formats, communication protocols and application
standards, and for the flexible personalisation of contents and portals to individual end
users. It finally targets the plans for an inclusive European information society by allowing
for the development and deployment of online services (possibly residing on heterogeneous
platforms) for the public sector such as e-government, e-learning and e-health. For
instance, it could enable mobile and multi-media citizens-centred services and solutions as
well as global reach with national languages and automated language translation.

Ambient Intelligence focuses on “the future generation of technologies in which computers
and networks will be integrated into the everyday environment, rendering accessible a
multitude of services applications through easy-to-use human interfaces”. The Services
Research Roadmap also directly addresses the ambient intelligence vision. Service oriented
computing provides the technological foundation that supports process and knowledge
based activities in a highly effective manner. It enables entirely automated engagements by
allowing for the sequencing and composition of services depending on constantly varying
situations and circumstances (no matter on which platform the services run). Finally, SOC
facilitates personalisation of information to individual end users and applications by means
of differentiated context-aware services where the content or quality of the service is
organised according to the context of its use, customer type, transaction use, location, and
so on.

NESSI, the “Networked Software and Services Initiative” promoted by thirteen major
European ICT corporations aims at the definition of a Technology Platform for Services
Architectures and Software Infrastructures, and to define the related technologies,
strategies and deployment policies fostering new, open, industrial solutions and societal
applications that enhance the safety, security and well-being of citizens. We believe that an
active cooperation between the NESSI initiative and the SOC community will increase the
degree of innovation and strengthen the competitiveness of European industry by
addressing the most significant and challenging research problems in this document and
may lead to innovative service development and deployment activities.

The Service-Oriented Computing Research Roadmap activities are directly related to the
research objectives of NESSI. In fact they could help in forming the NESSI Research
Agenda, thus streamlining and consolidating research activities in the field. This would also
increase the effectiveness of collaborative research and may bring many benefits, including:
sharing of risk and cost for long-term research, access to complementary capabilities,
access to specialized skills and to state-of-the-art facilities, creating new opportunities for
technological learning and reducing the time-lags involved in the translation of research
outputs into final economic impacts. A fruitful alliance between the NESSI industrial partners
and the SOC research community may evolve into a shared community of innovation, which
develops its own common values and norms. This will eventually maximise the benefits of
SOC research through an enhanced process of utilisation, commercialisation and technology
transfer and would help EU companies to become more visible and more competitive in the
field of services. Finally, the main worldwide conference on services that has been founded
by the SOC community – The International Conference on Service Oriented Computing
(ICSOC) -- could act as the instrument of dissemination of NESSI results and activities.

The authors
© - 25 - 1 March 2006

5. References

[Ambite 2004] J. L. Ambite, et. al “Argos: An Ontology and Web Service Composition
Infrastructure for Goods Movement Analysis”, National Conference on Digital Government
Research, Seattle, Washington, May 2004.

[Andrews 2003] T. Andrews et. al. (eds), “Business Process Execution Language for Web
Services”, May 2003, available at http://www.ibm.com/developerworks/library/ws-bpel.

[Agrawal 2006] R. Agrawal, Ch. Johnson, J. Kiernan, F. Leymann “Taming Compliance with
Sarbanes-Oxley Internal Controls Using Database Technology” 22nd Int’l. Conf. on Data
Engineering ICDE’2006, Altanta, GA, USA, April 2006.

[Arsanjani 2004] A. Arsanjani “Service-oriented Modeling and Architecture”, IBM
developerworks, Novemeber 2004, available at: http://www-
106.ibm.com/developerworks/library/ws-soa-design1/.

[Bachmann 2000] F. Bachmann et. al. “Technical Concepts of Component-Based Software
Engineering”, Technical Report, Carnegie-Mellon Univ., CMU/SEI-2000-TR-008 ESC-TR-
2000-007, 2nd Edition, May 2000.

[Barbon 2006] F.Barbon, P.Traverso, M.Pistore, M.Trainotti. Run-Time Monitoring the
Execution of Web Service Compositions. The International Conference on Planning and
Scheduling (ICAPS) 2006.

[Baresi 2005] L. Baresi, S. Guinea “Towards Dynamic Monitoring of WS-BPEL Processes”,
Proceedings of the 3rd International Conference on Service Oriented Computing (ICSOC
2005), Springer, Amsterdam, December 2005.

[Bieberstein 2005] N. Bieberstein et. al. “Impact of Service-oriented Architecture on
Enterprise Systems, Organizational Structures, and Individuals”, IBM Systems Journal, vol.
44, no. 4, 2005.

[Casati 2003] F. Casati et al. “Business-Oriented Management of Web Services”,
Communincations of the ACM, vol. 46, no. 10, 2003.

[Charfi 2004] A. Charfi, M. Mezini “Hybrid Web service composition: business processes
meet business rules”, Int’l Conf. on Service Oriented Computing (ICSOC 2004), New York,
Dec 2004.

[Colombo 2005] E. Colobo, J. Mylopoulos, P. Spoletini “Modeling and Analyzing Context-
Aware Composition of Services”, 3rd International Conference on Service Oriented
Computing, Springer, Amsterdam, December 2005.

[Deora 2003] V. Deora et al. “A Quality of Service Management Framework Based on User
Expectations”, Proceedings of the First International Conference on Service Oriented
Computing (ICSOC03), Springer, 2003.

[Deora 2004] V. Deora et al. “Incorporating QoS specifications in service discovery”, WISE
Workshops, Lecture Notes of Springer Verlag, 2004.

[Ding 2004] X. Ding et al “Similarity Search for Web services”, 30th VLDB Conference,
September 2004.

[Graham 2005] S. Graham et. al. “Building Web Services with Java”, 2nd edition, SAMS
Publishing, 2005.

The authors
© - 26 - 1 March 2006

[Ghezzi 2005] C. Ghezzi “Service-Oriented Computing: Where does it come from? A
software engineering perspective” keynote address at Int’l Conf. on Service Oriented
Computing (ICSOC 2005), Amsterdam, Dec 2005.

[Harmon 2003] P. Harmon “Second Generation Business Process Methodologies”, Business
Process Trends, vol. 1, no. 5, May 2003.

[Herzum 2000] P. Herzum, O. Sims “Business Component Factory”, J. Wiley & Sons Inc.,
2000.

[Hepp 2005] M. Hepp, F. Leymann, J. Domingue, A. Wahler, D. Fensel. “Semantic Business
Process Management: Using Semantic Web Services for Business Process Management”,
Proc. IEEE ICEBE 2005 (Beijing, China, October 18-20, 2005)

[Ivan 2002] A.-A. Ivan, J. Harman, M. Allen, V. Karamcheti. “Partitionable Services: A
Framework for Seamlessly Adapting Distributed Applications to Heterogeneous
Environments”, Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing, 2002.

[Jaeger 2004] M. C. Jaeger, S. Tang “Ranked Matching for Service Descriptions using DAML-
S”, Proceedings of CAiSE'04 Workshops, Riga, Latvia, June 2004.

[Kaabi 2004] R. S. Kaabi, C. Souveyet, C. Rolland “Eliciting service composition in a goal
driven manner”, Int’l Conf. on Service Oriented Computing (ICSOC 2004), New York, Dec
2004.

[Kavantzas 2004] Web Services Choreography Description Language 1.0, Editor's Draft,
April 3 2004, http://lists.w3.org/Archives/Public/www-archive/2004Apr/att-0004/cdl_v1-
editors-apr03-2004-pdf.pdf

[Kazhamiakin 2006] R. Kazhamiakin, M. Pistore “A Parametric Communication Model for
the Verification of BPEL4WS Compositions”, International World Wide Web Conference
(WWW) 2006.

[Kephart 2003] J. O. Kephart, D. M. Chess “The Vision of Autonomic Computing”, IEEE
Computer, January 2003.

[Kreger 2005] H. Kreger, et. al “Management Using Web Services: A Proposed Architecture
and Roadmap”, IBM, HP and Computer Associates, June 2005, available at: www-
128.ibm.com/developerworks/library/specification/ws-mroadmap.

[Lazovik 2004] Lazovik, A, M. Aiello, M.P. Papazoglou “Associating Assertions with Business
Processes and Monitoring their Execution” Int’l Conf. on Service Oriented Computing (ICSOC
2004), New York, Dec 2004.

[Lazovik 2006] Lazovik, A, M. Aiello, M.P. Papazoglou “Planning and Monitoring the
Execution of Web Service Requests”, Int'l Journal on Digital Libraries, to appear in 2006.

[van Lamsweerde 2000] van Lamsweerde, A., "Requirements Engineering in the Year 2000:
A Research Perspective", 22nd International Conference on Software Engineering, Limerick,
Ireland, May 2000.

[Leymann 2000] F. Leymann and D. Roller “Production Workflow - Concepts and
Techniques”, PTR Prentice Hall, 2000.

The authors
© - 27 - 1 March 2006

[Leymann 2003] F. Leymann “Web Services: Distributed Applications without Limits”, Proc.
BTW'03 (Leipzig, Germany, February 26-28, 2003), Lecture Notes in Informatics, volume P-
26, Gesellschaft fuer Informatik (GI), Bonn, Germany, 2003.

[Leymann 2005a] F. Leymann “The (Service) Bus: Services Penetrate Everyday Life”, 3rd
Intl. Conf. on Service Oriented Computing ICSOC’2005, (Amsterdam, The Netherlands,
December 13 – 16, 2005), LNCS 3826 Springer-Verlag Berlin Heidelberg 2005.

[Leymann 2005b] F. Leymann “Choreography for the Grid: Towards Fitting BPEL to the
Resource Framework”, Journal of Concurrency and Computation: Practice and Experience
CCPE 17 (2005).

[Leymann 2005c] F. Leymann “Combining Web Services and the Grid: Towards Adaptive
Enterprise Applications”, Proc. CAiSE/ASMEA’05 (Porto, Portugal, June 2005).

[L´opez 2001] J. L´opez and D. O’Hallaron. “Evaluation of a Resource Selection Mechanism
For Complex Network Services”, Proceedings of the Tenth IEEE International Symposium on
High Performance Distributed Computing, Aug. 2001.

[Liu 2002] C. Liu, L. Yang, I. Foster, D. Angulo. “Design and Evaluation of a Resource
Selection Framework for Grid Applications”, IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), July 2002.

[Ludwig 2004] H. Ludwig, A. Dan, R. Kearney “Cremona: an Architecture and Library for
Creation and Monitoring of WS-Agreements”, Int’l Conf. on Service Oriented Computing
(ICSOC 2004), New York, Dec 2004.

[Maximilien 2004] E. M. Maximilien, M.P. Singh “Toward Autonomic Web Services Trust and
Selection”, Int’l Conf. on Service Oriented Computing (ICSOC 2004), New York, Dec 2004.

[Mitra 2005] T. Mitra “A Case for SOA Governance”, IBM developerworks August 2005,
available at: http://www-106.ibm.com/developerworks/Webservices/library/ws-soa-
govern/index.html.

[Paolucci 2002] M. Paolucci, et al. “Semantic Matching of Web Services Capabilities”, 1st
International Semantic Web Conference, 2002.

[Papazoglou 2003] M.P. Papazoglou and G. Georgakapoulos, “Service-Oriented Computing,
CACM”, October 2003, 46(10).

[Papazoglou 2005a] M.P. Papazoglou “Extending the Service Oriented Architecture”,
Business Integration Journal, February 2005.

[Papazoglou 2005b] M.P. Papazoglou , W.J. van den Heuvel “Web Services Management: A
Survey”, IEEE Internet Computing, November/December 2005.

[Papazoglou 2006a] M.P. Papazoglou, P.M.A. Ribbers “e-Business: Organizational and
Technical Foundations”, J. Wiley & sons, Ltd, February 2006.

[Papazoglou 2006b] M. P. Papazoglou, W.J. van den Heuvel “Service Oriented Architectures”
to appear in VLDB Journal (2006).

[Papazoglou 2006c] M. P. Papazoglou, W. van den Heuvel ““Business Process Development
Lifecycle Methodology” to appear in Communications of ACM, 2006.

The authors
© - 28 - 1 March 2006

[Patil 2004] A. A. Patil et al. “Meteor-S: Web Service Annotation Framework”, WWW'04:
Proceedings of the 13th international conference on World Wide Web, pp. 553-562, ACM
Press, 2004.

[Penserini 2006] Penserini, L., Perini, A., Susi, A., Mylopoulos, J., "From Stakeholder Needs
to Service Requirements Specifications" Technical Report, ITC-IRST, Automated Reasoning
Systems, 2006.

[Pistore 2005] M. Pistore, P. Traverso, P. Bertoli, A. Marconi “Automated Synthesis of
Executable Web Serivce Compositions from BPEL4WS Processes” Special Track at the
International World Wide Web Conference (WWW) 2005.

[Poladian 2004] V. Poladian, D. Garlan, M. Shaw, J. P. Sousa “Dynamic Configuration of
Resource-Aware Services”, Proceedings of the 26th International Conference on Software
Engineering, May 2004.

[Ponnekanti 2002] S. R. Ponnekanti, A. Fox. “SWORD: A Developer Toolkit for Web Service
Composition”, 11th World Wide Web Conference (Web Engineering Track), May 2002.

[Ran 2003] S. Ran “A Model for Web Services Discovery with QoS”, SIGecom Exchange, vol.
4, no. 1, 2003.

[Roman 2005] D. Roman, “Web Service Modeling Ontology, Applied Ontology”, IOS Press,
vol. 1, no. 1, 2005.

[Sahin 2005] O.D. Sahin et al. “SPiDeR: P2P-Based Web Service Discovery” 3rd
International Conference on Service Oriented Computing, Springer Verlag, Amsterdam,
December 2005.

[Skogsrud 2004] H. Skogsrud, B. Benatallah, F. Casati “Trust-serv: Model-Driven Lifecycle
Management of Trust Negotiation Policies for Web services”, WWW '04: Proceedings of the
13th international conference on World Wide Web, pages 53{62, New York, NY, USA, 2004.
ACM Press.

[Solanki 2004] M. Solanki, A. Cau, H. Zedan “Augmenting Semantic Web Service
Descriptions with Compositional Specification”, WWW '04: 13th international conference on
World Wide Web,New York, NY, USA, 2004. ACM Press.

[Traverso 2004] P. Traverso, M. Pistore “Automatic Composition of Semantic Web Services
into Executable Processes” International Semantic Web Conference (ISWC) 2004.

[Wang 2003] Y. Wang, E. Stroulia “Semantic Structure Matching for Assessing Web-Service
Similarity” 1st International Conference on Service Oriented Computing (ICSOC03),
Springer-Verlag, 2003.

[Weerawarana 2005] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson.
“Web Services Platform Architecture”, Prentice Hall, 2005.

[WS-Rodamap 2002] "Security in a Web Services World: A Proposed Architecture and
Roadmap", IBM Developer Works, April 2002.

[Yang 2004] J. Yang and M.P.Papazoglou “Service Components for Managing the Life-Cycle
of Service Compositions”, Information Systems, vol. 28, no. 1, 2004.

[Zimmerman 2004] O. Zimmerman, P. Korgdahl, C. Gee "Elements of Service-oriented
Analysis and Design", IBM developerworks, June 2004, available at: http://www-
106.ibm.com/developerworks/library/ws-soad1/.

The authors
© - 29 - 1 March 2006

