
Negotiation of Service Level Agreements: An
Architecture and a Search-Based Approach

Elisabetta Di Nitto1, Massimiliano Di Penta2, Alessio Gambi1,
Gianluca Ripa1, and Maria Luisa Villani2

1 CEFRIEL - Politecnico di Milano
Via Fucini, 2 20133 Milano

2 RCOST - Research Centre on Software Technology
University of Sannio – Palazzo ex Poste, Via Traiano 82100 Benevento, Italy

dinitto@elet.polimi.it, dipenta@unisannio.it, alessiogambi@gmail.com,
ripa@cefriel.it, villani@unisannio.it

Abstract. Software systems built by composing existing services are
more and more capturing the interest of researchers and practitioners.
The envisaged long term scenario is that services, offered by some com-
peting providers, are chosen by some consumers and used for their own
purpose, possibly, in conjunction with other services. In the case the con-
sumer is not anymore satisfied by the performance of some service, he can
try to replace it with some other service. This implies the creation of a
global market of services and poses new requirements concerning valida-
tion of exploited services, security of transactions engaged with services,
trustworthiness, creation and negotiation of Service Level Agreements
with these services. In this paper we focus on the last aspect and present
our approach for negotiation of Service Level Agreements. Our architec-
ture supports the actuation of various negotiation processes and offers a
search-based algorithm to assist the negotiating parts in the achievement
of an agreement.

Keywords: Quality of Service, Service Level Agreements, Negotiation,
Optimization Heuristics.

1 Introduction

Software systems built by composing existing services are more and more cap-
turing the interest of researchers and practitioners. The envisaged long term
scenario is that services, offered by some competing providers, are chosen by
some consumers and used for their own purpose, possibly, in conjunction with
other services. If the consumer is not anymore satisfied by the performance of
some service, s/he can try to replace it with some other service. This implies the
creation of a global market of services and poses new requirements concerning
validation of exploited services, security of transactions engaged with services,
trustworthiness, creation and negotiation of Service Level Agreements (SLAs).

This paper focuses on SLA negotiation. While this issue has been deeply
studied within the domain of e-commerce, there are not many approaches that

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 295–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

296 E. Di Nitto et al.

focus specifically on the domain of services. In such a context, the subject of
the negotiation is the definition of so called SLAs, that is, more or less formal
contracts that discipline the way services are provided to consumers and, in turn,
the obligations to be fulfilled by the consumer in order to obtain the service. Such
SLAs can either be negotiated on a per service usage basis, or they can have a
longer term validity. This last one is actually the most common situation, but
the other should be possible as well, even if to be effective it requires a fast
execution of negotiation.

Negotiation can either be performed directly by the interested stakeholders or
it can be automatic. In this second case, human beings are replaced by automated
negotiators that try to achieve the objective that has been suggested to them.
Automated negotiation is particularly important when the consumer of a service
is a software systems that has to negotiate on the fly (part) of the SLA with
the service. In the following we present our approach for negotiation of SLAs.
Our architecture supports the actuation of various negotiation processes (one to
one negotiations, auctions, many-to-many negotiations) and offers an efficient
search-based algorithm to assist the negotiating parts in the achievement of an
agreement.

The paper is structured as follows. Section 2 provides some definitions that
will be used through the rest of the paper. Section 3 presents an overview of
the architecture of our system. Section 4 focuses on the negotiation search-based
approach while Section 5 presents some preliminary simulation results that show
the advantages of this approach. Finally, Section 6 provides a comparison with
the related literature and Section 7 draws the conclusions.

2 Definitions

According to Jennings et al. [6], a negotiation can be defined as: “the process
by which a group of agents come to a mutually acceptable agreement on some
matter”. We argue that a negotiation process requires the following key elements:

1. The negotiation objectives, i.e., the set of parameters over which an agree-
ment must be reached. These can include the price of the service usage, its
availability, the nature of the operations the service will make available, etc.

2. The negotiation workflow, i.e., the set of steps that constitute the negotiation;
they depend on the kind of negotiation that is actually executed (bilateral
bargaining, auctions, reverse auctions, etc).

3. The negotiation protocol, i.e., the set of conditions that indicate the validity
of all information concerning the negotiation and provided by the negotiation
participants. For instance, if the adopted negotiation process is an English
auction, the negotiation protocol will define as acceptable only those offers
that improve the values associated to the negotiation objectives.

4. The agent decision model, i.e., the decision making apparatus the partici-
pants employ to act in line with the negotiation protocol in order to achieve
their objectives. For example, this can be based on (i) the acceptable ranges
for the negotiation parameters (definition of sub-domains); (ii) functions to

Negotiation of SLAs: An Architecture and a Search-Based Approach 297

evaluate the offers; (iii) the goal to pursue, e.g., maximize one ore more util-
ity functions; and (iv) a strategy to pursue that goal, that is, the algorithm
to decide the moves, in reply to the move by some other participant.

The agents may use both a cooperative or competitive approach to come to an
agreement. This is determined by the kind of the interdependence of the respec-
tive interests [5] and has an impact on the process they follow to come to an
agreement.

In a Service Oriented Architecture (SOA) context, the negotiation partici-
pants are essentially service providers and service consumers, although an over-
parts mediator could be included to provide conciliation mechanisms or help
setting up cooperative strategies. In automated negotiations, (part of) these
participants are replaced by software agents that act on behalf of them.

Negotiation objectives, workflow, protocol, and decision models depend on
the multiplicity of the participating agents:

– 1-1: it is the most known approach and requires that a consumer bargains
with a provider for the definition of the SLA of the specific service;

– 1-N: a consumer bargains with a set of providers. These providers can either
compete among each other to reach the agreement with the consumer (this
approach is applicable when the consumer needs to obtain a binding to a
single service) or they can cooperate to share the service provisioning, e.g.,
for example, split the service availability interval.

– M-1: several consumers bargain with a single provider. Consumers in this
case can either compete to acquire an SLA with the provider (in an auction
style) or they can obtain a single SLA with the provider to share its resources
(e.g., the bandwidth).

– M-N: combining the previous two multi-party negotiation types, at one side,
service providers could cooperate to reach an integrated SLA. On the other
side, consumers may fight to get the best Quality of Service (QoS) guarantees
for that service.

Differently from many works in literature that support specific negotiation
processes, we aim at developing an infrastructure that can be tailored depend-
ing on the multiplicity, workflow, protocol, and decision model that fit a specific
application domain. Furthermore, we exploit optimization techniques to speed
up the search for agreements in (semi)automatic negotiations.

3 Negotiation Architecture

The architecture of our negotiation framework, shown in Figure 1, is composed
of a Marketplace and various Negotiation MultiAgent Systems, each associated
with a specific negotiation participant, and including various Negotiators, one
for each negotiation that involves the participant at that given time. Negotiators
either interface human beings with the negotiation framework through proper
GUIs that allow him/her to place offers and counter offers, or they encapsulate

298 E. Di Nitto et al.

Fig. 1. The negotiation framework architecture

a decision model (see Section 4) that enables automatic negotiation to be exe-
cuted. This allows us to support not only manual or automatic negotiations, but
also hybrid negotiations where some participants are represented by automated
agents, and some others are human beings.

Given that each negotiation participant has limited resources available, the
result of one negotiation can impact on the participant ability to place an offer
in another negotiation. For instance, if a telecom provider is negotiating with
a consumer a high availability of its services, it might not be able to offer high
availability to other consumers with which it has engaged other negotiations.
In turn, if a consumer that is composing several services is accepting low level
of performance from a service, it should be careful not to accept low level of
performance from other services as well, otherwise the whole QoS of the resulting
composition could become lower than required. In order to regulate these kinds
of situations, each participant may exploit a Negotiation Coordinator that has
the role of coordinating the action taken by the various Negotiators of the same
participant. As regular Negotiators, the Negotiation Coordinator has a decision
model that allows it to take decision at a higher level of abstraction.

The Marketplace defined in our framework is composed of two main parts,
one taking care of the execution of the negotiation workflow and the second
one controlling the correctness of the negotiation protocol. In particular, the
Marketplace acts as an intermediary in all interactions among the participants,
providing validity checks for the offers exchanged (through the Protocol Engine),
based on their structure and the current state of the negotiation workflow. To
make the search for agreements more efficient, the Marketplace is enhanced with
a mediation function to guide the generation of the offers towards convergence
of the individual objectives, based on the reactions of the participants. For ex-
ample, in the one-to-one bargaining process whose implementation is described
in Section 4, the mediator iteratively issues proposals to the parties. At each
step, the given proposal is evaluated by the Negotiators, and if it is accepted by
both, the negotiation ends successfully. Otherwise, a new proposal is generated
based on the Negotiators evaluation. The mediator is implemented by an opti-
mization algorithm, which will stop when no joint improvement is observed, i.e.,
at convergence to some offer, or if interrupted by the negotiation timeout.

Negotiation of SLAs: An Architecture and a Search-Based Approach 299

Admission

Setup

Prenegotiation ChangeProposals

AgreementFormation

Negotiation Process

Fig. 2. The generic negotiation workflow

Our negotiation framework allows designers of negotiation to define the nego-
tiation workflow as a Statechart using ArgoUML, and the negotiation protocol
as a set of rules in the JBoss1 Rule sintax. Figure 2 shows the Statechart as-
sociated to the most generic negotiation workflow. It can of course be replaced
by more specific definitions. The framework, besides offering some predefined
implementations of the decision model for Negotiators and Negotiator Coordi-
nators, also allows the designer to define new decision models and to execute
them. In the following sections we describe how the search-based optimization
technique can be used to mediate one-to-one negotiation processes, and present
an agent decision model.

4 Search-Based Negotiation Approach

As we have mentioned in the previous section, each Negotiator implements some
decision model of the negotiation party, which can be arbitrarily configured
beforehand. This usually implies to:

– define QoS attribute boundaries, expressed by constraints;
– identify the objectives to pursue, e.g., maximize one ore more utility func-

tions expressed in terms of QoS attributes;
– prioritize the objectives and evaluate possible trade-offs among them;
– decide what information to make public, e.g., one of the above.

Negotiators may be equipped with a strategy, i.e., the algorithm to decide the
reaction to a received offer at the given stage of the negotiation. In our approach,
the strategy defines whether and how some of the above decision data, like the
priorities of the attributes or the constraints, must change during the negotiation
1 http://www.jboss.org/

300 E. Di Nitto et al.

at some pre-defined milestones. The idea is that low-priority attributes at the
beginning of the negotiation may have their priority increased later, for example,
prefer availability over the response time if the latter cannot be improved so
far. Similarly, some constraints can be relaxed of some factor, representing the
concession made by the Negotiator on some values for the attributes, to try to
achieve a SLA when the timeout is about to expire.

Over a generated SLA proposal, each Negotiator reacts with a feedback. The
feedback value for a proposal o = (oi)i=1,...n (n is the number of attributes
and oi the proposed value for attribute i), consists of a pair (u = U(o, t), d =
D(o, t)), where 0 ≤ u ≤ 1 represents the overall value (or degree of satisfac-
tion) given to the proposal, and 0 ≤ d ≤ 1 is a measure of the distance of
the proposal from the acceptance region. These values may be computed as:
U(o, t) = (pi(t) · ui(oi))i=1,...,n, where ui(oi) is the utility value for the attribute
i and pi(t) is the priority of the attribute at time t. Instead, given the con-
straint set at time t, represented as cli(g, t) ≤ 0, i = 1, . . . , n, the distance from
constraint satisfaction, is:

D(g, t) =
n∑

i=1

cli(g, t) · yi, (1)

where: yi = 0 if cli(g, t) ≤ 0 and yi = 1 if cli(g, t) > 0.
In case of the one-to-one negotiation exploiting the mediation capabilities of

the Marketplace (see Section 3), when the negotiation starts, the number of
attributes and their domains are specified to identify the search space. Hence,
according to the protocol in place, the mediation algorithm produces one or
more proposals, to which fitness values will be attached. For the purpose of
experimentations presented in this paper, the following fitness function (to be
minimized) has been considered: F (o, t) = eu · (1+ ed1·d2), where, if (u1, d1) and
(u2, d2) are the feedback values for offer o at time t received from the Negotiators
1 and 2, eu represents the Euclidean distance of u1 and u2. The rationale of this
fitness is to equally accommodate the Negotiators preferences and to impose
the offer to fall into the intersection area of the acceptance regions of the two
Negotiators.

For the optimization problem, we propose to use meta-heuristic search al-
gorithms, such as Hill-Climbing, Genetic Algorithms, and Simulated Annealing
(SA). From the experiments we conducted, the latter outperformed the others,
above all in terms of number of solutions required to converge. SA is a variant
of the hill-climbing local search method (further details on these heuristics can
be found in [8]). The SA approach constructed for the negotiation algorithm
proposed in this paper works as follows: (i) it starts from a random solution;
(ii) a neighbor solution of the current one is selected, by randomly choosing one
QoS attribute and randomly changing its value within the admissible domain.
The solution is then accepted if p < m, with: p a random number in the range
[0 . . . 1], and m = eΔfitness/T . The temperature T was chosen as:

T = Tmax · e−j·r,

Negotiation of SLAs: An Architecture and a Search-Based Approach 301

Tmax being the maximum (starting) temperature, r the cooling factor and j the
number of iterations. The process iterates until T < Tmin.

5 Empirical Study

This section reports the empirical assessment of the search-based negotiation
approach described in Section 4. In particular, the empirical study aims at an-
swering the following research questions:

1. RQ1: To what extent the proposed negotiation approach is able to achieve
feasible solutions for the different stakeholders?

2. RQ2: How do results vary for different QoS range overlaps?
3. RQ3: How do results vary for different utility functions?
4. RQ4: Are the performance of the proposed approach suitable for a run-time

negotiation?

In the following we describe the experimentation context and setting, and
then we report and discuss the obtained results.

5.1 Context and Settings

To assess the proposed negotiation approach, we set up a number of mediated
one-to-one negotiation scenarios between a service provider and a consumer,
bargaining over the average values of: price, response time and availability of a
service. Although an SLA is usually concerned with ranges of values for each at-
tribute, the empirical study focuses on negotiation of single values (representing
the average, least, or maximum values), typical scenario that can be envisaged
for the run-time binding of a service composition. Of course, our approach is
also applicable to searching for agreements on QoS ranges, by specifying, in that
case, the variability domains for the minimum and maximum values for each
range or else the length of such ranges.

For these experiments, the global domain for the optimization algorithm was
specified as in Table 1 (Domain column), where the price is expressed in Euro, the
response time in seconds and the availability as a percentage. This domain may
be agreeded by the Negotiators beforehand to limit the automatic generation
of offers within realistic values, based on the type of service. We set up three
different negotiation scenarios with different QoS acceptance sub-domains for the
participating Negotiators, so to have sub domains of different negotiating agents
— in particular of three providers negotiating with a consumer — overlapping
by 80%, 50%, and 20%. An example of such a setting is given in Table 1.

Having fixed a negotiation timeout to a maximum 1200 generated offers, SA
was configured as follows: Tmax = 0.30, Tmin = 0.01, r = 0.0025, Number of
restarts = 3. For the fitness, we used the function F (0, t) described in Section 4,
which was reformulated in order to be maximized (e.g, replacing each constraint
distance di with 1 − di and eu with

√
3 − eu). As the focus of this empirical

evaluation is on the effectiveness of the search-based approach, we considered

302 E. Di Nitto et al.

Table 1. Search domain and constraints of the negotiating agents

Domain Consumer Provider1 Provider2 Provider3
Min Max Min Max Min Max Min Max Min Max

Price 0.10 5.50 0.10 3.40 0.76 4.06 1.75 5.05 2.74 5.50
Response Time 1.50 120.00 32.00 65.99 38.80 72.79 48.99 82.98 59.20 93.18
Availability 50.00 99.90 0.70 0.99 0.64 0.93 0.55 0.84 0.50 0.76

Table 2. Offers variability according to constraints overlapping percentage

80% Overlap 50% Overlap 20% Overlap
Min Max Av Min Max Av Min Max Av

Price 1.63 1.66 1.64 1.75 1.77 1.76 2.74 2.76 2.74
Response Time 38.73 38.93 38.84 48.71 49.60 49.11 59.07 59.46 59.24
Availability 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.74

(i) the Negotiator’s feedback functions as fixed during the negotiation, with a
priority vector [pprice, prtime, pavailability] = [0.4, 0.4, 0.2] for both providers and
Consumer and (ii) fixed constraints. In this model, the feedback value of an offer
from each Negotiator consists of a pair (u, d) where u is the vector of the at-
tributes utility values, normalized in the interval [0,1] with respect to the overall
domain of Table 1, and d is the normalized distance from constraints satisfac-
tion. Experiments were performed on a Intel Core Duo T2500 2.0 GHz machine,
with 1 GB of RAM. To avoid bias introduced by randomness, analyses were
performed by replicating each run 10 times. Finally, a random search algorithm
(i.e., offers are randomly generated) has been implemented in order to perform
a sanity check of the SA-based approach.

5.2 Results

Question RQ1 is concerned with the capability of the search-based approach to
find one (or a set of) sub-optimal solution(s), according to the offer evaluating
functions and constraints of the two Negotiators. Given the constraints setting
of Table 1, the negotiation has been executed between Consumer and Provider1,
Consumer and Provider2, and Consumer and Provider3, using linear utility func-
tions. Figure 3 reports, for each negotiation scenario, the fitness function evo-
lution for SA (averaged over 10 runs), for each negotiation scenario. For these
runs, we computed that 99% of the maximum fitness value was reached, respec-
tively, after: 155, 137 and 200 generated offers in the worse case. The outcome of
negotiations for different levels of overlap between the QoS admissible ranges of
Provider and Consumer, is shown in Table 2. The final offers, although signifi-
cantly different (according to the Kruskal-Wallis test, p-value=2.5 ·10−6), satisfy
both negotiating agents’ constraints and, when the overlap between Provider
and Consumer domains decreases, the Consumer must expect higher cost and
response times and lower availability (this answers to RQ2).

To answer RQ3, negotiation runs between Consumer and Provider1 have been
performed by using different utility function shapes, i.e., linear, exponential, and
logarithmic. Minimum, maximum and average of the QoS attributes negotiated
values with respect to the utility shapes are shown in Table 3.

Negotiation of SLAs: An Architecture and a Search-Based Approach 303

2

3

4

5

6

7

0 50 100 150 200 250

Offer no.

F
itn

es
s

80% 50% 20%

Fig. 3. Evolution of the negotiation for different overlap percentages of the QoS do-
mains

Table 3. Offers variability according to utility shapes

Linear Exponential Logarithmic
Min Max Av Min Max Av Min Max Av

Price 1.63 1.66 1.64 3.38 3.40 3.39 0.80 0.84 0.82
Response Time 38.73 38.93 38.84 40.03 65.49 55.24 38.74 39.00 38.85
Availability 0.75 0.75 0.75 0.78 0.78 0.78 0.73 0.734 0.732

In the exponential case, convergence is towards the boundary values of the
Consumer’s subdomain. Indeed, the Consumer’s utility-based evaluations of the
offers in the specified domain are much higher (for response time and cost,
lower for availability) than those by the Provider (for response time, these could
only be higher for values greater than the intersection point of the two utility
curves, which is about of 119.30 s), and the Euclidean distance is minimal at the
boundaries. Also, quite a high variation of the resulting response time can be
observed across the different runs, as the normalized Consumer feedback values
(which lead the fitness improvement as just explained) of offers of that region
are all close to 1.0, thus they are all equally acceptable solutions.

Finally, to answer RQ4, we compared the performance of SA with that of a
random-search (RS) algorithm. From all our experiments, it turned out that SA
is both more efficient (in terms of best fitness reached) and faster. Also, we could
observe that the difference increases for lower size acceptance sub-domains on the
search space and/or low overlapping percentage. Figure 4 shows the outcomes
of SA and RS when carrying out negotiations with a domain overlap of 20%.
Although both SA and RS reach very similar values (SA final value is only 3% of
that of RS), SA was able to converge significantly quicker to the 99% of the final
value (p-value=0.0001 according to the Mann-Whitney test). Also, for random
search, Negotiators’ constraints were met only for the 30% of the runs, against
100% of SA. This indicates the soundness of choosing SA to drive the automatic,
search-based SLA negotiation.

304 E. Di Nitto et al.

2.5

3.5

4.5

5.5

6.5

0 200 400 600 800 1000 1200

Offer no.

F
itn

es
s

RS SA

Fig. 4. Performance of SA vs Random Search (RS)

6 Related Work

Research works on automated negotiation are mainly related to architectural
solutions for negotiation or algorithms and models for protocols and Negotiators
strategies. In [3] a multi-agent framework with a two-layered architecture is pre-
sented, where local QoS negotiations for finding a binding to the same invoke
activity are coordinated to satisfy global QoS constraints of a composition. Lo-
cal constraints have to be inferred from the global ones and from the workflow
topology. The model presented in [4] consists of a negotiation broker carrying
out one-to-one negotiations on behalf of both service consumers and providers.
The decision model of the negotiators is expressed by a hard-coded parametric
function, which needs to be instantiated by the parties before negotiation starts.
Instead, a marketplace-based architecture is presented in [12], where the mar-
ketplace mediates all the communication among negotiation parties, but it does
not take part, itself, in the negotiations. In [9], the multi-agent system paradigm
is combined with the web service technology to enable distributed online bar-
gaining applications. However, only two negotiation processes are supported,
bilateral and trilateral. The last uses a third entity to authenticate the trading
agents and to validate the deals.

On the negotiation algorithms side, the existing approaches are generally con-
cerned with two aspects: definition of decision models for the agents, and search
for the near-optimal strategy, i.e., leading to Pareto optimal solutions. In [7] a
strategy is defined as a weighted sum of tactics. Also, machine learning tech-
niques can be used by the agents to learn decision rules from historical ne-
gotiation data ([10]). With respect to finding the optimal strategy, in [1], the
Q-learning algorithm is used to select strategies as linear combinations of tac-
tics, and convergence to optimality is proved to be reached after each action
has been tried sufficiently often. Instead, in [11] Genetic Algorithms are used to
evolve strategies whose fitness is computed according to their outcomes in nego-
tiation runs. Finally, in [2], evolutionary methods are combined with cooperative

Negotiation of SLAs: An Architecture and a Search-Based Approach 305

game theory to first explore possible agreements spaces and then to distribute
the payoffs and find an optimized point.

In our work, we focus on the applicability of automated negotiation ap-
proaches to the web services world. We use heuristic-based optimization al-
gorithms to try to speed up the process of finding possible agreements. Our
approach can be integrated with other decision models and strategy evolution
methods as part of the agents’ implementations. Moreover, we present a strategy
model, taylored for negotiation to support the dynamic binding of a composi-
tion, so that the single negotiation objectives can be tuned on the run, to try to
obtain the best possible QoS at global level.

7 Conclusions

In this paper we have presented an architecture that supports the actuation of
various negotiation processes and offers an efficient search-based algorithm to
assist the negotiating parts in the achievement of an agreement. The interesting
aspect of the architecture is the possibility of instantiating negotiation work-
flows and protocols defined by the designer as well as various decision models
for Negotiators. As future work we plan to perform more experiments with dif-
ferent workflows, protocols (including also optimization strategies), and decision
models to try to understand which of them is more interesting in the specific
application domains we are considering in the SeCSE project. Also, we plan to
experiment with real SLAs that will be provided by our industrial partners in
the project.

Acknowledgments

This work is framed within the European Commission VI Framework IP Project
SeCSE (Service Centric System Engineering) (http://secse.eng.it), Contract No.
511680.

References

1. Cardoso, H., Schaefer, M., Oliveira, E.: A Multi-agent System for Electronic Com-
merce including Adaptive Strategic Behaviours. In: Barahona, P., Alferes, J.J.
(eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 252–266. Springer, Heidelberg
(1999)

2. Chen, J.-H., Chao, K.-M., Godwin, N., Soo, V.-W.: A Multiple-Stage Cooper-
ative Negotiation. In: EEE’04. Proc. International Conference on e-Technology,
e-Commerce and e-Service, Taipei, Taiwan, pp. 131–138. EEE (March 2004)

3. Chhetri, M., Lin, J., Goh, S., Zhang, J., Kowalczyk, R., Yan, J.: A Coordinated
Architecture for the Agent-based Service Level Agreement Negotiation of Web
service Composition. In: ASWEC’06. Proc. of the Australian Software Engineering
Conference, Washington, DC, USA, pp. 90–99. IEEE Computer Society Press, Los
Alamitos (2006)

306 E. Di Nitto et al.

4. Comuzzi, M., Pernici, B.: An Architecture for Flexible Web Service QoS Nego-
tiation. In: EDOC’05. Proc. of the Ninth IEEE International EDOC Enterprise
Computing Conference, Washington, DC, USA, pp. 70–82. IEEE Computer Soci-
ety Press, Los Alamitos (2005)

5. Deutsch, M.: Cooperation and competition. The Handbook of Conflict Resolution:
Theory and Practice (22), 21–40 (2000)

6. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.:
Automated Negotiation: Prospects Methods and Challenges. Group Decision and
Negotiation 10(2), 199–215 (2001)

7. Matos, N., Sierra, C., Jennings, N.: Determining Successful Negotiation Strategies:
An Evolutionary Approach. In: ICMAS 1998. Proc. 3rd International Conference
on Multi-Agent Systems, Paris, FR, pp. 182–189. IEEE Press, Los Alamitos (1998)

8. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn.
Springer, Berlin (2004)

9. Ncho, A., Aimeur, E.: Building a Multi-Agent System for Automatic Negotiation
in Web Service Applications. In: Proc. of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, New York, pp. 1466–1467. IEEE
Computer Society Press, Los Alamitos (2004)

10. Oliveira, E., Rocha, A.: Agents Advanced Features for Negotiation in Electronic
Commerce and Virtual Organisations Formation Processes. In: Sierra, C., Dignum,
F.P.M. (eds.) Agent Mediated Electronic Commerce. LNCS (LNAI), vol. 1991, pp.
78–97. Springer, Heidelberg (2001)

11. Oliver, J.: On Artificial Agents for Negotiation in Electronic Commerce. PhD the-
sis, Univ. of Pennsylvania (1996)

12. Rolli, D., Luckner, S., Momm, C., Weinhardt, C.: A Framework for Composing
Electronic Marketplaces - From Market Structure to Service Implementation. In:
WeB 2004. Proc. of the 3rd Workshop on e-Business, Washington, DC, USA (2004)

	Negotiation of Service Level Agreements: An Architecture and a Search-Based Approach
	Introduction
	Definitions
	Negotiation Architecture
	Search-Based Negotiation Approach
	Empirical Study
	Context and Settings
	Results

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

