
Model-Checking Verification for Reliable Web Service

Shin NAKAJIMA
Hosei University and PRESTO, JST

nkjm@i.hosei.ac.jp

Abstract

Model-checking is a promising technique for the veri-
fication and validation of software systems. Web service,
an emerging technology in the Internet, is an autonomous
server that may offer an individual service. It sometimes re-
quires to combine more than one to meet our requirements.
WSFL(Web Services Flow Language) is proposed as a lan-
guage to provide means to describe Web service aggrega-
tion. We are interested in how much the software model-
checking technique can be used as a basis for raising relia-
bility of Web service, Web service flow descriptions in par-
ticular. Our experience shows that faulty flow descriptions
can be identified with the proposed method. The method is
also very helpful in studying an alternative semantics of the
WSFL in regard to the handling of dataflows.

1 Introduction

Model-checking is a promising technique for the verifi-
cation and validation of software systems [2][5]. The tech-
nique is applied to software requirement specification and
design specification and aims to increase the reliability and
productivity from early stages of the software development.
As the number of the success cases increases, the technique
becomes one of the basic tools for the use in the develop-
ment of a wide variety of software [9][13].

As the Internet becomes an essential tool for our daily
activities, Web service, a new form of software technology
to use remote services, is emerging [15]. In order to use
Web service, we find appropriate Web service providers that
are located somewhere in the network environment. And we
initiate service interactions with the providers. Since each
provider may offer an individual service, it sometimes needs
to combine more than one to meet our requirements.

Service aggregation is a key concept of the technology
to combine existing Web services, and it needs a language
to describe how various Web services are composed. The
description is essentially a collaboration of distributed au-
tonomous computing entities. And writing correct flow de-

Service Aggregation
WSDL

Service Provider

WSDL

Service Provider
WSDL

Service Provider

WSDL

Figure 1. Web Service Aggregation

scriptions is not a easy task. The verification of the Web
service flow prior to its execution in the Internet is manda-
tory [10].

We are interested in how much the software model-
checking technique can be used as a basis for raising re-
liability of Web service, Web service flow descriptions in
particular. We have conducted some experiments to model-
check the description written in WSFL (Web Services Flow
Language) [8]. Since WSFL is a net-oriented specification
language, any WSFL descriptions, though syntactically cor-
rect, sometimes show faulty global behaviours. Our expe-
rience shows that such faulty descriptions can be identified
with the method. And the method is very helpful in study-
ing an alternative semantics of the WSFL in regard to the
handling of dataflows.

2 Web Service Flows

2.1 Web Service Aggregation

A concept of service aggregation, combining existing
Web services, is an important feature of the Web service
technology. Figure 1 presents an illustration of the Web
service aggregation. When we enter the world of the Inter-
net, we see a lot of the Web services ready for us to use.
We want to combine flexibly some of the existing Web ser-
vices as our own needs change, which is conducted in a
somewhat ad-hoc manner. In its essence, the aggregation is
a collaboration of many Web service providers. Each ser-
vice provider is a self-contained software system having its

1



flowSink

Service Provider

AND-join

OR-join

flowSource

Figure 2. WSFL Basis

Service Provider
Type

WSDL

locator

Actual
Service Provider

Figure 3. Late Binding

own threads of control. The description for the aggregation
needs an explicit notion of both control and data flows be-
tween the Web services, that faithfully reflects the causal
structure of the aggregation. Two languages, WSFL [8] and
XLANG [14], for describing Web service flows have been
proposed. The aim of both languages is to augment WSDL
[1] with the behavioural aspect of the flows.

By using one of the languages, we can express our own
requirements as “programs” or flow descriptions. It, how-
ever, needs a great care on submitting the descriptions to
execute in the Internet. The flow descriptions may contain
“bugs” because it is probable to write such flow descriptions
in an ad-hoc manner. Executing a buggy flow description,
consumes tremendous amount of network resources that are
shared publicly. Thus, verifying the Web service flow prior
to its execution in the Internet is mandatory [10].

2.2 WSFL

WSFL (Web Services Flow Language) [8] is a net-
oriented specification language, originated from a model of
a workflow description language [7]. Each service invoca-
tion corresponds to a “task” of workflow and both control
and data flows are represented as “arcs” relating task nodes.
WSFL is meant to be a behavioural extension of WSDL,
and is equipped with an XML-based concrete syntax.

The core part of the behavioural aspect is a WSFL flow
model. Figure 2 shows a schematic illustration of a sim-
ple example. Essentially the WSFL flow model shows how

WSFL Description

Promela Description

Properties in LTL

SPIN (Model-Checker)

Translation

Figure 4. Verification Process

the description combines the necessary existing Web ser-
vice providers. An invocation of Web service, called a flow
activity depicted as a circle in Figure 2, corresponds to a
workflow node. Each activity may have an event of invok-
ing some external service provider, accepting notification
from the outside, or performing an internal action. Here,
an internal action is assumed to be implemented in the plat-
form that the flow model is executing.

WSFL allows the late-binding of the actual service
provider. Figure 3 illustrates the situation where a WSFL
activity provides a binding information in the form of the
locator. The binding of the service provider type and the
actual provider software is done during the execution of the
flow. And this allows a room for the flexibility necessary for
the Web service in that selecting the actual service provider
can be delayed as late as possible. On the other hand, the
activity uses the information on the service provider type
to invoke the provider, and the flow assumes that the actual
provider obeys the type information. Thus, the logical cor-
rectness of the flow can be checked irrespective of the actual
service provider entity.

The specification document [8] describes the operational
semantics of the WSFL flow model. The semantics is based
on the PM-flow [7] proposed by the same author as a work-
flow schema language. In a word, WSFL can be considered
as an XML-based workflow schema language following the
PM-flow model. The operational semantics is essentially a
set of rules that select activities to be fired. More than one
activity are simultaneously able to fire, which is the source
of concurrency.

3 Verification Method

3.1 Overview

WSFL is essentially a workflow schema description
language that is based on the net-oriented specification
paradigm. The verification problem, thus, turns out to be
one similar to the verification of workflow or business flow

2



Traveler Agent Airline

Plan
Trip

Submit to
Travel Agent

Receive
Itinerary

Receive
Ticket

Get Trip
Order

Select
Legs

Order
Ticket

Get
Confirmation

Generate
Itinerary

Issue
Itinerary

Get Ticket
Order

Reserve
Seats

Charge
Credit Card

Confirm
Flights

Issue
eTickets

Figure 5. Ticket Order Example

[4][6]. We use SPIN model-checker in the following dis-
cussion.

SPIN is an automaton-based model-checker developed
by G. J. Holzmann [5]. SPIN provides a specification lan-
guage Promela that describes the target system to be a col-
lection of Promela processes (automata) with channel com-
munications.

Figure 4 shows the verification process. The flow de-
scription written in WSFL is translated into Promela, the
input specification language of SPIN. The formalization
mainly concerns with the translation of a WSFL flow
model into Promela processes [12]. The Promela pro-
cesses should faithfully encode the operational semantics
of WSFL. The properties to be checked are reachability,
deadlock-freedom, or application specific progress proper-
ties. The application specific properties are expressed as
formulas of LTL (Linear Temporal Logic), which are also
fed into SPIN. An LTL formula can have [] (always), <>
(eventually) and U (strong until) as the temporal operators.

3.2 Property Checking Examples

Figure 5 is a schematic illustration of the example de-
rived from the specification document [8]. The example
has three WSFL flow models, Traveler, Agent, and
AirLine. The Promela description is obtained by follow-
ing the translation method reported in [12]. The code size is
about 700 lines of Promela source text. The aggregate flow
turns to be a large transition system with about 280 thou-
sands of states and about 470 thousands of transitions. It is
because three flow models are analyzed as if they execute
concurrently, while each flow executes almost sequentially
as Figure 5 suggests. Actually the size of each flow model
is small. Airline, for example, has only 201 states and
586 transitions.

As an example of application-specific progress prop-
erties, the formula below for the case of Traveler is

flowSink

AND-join

flowSource

1 2 3

4 5

6

Figure 6. Deadlocked Flow Model

checked. It says that it is always ([]) the case that if there
is an event of SubmitToTravelAgent then eventually
(<>) ReceiveTicket and ReceiveItinerary are
followed.

[](SubmitToTravelAgent ->
(<>ReceiveTicket && <>ReceiveItinerary)

Next, consider an example WSFL model that is syntac-
tically correct but shows a faulty behaviour (Figure 6). The
flow model consists of six activities numbered from 1 to 6.
The activity 5 has two input control links, coming from the
activities 2 and 3, and a join condition of AND. It further
has an output data link to the activity 6. The activity 6 has
a control link from the activity 4 and two data links from 4
and 5. According to the operational semantics, the activity
5 can be fired when the two input control links have defi-
nite values and also the join condition becomes true. The
activity 5, after the completion of its internal activity body,
puts out some data on the data link to the activity 6.

Imagine a situation that one of the input control links to
the activity 5 is false and thus the join condition is not sat-
isfied. The activity 5 is not put into execution, and the data
link input to the activity 6 does not have a definite value. It
results in a faulty situation where the activity 6 waits for the
value indefinitely. The model-checker can detect the faulty
situation as a deadlock.

3.3 An Alternative Semantics for Verification

WSFL is a net-oriented specification language and al-
lows two syntactic elements, control and data links to com-
bine in an independent manner. It results in a flow graph
not having consistent control and data links. WSFL, fur-
ther, excludes some flow graphs that are logically correct.
It is because WSFL does not have operational semantics to
handle dataflows properly, which it is related to DPE (Dead-
Path Elimination) discussed in [8].

3



1

2

3 4

5

p
not p

x

a(x)
b(x)

1

2

3 4

5

x

a(x)
b(x)

false false

(a) Valid (b) Invalid

Figure 7. Conditional Expressions

Figure 7 shows a simple example to discuss the issue.
The flow model is a diagram notation of the following con-
ditional expression.

if p then a(x) else b(x) endif

Consider a case where p is true (Figure 7 (a)). We expect
that the activity 3 becomes able to fire and that the resultant
value a(x) flows into the activity 5. On the other hand,
the activity 4 is not fired because its input control link is
false (not p). Since the flow is an implementation of
the conditional expression above, the activity 5 is supposed
to consume the data from the activity 3 even if the data
link from 4 is not definite. According to the operational
semantics of WSFL, the activity 5, however, is not fired
at all. It is because the activity 5 does not have any input
control link and thus is not selected as a candidate for the
execution.

Figure 7 (b) illustrates a case where both control links
from the activity 2 become false, which is actually a “bug.”
The bug causes the activity 5 will never be fired. The oper-
ational semantics of WSFL starts DPE from the activities 3
and 4 because the two are not fired due to the false value
of their input control links. The DPE propagates downward
through the control links. It never reaches the activity 5,
since the activity 5 is linked via data links only. Therefore,
the activity 5 is not salvaged by means of DPE, and will
never be fired. In sum, according to the WSFL semantics,
the two different situations in Figure 7 shows the same be-
haviour in that the activity 5 will never be fired although (a)
is valid and (b) is invalid.

From the examples in Figure 6 and Figure 7, the issues
with the current WSFL specification can be summarized
from two viewpoints. First, syntactically, WSFL provides
control and data links as two independent language con-
structs. We can construct WSFL flow models that have con-
trol and data links related in an arbitrarily manner, while
the two kinds of links are closely related from the opera-
tional meanings. Second, two different things on “propaga-
tion” are mixed up in the operational semantics of WSFL;
the propagation of some concrete value and the meta-level

propagation of an event that a value becomes definite at
some point are confused.

We have proposed a generalized DPE that deals with
meta level propagation along data links as well as control
ones [11].

4 Discussions

In WSFL and PM-graph, the control link is the ma-
jor player in the navigation algorithm, and the data link is
an auxiliary one. Workflow schema languages, including
WPDL standardized in WfMC [16], generally put empha-
sis on the control flows between the activities. Data are
assumed to be maintained outside of the flow model. For
the case of WSFL, a typical example is shown in Figure 2.
An activity invokes a service provider and expects it to cal-
culate and store some data values. Then, another activity
at a downstream side obtains the result data value from the
service provider. A major concern of the flow model is the
control flow between the two activities. Further, the service
provider may maintain the values and offer them to the re-
questing activities at anytime. Alternatively, we explicitly
add control links to data links because dataflow generally
has implicit control flow. The Ticket Order Example (Fig-
ure 5) is written in this manner [8].

The WSFL specification document, however, does not
mention anything about the rules on the use of control and
data links. Thus, we, in a careless manner, construct flow
models that behave differently dependent on whether a data
link has a definite value or not. This leaves a large chance
of introducing faults in the WSFL flow descriptions.

Ideally we guarantee that any syntactically correct flow
model should show no faulty global behaviour. However,
it is difficult for the case of WSFL and other net-oriented
specification languages. It needs a high level concurrent
language that is more abstract than the net-oriented one. If
we use a net-oriented specification language like WSFL, we
must take a great care on using control and data links. And
a tool is needed for a global behavioural analysis to identify
anomalies in syntactically correct WSFL descriptions. The
SPIN model checker can be used as the engine of such tools.

In August 2002, BPEL4WS (Business Process Execu-
tion Language for Web Services) [3] has been announced as
a convergence of the ideas in WSFL [8] and XLANG [14].
BPEL4WS provides flow activities (<flow>) to express
concurrency and synchronization. Links attached to the
flow activities (<link>) represent control flows. And data
are transferred via containers (<container>). Container
is a new syntactic construct to explicitly represent data store
outside the flow actvities. BPEL4WS provides further types
of activities that include a switch (<switch>) to repre-
sent conditional flow controls. In sum, the flow model in
BPEL4WS considers problems of the specification of the

4



WSFL flow model, that Section 4 refers to. The BPEL4WS
specification document [3], however, does not have descrip-
tions in regard to the operational semantics, but provides
explanations through several examples only. Our method
to use model-checkers to study the operational semantics
of the flow-based specification language is supposed to be
useful to work out the precise operational semantics of
BPEL4WS.

5 Position Summary

Our position is that the software model-checking tech-
nique is useful in the case of Web service flows as well as
the EJB [9][13]. Here, EJB is often chosen as the middle-
ware for the implementation of the Web service server. We
think that the method of using model-checkers is valuable
to study and clarify behavioral semantics of BPEL4WS.

References

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Service Description Language (WSDL).
W3C Web Site, 2001.

[2] E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. The MIT Press, 1999.

[3] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. Business Process Exe-
cution Language for Web Services (v1.0). July 2002.

[4] H. Eertink, W. Janssen, P.O. Luttighuis, W. Teeuw, and
C. Vissers. A Business Process Design Language, In
Proc. FME FM’99, pages 76–95, September 1999.

[5] G.J. Holzmann. The Model Checker SPIN. IEEE Trans.
Soft. Engin., Vol.23, No.5, pages 279–295, May 1997.

[6] C. Karamanolis, D. Giannakopoulou, J. Magee, and
S.M. Wheater. Model Checking of Workflow Schemas.
In Proc. IEEE EDOC 2000, pages 170–179, September
2000.

[7] F. Leymann and W. Altenhuber. Managing Business
Processes as an Information Resource. IBM System
Journal, vol.33, no.2, pages 326–348, 1994.

[8] F. Leymann. Web Services Flow Language (WSFL
1.0). IBM Corporation, May 2001.

[9] S. Nakajima and T. Tamai. Behavioural Analysis of the
Enterprise JavaBeansTM Component Architecture. In
Proc. 8th SPIN Workshop, pages 163–182, May 2001.

[10] S. Nakajima. On Verifying Web Service Flows. In
Proc. SAINT 2002 Workshop, pages 223–224, January
2002. Presented at WebSE 2002 [15].

[11] S. Nakajima. Behavioural Analysis of Web Service
Flows with Model-Checking Techniques. TR-DSE-02-
002, Hosei University, August 2002.

[12] S. Nakajima. Verification of Web Service Flows with
Model-Checking Techniques. In Proc. CW 2002, IEEE,
to appear, November 2002.

[13] S. Nakajima. Behavioural Analysis of Component
Framework with Multi-Valued Transition System. In
Proc. APSEC 2002, IEEE, to appear, December 2002.

[14] S. Thatte. XLANG – Web Services for Business Pro-
cess Design. Microsoft Corporation, May 2001.

[15] WebSE 2002. International Workshop on Web Service
Engineering. Nara, February 2002.

[16] Workflow Management Coalition. Interface 1: Pro-
cess Definition Language Process Model. WfMC TC-
1016-P (v1.1), October 1999.

5


