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Abstract. Web Services play an important role in the Service-oriented
Architecture paradigm, as they allow services to be selected on-the-fly to
build applications out of existing components. In this scenario, the Busi-
ness Process Execution Language notation can be used as an orchestra-
tion language which allows the user to describe interactions with Web
Services in a standard way. The performance of a BPEL workflow is a
very important factor for deciding which components must be selected,
or to choose whether a given sequence of interactions can provide the
requested quality of service. Due to its very dynamic nature, work-
flow performance evaluation can not be accomplished using traditional,
heavy-weight techniques. In this paper we present a multi-view approach
for the performance prediction of service-based applications encompass-
ing both users and service provider(s) perspectives. As a first step to-
wards the realization of this integrated framework we present an effi-
cient approach for performance assessment of Web Service workflows
described using the BPEL notation. Starting from annotated BPEL and
WSDL specifications, we derive performance bounds on response time
and throughput. In such a way users are able to assess the efficiency of a
BPEL workflow, while service provider(s) can perform sizing studies or
estimate performance gains of alternative upgrades to existing systems.
To bring this approach to fruition we developed a prototype tool called
bpel2qnbound, using which we analyze a simple case study.

1 Introduction

The Service-oriented Architecture (SOA) paradigm foresees the creation of busi-
ness applications from independently developed services. In this vision, providers
offer similar competing services corresponding to a functional description of a
service; these offerings can differ significantly in some Quality of Service (QoS)
attributes like performance [1]. On the other side, prospective users of services

� Work partially supported by EU FP7 STREP Project “PLASTIC” (IST 026955),
and by Italian MUR-FIRB project “ART DECO”.

S. Overhage et al. (Eds.): QoSA 2007, LNCS 4880, pp. 127–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



128 M. Marzolla and R. Mirandola

dynamically choose the best offerings for their purposes. Using the SOA para-
digm to build applications, services can be dynamically selected and integrated
at run-time, so enabling system properties like flexibility, adaptiveness, and
reusability.

In this context, the key point is to build applications through the composi-
tion of available services. The application can be specified as a process in Busi-
ness Process Execution Language (BPEL) language in which the composed Web
Services (WSs) are specified at an abstract level. The interfaces of individual ser-
vices are specified using Web Service Description Language (WSDL), the W3C
standard to model WSs interfaces, with documented quality properties. Specifi-
cally, the agreed performance attributes and levels can be specified by means of
appropriate notations that augment the service specifications [2].

Applications built on services face different challenges: on one hand they
should ensure that users experience the required performance, and on the other
hand they have to maximize the resource utilization, so that provider incomes
are maximize. Besides, due to the high dynamism of the applications, the quality
assessment should be performed both at development and at run time. In fact
the quality of the application depend not only on the selected services but also
on the underlying support systems and on the network resources.

All these aspects pose a mix of new and old problems whose solution give
rise to a multi-view approach employing different techniques to performance
analysis/prediction. Specifically we envisage a new approach called Multi-views
Approach for Performance analysis of web Services (MAPS) that encompasses
users and providers viewpoints. One of the goal of MAPS is to validate the
provided performance of an application keeping the aspects strictly pertaining
to the observed system separated from the aspects that depend on the underlying
platform.

To this end we distinguish two different levels: the first one, called MAPS-
U(sers), is concerned with the description of the application level behavior, de-
scribed as a BPEL workflow. The second level, called MAPS-P(roviders), de-
scribes the physical resources where the provided services are deployed. Those
levels are combined, and we show how to derive performance bounds based on the
well-known operational laws of Queueing Network (QN) analysis [3]. The bounds
can be used to analyse bottlenecks at the system specification level, without
requiring the explicit derivation of the performance model. This makes the ap-
proach well suited for efficiently answering many performance-related questions
without the need for providing too many details.

The advantage of the proposed approach is that performance bounds can be
obtained with little computational effort, allowing the client to quickly answer
a set of common performance-related questions arising during the application
development cycle. If necessary, more accurate bounds can be derived by simply
applying different techniques (e.g., the one described in [4]). Our approach can
be applied: (1) at design time, to select services based on their expected per-
formance, or to estimate the expected overall system performance; (2) at run
time to reconfigure the system, e.g., to deal with changes of users requirements
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or with modification of the underlying environment. On the other hand, a more
complex, detailed and precise approach can be applied off-line at the resource
level, to update the performance information published with the services.

To implement part of the proposed approach, we developed a prototype tool
called bpel2qnbound, using which it is possible to parse of the annotated BPEL
(and associated WSDL) specifications and obtain as outputs the performance
bounds, as will be shown in more details in the following sections.

This paper is organized as follows. Section 2 briefly surveys related work. In
Section 3 we present the proposed multi-view approach, while in Section 4 we
give the details of the approach for early performance assessment of workflows
described using a combination of annotated BPEL and WSDL descriptions. In
Section 5 we show how the proposed approach can be applied to a case study.
Finally, conclusions and future work are described in Section 6.

2 Related Work

Recently, QoS issues in WSs selection and composition have obtained great in-
terest in the Web Service research community. Different approaches have been
followed so far, spanning the use of QoS ontologies [5], the definition of ad-
hoc methods in QoS-aware framework [6,7], and the application of optimization
algorithms [8,9,10].

One of the first works in this area is proposed in [1] where a framework
for composed services modeling and QoS evaluation is presented. A composite
service is modeled as a directed weighted graph where each node corresponds to
a WS and edge weights represent the transition probabilities of two subsequent
tasks. The author shows how to evaluate quality of service of a composed service
from basic services characteristics and graph topology.

Some recent proposals face the problem of composition of WSs by imple-
menting genetic algorithms [10]. In Canfora et al. [10] the reduction formulas
presented in [11] are adopted, and the problem is also periodically re-optimized
in order to take into account WS performance variability. However, only sub-
optimal solutions are identified since WSs specified inside execution loops are
always assigned to the same Web service implementation.

Proposals of QoS-aware frameworks can be found in [6,12,7]. Yu and Lin [7]
present a broker-based framework for the dynamic integration of Web services
with end-to-end QoS constraints. The main functions of the proposed QoS bro-
ker include: service tracking, dynamic service composition model, dynamic ser-
vice selection, and dynamic service adaptation. WebQ [6] is a QoS-based WS
framework where the service selection is based on the parallel execution and
monitoring of the candidate target services. Serhani et al. [12] propose a broker-
based architecture which adopts QoS verification and certification in the service
selection process. Zeng et al. [8] present a global planning approach to select an
optimal execution plan by means of integer programming. Yu and Lin [13] dis-
cuss selection algorithms for multiple QoS attributes defining the problem as a
multi-dimension multi-choice 0-1 knapsack problem as well as a multi-constraint
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optimal path problem. Ardagna and Pernici [9] model the service composition
as a mixed integer linear problem where both local and global constraints are
taken into account. Their approach is formulated as an optimization problem
handling the whole application instead of each execution path separately. Claro
et al. [14] propose the use of multi-objective optimization techniques to find a
set of optimal Pareto solutions from which a requestor can choose.

The works closest to ours concern methods to derive performance related mea-
sures of workflow processes [15,16]. Cardoso [15] proposes two different metrics
to evaluate the control-flow complexity of BPEL web processes before their ac-
tual implementation. In [16] a mathematical model based on operations research
techniques is proposed to estimate the influence of the execution of orchestrated
processes on utilization and throughput of the system. Being based on QN analy-
sis, our approach has the advantage that the bounding technique used in this
paper is one of the many possible solution algorithms of the performance model.
It if hence possible to compute more precise results by simply applying more
sophisticated QN solution techniques [17].

3 Overview of the Proposed Approach

In this section we illustrate the main steps of our methodology for the perfor-
mance evaluation of WS applications, while the description of the realized tool
is deferred to section 5.

We generically consider WS-based applications, built up from software ser-
vices glued together by means of some integration mechanism. In this context,
the services provide the application-specific functionalities (and are considered
as black boxes), and the glue defines the workflow that integrates these func-
tionalities to deliver the functionalities required from the application.

We envisage a two layers approach to derive performance indices of the WS
application. At the service providers level we can analyze the set of resources
devoted to provide a service (including, if necessary, network resources) by means
of a QN. The QN analysis results are then used as performance annotation
characterizing the service. The users, at the upper level, use this information
without concerning with the characteristics of the underlying platform.

In Fig. 1 we show a UML Activity Diagram with the main steps of MAPS.
Boxes show who is responsible for executing each action.

Users side The Users-side of our approach starts from the application workflow
specifications and derive performance bounds on the application response time
and throughput, as follows:

Identify application requirements. At this step the user describes the ap-
plication (s)he intends to realize and details its functional and non-functional
requirements.

Discover and compose services. The user sees only the services with their
performance annotations and builds its application based on the service
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Fig. 1. Activity diagram for the proposed methodology

description using tools like BPEL and performing service discovery and com-
position using methods like [18]; the details of this step are beyond the scope
of the paper.

Derive Performance model. The annotated BPEL specifications are used to
implicitly derive a QN model. The activities in BPEL describe the sequence
of requests which customers perform on service centers. The QN model is
used to compute performance bounds on throughput and response time. Such
information correspond to bounds on throughput and response times of the
resources on the software system under evaluation. A detailed description of
this step is given in Section 4.

Evaluate Results. The user exploits the computed performance bounds to
choose among the services available those that better fulfill the performance
requirements; performance results can also be used to answer “what-if” ques-
tions about the system. Based on the analysis results, the client can reach
a more informed decision about the system design. If the performance re-
quirements are fulfilled, (s)he can proceed with the acquisition of the pre-
selected WSs; otherwise (s)he has to iterate the process by repeating the
steps described, or lastly admit the unfeasibility of the performance require-
ments with the acquisition of publicly offered services.

Providers-side. At this side, the service providers must deploy the set of WS on
suitable physical resources, exposing a well-defined WSDL interface annotated
with QoS-oriented information. Service providers will execute the following steps:

Define interface of WS. At this step, the service providers must define the
interface of the services they offer. In the WS scenario this is done by defining
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an appropriate WSDL which clearly describes the interfaces, including the
operations provided, the input parameters and the type of the returned
results.

Deploy WS. At this step, the service providers must define the physical de-
ployment of the services they offer. This means that the services must be
implemented and installed on the appropriate hardware resources. Further
resources (disk space, additional CPUs, dedicated network connections and
so on) must be allocated, depending on the nature of the functionalities
provided by the WS.

Estimate Service times. At this step, the service providers must estimate,
for each individual operation they provide through their WSs, the average
service time on each of their resource. Thus, the service providers not only
have to compute the mean response time of each operation, but also break
down this response time to identify the fractions of it spent on each resource.
Service times can be estimated by the providers by using synthetic workloads
and monitoring the response times of the physical resources. It is possible
to constantly improve the estimate of the response times by continuously
profiling the resource usage under real workloads: that is, providers monitor
the resources utilization as client applications access them, and dynamically
adjust the advertised average service times as better estimates are computed.

Annotate WSDL. The information collected during the previous step are in-
serted as performance annotations in the WSDL of the services. Those in-
formation, combined with the structure of the BPEL workflows which are
executed on the system, are used to compute the performance bounds as will
be shown in Section 4.

4 Performance Modeling of BPEL Workflows

In this section we present the main contribution of this paper. Specifically, we
provide an algorithm for efficient computation of performance bounds for WSs
driven by BPEL workflows. We compute optimistic and pessimistic bounds for
system throughput and response time, where the “system” is the set of all phys-
ical resources (CPUs, disks, network connections) where all the WSs referenced
by a BPEL are deployed.

Bounding techniques are interesting for several reasons [19]. First, they quan-
tify the critical effect of bottleneck devices on system performance; it is also
easy to analyze the performance improvements which are gained by replacing
the bottlenecks. Moreover, bounds can be computed quickly and efficiently: they
can be used during early planning stages to answer many performance-related
questions, and eliminate inadequate design alternatives at early design phases,
and at run-time assisting reconfiguration operations.

BPEL allows users to describe interactions with WSs; each interaction (re-
quest, response, one-way remote method invocation) is described by an appropri-
ate BPEL action; moreover, elements are provided to model loops and branches.

The WS-BPEL version 2.0 [20] specifies, among others, the following types of
activity:



Performance Prediction of Web Service Workflows 133

〈receive〉 The executing process waits for a specific incoming message to be
received;

〈reply〉 Sends a message in reply to a message which was received through a
〈receive〉 tag;

〈invoke〉 Invokes a one-way or request-response operation on a partner;
〈wait〉 Waits for a given time period, or until a certain time has passed;
〈sequence〉 Denotes a set of activities which should be executed sequentially;

for each activity it is possible to specify additional dependencies, that is,
other activities which must complete before executing the current one.

〈if〉 Selects one activity from a set of choices;
〈while〉 Repeats an activity until a certain predicate is no longer true;
〈repeatUntil〉 Repeats an activity until a condition becomes true;
〈forEach〉 This activity repeats its child activity for a number N of times; the

child activity instances can be executed sequentially, or in parallel;
〈pick〉 The process blocks until a certain message is received, or a timeout goes

off. When one of these events occurs, the associated activity is executed and
the pick completes;

〈flow〉 Denotes a set of concurrent activities;
〈switch〉 Allows the process to choose exactly one branch of an activity with

multiple choices.

Fig. 2. Class diagram of a portion of the BPEL performance metamodel

We illustrate in Fig. 2 a portion of the BPEL metamodel as a UML class dia-
gram. There are two kinds of BPEL actions: composite actions (such as Sequence
and Flow), which act as containers, and simple actions (such as Invoke and
Reply) which represent atomic actions. In particular, the Invoke action is used
to perform a two-way (request-response) WS operation, which is described in an
appropriate WSDL. Each WS operation requests service on a set of resources.
For example, a WS operation may require CPU time, disk I/O operations, or in
general use other (physical) resources on the executing host.

From a performance point of view, a BPEL workflow applies a workload on the
resources. The workload may be open (if there is an infinite stream of instances
of the BPEL which are executed at a given rate λ), or closed (if there is a finite
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population of N BPEL instances, each spending Z time units outside the system
before being executed again).

We see in Fig. 3 the mapping between the BPEL model and the QN per-
formance model. Resources in the BPEL model correspond to service centers,
and BPEL actions represent requests which arrive to the service centers.

BPEL Workflow Web Services

Operation Resource

(a) BPEL model
Service Center

R
eq

ue
st

s

(b) QN model

Fig. 3. BPEL model and QN performance model

We consider the system made of all resources where WSs are deployed. Our
approach computes bounds on the system response time and throughput, from
which bounds on individual resources utilization, throughput and response times
can be obtained. We now briefly recall the main results related to QN bound
analysis, which will be used later in this section; more details on bound analysis
can be found in [3,19].

Let us consider a BPEL specification A = {A1, A2, . . . AN}, with actions
A1, A2, . . . AN . Let X be the system throughput (i.e., the rate of completion
of BPEL A). Let R = {R1, R2, . . . RK} be the set of all the K resources available
in the system, that is, all the resources used by WS operations. Then, according
to the utilization law, the utilization of resource Ri ∈ R can be expressed as:

U [Ri] = X [Ri] Si = XD [Ri] (1)

where U [Ri] is the utilization of device Ri, X is the whole system throughput,
D [Ri], X [Ri] and Si are resource Ri service demand, throughput and mean
service time, respectively. The utilization law states that the utilization of re-
source Ri is proportional to its service demand. Thus, the device Rmax with the
highest resource demand (and hence utilization) is the bottleneck device. Note
that bottleneck identification should be one of the first steps in any performance
study; any system upgrade which does not remove the bottleneck(s) will have
no impact on the system performance at high loads.
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The first step in the bound derivation process is to compute the service de-
mand D [R] for each resource R ∈ R. In this paper we analyze the scenario in
which a single kind of BPEL workflow is executed in the system; from the QN
model perspective, this results in considering a QN performance model with a
single customer class. Extension of the proposed approach to the scenario of
multiple kinds of workflows being executed on the system would result in the
computation of bounds for multiclass QN models. The same approach described
in [21] applies to BPEL workflows as it did for UML Activity diagrams. However,
bounding techniques are seldom used in multiclass QN analysis: the reason is
that bounds are mainly used to study bottleneck centers for which single class
models suffice.

Let Service [A, R] be the average service time on resource R for a single invo-
cation of action A; let Visits [A] be the visit count to action A. The visit count
is defined as the ratio of the number of visits to action A and the number of
completions of the whole BPEL A. The total service demand D [R] for resource
R is given by:

D [R] =
∑

A∈A

Visits [A] × Service [A, R] (2)

Let us denote with D =
∑K

i=1 D [Ri] the sum of all service demands; let Dmax
and Dave denote the maximum and average of the service demands at the centers
of the model, respectively.

Different kind of bounds can be computed, depending whether the BPEL
represents a closed or open workload. Let us consider the two cases separately.

Bounds for Open Workloads. Let λ be the rate at which the BPEL A is executed;
let X(λ) and R(λ) respectively denote the system throughput and response time
with respect to parameter λ. Then the following equations hold [19]:

X(λ) ≤ 1/Dmax (3)
D

1 − λDave
≤ R(λ) ≤ D

1 − λDmax
(4)

Bounds for Closed Workloads. Let N the total number of instances of BPEL
A which are executed; let Z be the time spent by each BPEL instance outside
the system before being executed again. If we denote with X(N) and R(N) the
system throughput and response time as a function of the request population
N , then the following equations hold [19]:

N

D + Z + (N−1)Dmax
1+Z/(ND)

≤ X(N) ≤ min

⎛

⎝ 1
Dmax

,
N

D + Z + (N−1)Dave
1+Z/D

⎞

⎠ (5)

max
(

NDmax − Z, D +
(N − 1)Dave

1 + Z/D

)
≤ R(N) ≤ D +

(N − 1)Dmax

1 + Z/(ND)
(6)
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Note that Equations 3–6 provide bounds for the whole system throughput
and response time. These quantities are very important for customers execut-
ing BPEL workflows on a system. From the system provider point of view,
individual resource utilization U [Ri] are an equally important parameter. Note
that according to the utilization law (Eq. 1), bounds on U [Ri] can be directly
derived from bounds on X , by multiplying the latter by D [Ri] (we will show
shortly how to compute D [Ri]).

The modeler can specify whether the BPEL represents an open or closed work-
load by putting a suitable annotation in the BPEL specification. For example, a
closed workload can be modeled with this code fragment (note that the workload
element is in a different namespace with respect to the other standard BPEL
elements):

<bpws:process>
<perf:workload type="closed" thinktime=Z />
. . .

</bpws:process>

Similarly, an open workload can be modeled as follows:

<bpws:process>
<perf:workload type="open" arrivalrate=λ />
. . .

</bpws:process>

In order to be able to compute the bounds, we need to know the service de-
mand D [Ri] for each resource (see Eq. 2). The service demand can be computed
if we know the visit count Visits [A] for each action A ∈ A, and the average
service time on resource R for each execution of action A. Let us address these
two issues separately.

Definition of the Service Time
In order to compute the mean service time Service [Ai, R] from Eq. 2, the sys-
tem modeler is requested to annotate each method of the the WSs with which
the workflow interacts with their average service time. This can be done using
suitable XML elements in the WSDL specifications of the WS. Performance-
oriented extensions of WSDL have been proposed in the literature (see [22,2] for
one of these proposals). As we are only interested in representing service time
for WSDL operations, we adopt here a stripped down notation for the sake of
simplicity. Of course, our performance modeling approach is completely indepen-
dent from the notation actually used to enrich BPEL and WSDL specifications
with performance-oriented information.

Consider the following (simplified) WSDL describing an interface for an elec-
tronic flight booking application. Only the checkAvailability and bookFlight
operations are shown; we also omit all details related to the input and output
data types of such methods.
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<wsdl:definitions name="BookingApp">
<wsdl:portType name="BookingAppType">
<wsdl:operation name="checkAvailability">

. . .
<perf:PAdemand resource="disk" value="5"/> <!-- (1) -->
<perf:PAdemand resource="CPU" value="1"/> <!-- (2) -->

</wsdl:operation>
<wsdl:operation name="bookFlight">

. . .
<perf:PAdemand resource="disk" value="2"/>
<perf:PAdemand resource="CPU" value="15"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definition>

In this codewe added the child elements 〈perf:PAdemand〉 of 〈wsdl:operation〉
which are used to specify the mean service time of the operation on various re-
sources; the PAdemand name has been chosen for similarity with the notation
adopted in the UML Profile for Schedulability, Performance and Time Specifica-
tion (UML-SPT profile [23]). The line labelled (1) denotes a mean service time
of 5 on a resource named ”disk”, while line (2) denotes a service demand of 1 on
a resource named ”CPU”. Both service times are related to the checkAvailability
operation.

We use the perf prefix to denote the namespace where performance-oriented
annotations are defined; this is to distinguish the new elements from the stan-
dard WSDL ones. The value of the resource attribute is a string denoting the
name of a resource; the name is used for identification purposes only. The value
attribute is a real number denoting the service time required by the specific re-
source. The WSDL should be annotated by the service provider, who of course is
in the position of knowing how the operations are implemented, and can measure
or estimate their service time.

Now we show how to compute the value of Service [A, R], for each A ∈ A,
R ∈ R. If A is not an 〈invoke〉 action, then Service [A, R] = 0 for every R ∈ R.
If A is an 〈invoke〉 action, defined as:

A ≡
<invoke operation=Op>

· · ·
</invoke>

and the operation Op is defined and annotated in a WSDL as follows:

Op ≡

<wsdl:operation name=Op>
· · ·
<perf:PAdemand resource=R1 value=v1/>
<perf:PAdemand resource=R2 value=v2/>
...
<perf:PAdemand resource=RK value=vK/>

</wsdl:operation>
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then, for each i ∈ {1, . . .K} we let Service [A, Ri] = vi. We assume
Service [A, Ri] = 0 if the 〈perf:PAdemand〉 tag is omitted for resource Ri.

Computation of Visit Counts
We recall that the visit count Visits [Ai] represents the ratio of the number of visits
to BPEL activity Ai versus the number of completions of the whole BPEL A. Visit
counts can be computed by solving a system of linear equations; the equations are
derived by structural analysis of the BPEL activity, as follows. Given a BPEL frag-
ment Ai, we denote with E [Ai] a set of linear equations. The function is defined by
structural induction on Ai, according to the rules shown in Table 1.

5 Case Study

In this section we illustrate how the technique described in Sec. 4 can be applied
to a case study. As a motivating example, we consider a set of WSs which
can be used to execute jobs in a computational Grid [24]; in fact, the Basic
Execution Service (BES) [25] and Open Grid Services Architecture Data Access
and Integration (OGSA-DAI) [26] are WS interfaces for job submission and
data transfer respectively, which are being standardized in an effort to allow
interoperability between Grid components provided by different projects.

Let us consider a system where the following WSs are available: a Storage
Element, which is responsible for storing (possibly large amount of) data; a
Computing Element, which is a WS which can accept and execute computa-
tional jobs; an Analysis Element, which is a service for analyzing the output
data produced by running some application on the Computing Element. The
annotated WSDL interfaces of these services are reported in a simplified form in
Appendix A.2. Each operation is annotated with the (estimated) average service
time on the resources they require.

We consider the BPEL sketched in Appendix A.1. The BPEL represents a
closed workload, where each workflow spends 120 time units outside the system
(think time) before being executed again. The workflow executes the following
sequence of actions:

– The user authenticates on the system.
– The executable application and the files it needs to operate (called Input

SandBox ) are transferred in parallel with the input data that must be
processed by the application.

– The executable is started a number of times, possibly with different parame-
ters (this latter detail is not shown in the BPEL); this is done by iterating
the JobStart operation inside a 〈while〉 statement until a certain condition
(not shown in the BPEL) is false. The probability of the condition being
true is set to be 0.7.

– The output produced by the executable (called the Output SandBox ) is
transferred to another WS to be analyzed.

– The output data are finally analyzed.
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Table 1. Computation of the visit count

Ai ≡

<sequence|flow>
Aj1

...
Ajk

</sequence|flow>

E [Ai] =

8>>>>>>>><
>>>>>>>>:

Visits [Aj1 ] = Visits [Ai]
...

Visits [Ajk ] = Visits [Ai]
E [Aj1 ]

...
E [Ajk ]

Ai ≡

<if>
<condition perf:prob=pj1>

C1 </condition>
Aj1

<elseif>
<condition perf:prob=pj2>

C2 </condition>
Aj2

</elseif>
...
<else>Ajk</else>

</if>

E [Ai] =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Visits [Aj1 ] = pj1Visits [Ai]
...

Visits
ˆ
Ajk−1

˜
= pjk−1Visits [Ai]

Visits [Ajk ] =
“
1 −

Pk−1
t=1 pjt

”
×Visits [Ai]

E [Aj1 ]
...

E [Ajk ]

Ai ≡

<pick>
<onMessage perf:prob=pj1 . . .>

Aj1 </onMessage>
...
<onMessage perf:prob=pjk . . .>

Ajk </onMessage>
</pick>

E [Ai] =

8>>>>>>>><
>>>>>>>>:

Visits [Aj1 ] = pj1Visits [Ai]
...

Visits [Ajk ] = pjkVisits [Ai]
E [Aj1 ]

...
E [Ajk ]

Ai ≡

<repeatUntil> Aj

<condition perf:prob=p>
C </condition>

</repeatUntil>

E [Ai] =
j

Visits [Aj ] = 1
p
Visits [Ai]

E [Aj ]

Ai ≡

<while>
<condition perf:prob=p>

C </condition>
Aj

</while>

E [Ai] =
j

Visits [Aj ] = p
1−p

Visits [Ai]
E [Aj ]

Ai ≡

<forEach>
<startCounterValue>

S </startCounterValue>
<finalCounterValue>

T </finalCounterValue>
<scope>Aj</scope>

</forEach>

E [Ai] =
j

Visits [Aj ] = (T − S + 1)Visits [Ai]
E [Aj ]

We developed a command-line tool written in C++ which is able to parse
the annotated BPEL (and associated WSDL) specifications and outputs the
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Table 2. Service demands for the case study

Resource Visit count Service Demand
CE:CPU 5.33 22.33
CE:Disk 2.0 150.00
DA:CPU 1.0 100.00
DA:Disk 1.0 30.00
DF:CPU 1.0 1.00
DF:Disk 1.0 120.00
Network 3.0 170.00

performance bounds computed using Eq. 3–6. The tool, called bpel2qnbound,
builds a BPEL performance model based on the metamodel shown in Fig. 2.
The tool, then, computes the visit counts and the service demands using the
approach described in Section 4, and produces the appropriate bound equations
as output.

By using the bpel2qnbound tool, we get the visit counts and service demands
shown in Table 2. As can be seen, the bottleneck device is the network. This
means that system performance, at heavy load, will not improve unless that
bottleneck is removed.

Given that the BPEL of the case study represents a closed workload, the
bounds from Eq. 5 and 6 apply. Fig. 4 shows the upper and lower bounds for the
Response Time and Throughput, as a function of the request population size N .
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Fig. 4. Performance Bounds for the Case Study, original system vs. an improved one
where the bottleneck is removed

Oneof themost important questions a systemmodelermay ask is: “What should
be done in order to improve the system throughput/response time?”. This question
is easily answeredby looking at the service demands onTable 2: better performance
can be obtained if the system bottleneck (the network, in this case) is removed. Ac-
cording to Eq. 2, the service demand decreases if either (1) fewer visits are made
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to the bottleneck device, or (2) the average service time is shortened. Solution (1)
implies that the BPEL workflow (and possibly the system as well) is restructured
so that fewer network communications are required. On the other hand, solution
(2) requires moving to a faster network. If we consider an improved system where
the service demand on the network is exactly half of that on the original system,
we obtain the new bounds shown with the dashed lines in Fig. 4. The service de-
mand on the network for the improved system is 85, so that the bottleneck device
becomes the disk on theComputingElement. Fromthe figure, the improved system
offers definitely better performance (both throughput and response time) than the
original one, as the request population size N increases.

6 Conclusions

In this paper we described a multi-view approach for the performance prediction
of service-based applications encompassing both users and service provider(s) per-
spectives. As a first step towards the realization of this integrated framework we
described an algorithm for efficient computation of performance bounds for BPEL
workflows. Our approach applies QN analysis techniques directly on the BPEL
specification of the workflow and the WSDL associated with the Web Services it
references. We showed how to compute bounds for the system throughput and re-
sponse time using QN bounds. The approach can be fully automated: we devel-
oped a prototype tool, called bpel2qnbound, which automatically derives the ap-
propriate bounds from the annotated workflow specification. Our technique does
not require the derivation (and solution) of the underlyingQNmodel; nevertheless,
bounding techniques are useful to identify and quantify the effect of system bottle-
necks, and to performquick analysis anddiscard inappropriate (performance-wise)
alternatives at an early stage of a study. The results of the bpel2bound tool can be
interpreted both from a customer perspective, to select among the available WSs
those providing the best performance, and also from a system provider perspective,
to identify bottlenecks and estimate the performance gains obtained by upgrading
different parts of the system.

The research described in this paper can be extended in several directions. A
technique very similar to that described in [27] can be applied to explicitly derive
a multiclass QN model from annotated BPEL specifications; while the resulting
model would be more difficult to analyze, it would provide more accurate perfor-
mance measures. The long term goal is to integrate different performance analysis
techniques for BPEL into a single tool, where the system modeler can choose
the most appropriate type of analysis depending on speed/accuracy tradeoff.
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A Appendix

A.1 BPEL for the Case Study

<bpws:process>
<perf:workload type="closed" thinktime="120"/>
<bpws:import importType="http://schemas.xmlsoap.org/wsdl/"
location="CaseStudy.wsdl">

<bpws:sequence>
<bpws:invoke operation="Authenticate"/>
<bpws:flow>
<bpws:invoke operation="TransferISB"/>
<bpws:invoke operation="TransferData"/>

</bpws:flow>
<bpws:while>
<bpws:condition prob="0.7"/>
<bpws:invoke operation="JobStart"/>

</bpws:while>
<bpws:invoke operation="TransferOSB"/>
<bpws:invoke operation="Analyze"/>

</bpws:sequence>
</bpws:process>

A.2 WSDL for the Case Study

<!-- Interface for Storage Element -->
<definitions>
<portType name="DataFactory">
<operation name="TransferData">

http://forge.gridforum.org/projects/ogsa-bes-wg
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<perf:PAdemand resource="DF:CPU" value="1"/>
<perf:PAdemand resource="DF:Disk" value="120"/>
<perf:PAdemand resource="Network" value="80"/>

</operation>
</portType>

</definitions>

<!-- Interface for Computing Element -->
<definitions>
<portType name="JobFactory">
<operation name="Authenticate">
<perf:PAdemand resource="CE:CPU" value="10"/>

</operation>
<operation name="TransferISB">
<perf:PAdemand resource="CE:CPU" value="2"/>
<perf:PAdemand resource="Network" value="10"/>
<perf:PAdemand resource="CE:Disk" value="120"/>

</operation>
<operation name="JobStart">
<perf:PAdemand resource="CE:CPU" value="4"/>

</operation>
<operation name="TransferOSB">
<perf:PAdemand resource="CE:CPU" value="1"/>
<perf:PAdemand resource="Network" value="80"/>
<perf:PAdemand resource="CE:Disk" value="30"/>

</operation>
</portType>

<!-- Interface for Analysis Element -->
<definitions>
<portType name="DataAnalysis">
<operation name="Analyze">
<PAdemand resource="DA:CPU" value="100"/>
<PAdemand resource="DA:Disk" value="30"/>

</operation>
</portType>

</definitions>
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