
Understanding quality of service for Web

services
Improving the performance of your Web services

Level: Introductory

Anbazhagan Mani (manbazha@in.ibm.com), Software engineer, IBM Software Labs, India

Arun Nagarajan (anagaraj@in.ibm.com), Software engineer, IBM Global Services India

01 Jan 2002

With the widespread proliferation of Web services, quality of service (QoS) will become a

significant factor in distinguishing the success of service providers. QoS determines the

service usability and utility, both of which influence the popularity of the service. In this

article, we look at the various Web service QoS requirements, bottlenecks affecting

performance of Web services, approaches of providing service quality, transactional

services, and a s imple method of measuring response time of your Web services using

the service proxy.

More dW content related to: understanding quality of service ibm

The dynamic e-business vis ion calls for a seamless integration of business processes, applications,

and Web services over the Internet. Delivering QoS on the Internet is a critical and significant

challenge because of its dynamic and unpredictable nature. Applications with very different

characteristics and requirements compete for scarce network resources. Changes in traffic

patterns, denial-of-service attacks and the effects of infrastructure failures, low performance of Web

protocols, and security issues over the Web create a need for Internet QoS standards. Often,

unresolved QoS issues cause critical transactional applications to suffer from unacceptable levels of

performance degradation.

With standards like SOAP, UDDI, and WSDL being adopted by all major Web service players, a whole

range of Web services -- covering the financial services, high-tech, and media and entertainment --

are being currently developed. As most of the Web services are going to need to establish and

adhere to standards, QoS will become an important selling and differentiating point of these

services.

QoS covers a whole range of techniques that match the needs of service requestors with those of

the service provider's based on the network resources available. By QoS, we refer to non-functional

properties of Web services such as performance, reliability, availability, and security.

Web service QoS requirements

The major requirements for supporting QoS in Web services are as follows:

Availability: Availability is the quality aspect of whether the Web service is present or ready for

immediate use. Availability represents the probability that a service is available. Larger values

represent that the service is always ready to use while smaller values indicate unpredictability

of whether the service will be available at a particular time. Also associated with availability is

time-to-repair (TTR). TTR represents the time it takes to repair a service that has failed. Ideally

smaller values of TTR are desirable.

Accessibility: Accessibility is the quality aspect of a service that represents the degree it is

capable of serving a Web service request. It may be expressed as a probability measure

denoting the success rate or chance of a successful service instantiation at a point in time.

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

1 of 10 05/15/2008 01:04 AM

There could be s ituations when a Web service is available but not accessible. High accessibility

of Web services can be achieved by building highly scalable systems. Scalability refers to the

ability to consistently serve the requests despite variations in the volume of requests.

Integrity: Integrity is the quality aspect of how the Web service maintains the correctness of

the interaction in respect to the source. Proper execution of Web service transactions will

provide the correctness of interaction. A transaction refers to a sequence of activities to be

treated as a s ingle unit of work. All the activities have to be completed to make the transaction

successful. When a transaction does not complete, all the changes made are rolled back.

Performance: Performance is the quality aspect of Web service, which is measured in terms

of throughput and latency. Higher throughput and lower latency values represent good

performance of a Web service. Throughput represents the number of Web service requests

served at a given time period. Latency is the round-trip time between sending a request and

receiving the response.

Reliability: Reliability is the quality aspect of a Web service that represents the degree of

being capable of maintaining the service and service quality. The number of failures per month

or year represents a measure of reliability of a Web service. In another sense, reliability refers

to the assured and ordered delivery for messages being sent and received by service

requestors and service providers.

Regulatory: Regulatory is the quality aspect of the Web service in conformance with the rules,

the law, compliance with standards, and the established service level agreement. Web services

use a lot of standards such as SOAP, UDDI, and WSDL. Strict adherence to correct versions of

standards (for example, SOAP version 1.2) by service providers is necessary for proper

invocation of Web services by service requestors.

Security: Security is the quality aspect of the Web service of providing confidentiality and

non-repudiation by authenticating the parties involved, encrypting messages, and providing

access control. Security has added importance because Web service invocation occurs over the

public Internet. The service provider can have different approaches and levels of providing

security depending on the service requestor.

QoS enabled Web services

The interface definition (WSDL) specifies the syntactic s ignature for a service but does not specify

any semantics or non-functional aspects. QoS enabled Web services require a separate QoS

language for Web services to answer the following questions:

What's the expected latency?

What's the acceptable round-trip time?

A programmer needs to be able to understand the QoS characteristics of the Web services while

developing applications that invoke Web services.

Ideally, a QoS enabled Web services platform should be capable of supporting a multitude of

different types of applications :

With different QoS requirements1.

By making use of different types of communication and computing resources2.

When considering QoS-aware Web services, we suppose that the interface specifications are

extended with statements on QoS that can be associated to the whole interface or to individual

operations and attributes. In the case of a service requestor, these statements describe the

required QoS associated with the service required by the client, while from a service provider's

perspective these statements describe the offered QoS associated with the service offered by the

server object.

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

2 of 10 05/15/2008 01:04 AM

The Web service architecture design from IBM includes a separate layer called "endpoint description"

to add additional semantics to service description like QoS properties.

QoS negotiation & binding establishment

The following steps should be performed during binding establishment using a QoS-enabled Web

services platform:

The service requestor requests the establishment of the binding by specifying the reference to

a Web service interface. This request also contains the required QoS.

1.

The QoS broker searches for the service providers in the UDDI.2.

The QoS broker performs QoS negotiation as described below.3.

The Web service QoS broker compares the offered QoS with the required QoS and uses its

internal information to determine an agreed QoS. This process is called QoS negotiation.

4.

If the QoS negotiation has been successful, the service requestor and service provider are

informed that a negotiation has been successful and a binding has been built. From this

moment on these objects can interact through the binding.

5.

Bottlenecks in performance of Web services

Web services can encounter performance bottlenecks due to the limitations of the underlying

messaging and transport protocols. The reliance on common widely accepted protocols such as

HTTP and SOAP, however, make them a permanent burden that must be shouldered. Thus it is

important to understand the workings of these limitations.

HTTP

HTTP is a best-effort delivery service. It is a stateless data-forwarding mechanism which tends to

create two major problems:

There is no guarantee of packets being delivered to the destination.

There is no guarantee of the order of the arriving packets.

If there is no bandwidth available, the packets are s imply discarded. Bandwidth is clearly a

bottleneck, as users and amounts of data running over the network increase. Traditionally, many

applications assume zero latency and infinite bandwidth. Also traditionally, applications use

synchronous messaging. Synchronous messaging is fine when you run an application on your own

computers; components communicate with latencies measured in microseconds. However, with

Web services, they communicate across the Internet, which means latencies are measured in tens,

hundreds, or even thousands of milliseconds.

Although newly designed protocols like Reliable HTTP (HTTPR), Blocks Extensible Exchange Protocol

(BEEP), and Direct Internet Message Encapsulation (DIME) can be used, widespread adoption of

these new protocols for Web service transport like HTTPR and BEEP will take some time. Hence,

application designers making use of Web services should understand performance issues of Web

service such as latency, and availability while designing their systems. Some of the ways to improve

Web service performance are given below.

Use of asynchronous message queues

Applications which rely on remote Web services can use message queuing to improve reliability, but

at the cost of response time. Applications and Web services within an enterprise can use message

queuing like Java Messaging Service (JMS) or IBM MQSeries for Web Service invocations. Enterprise

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

3 of 10 05/15/2008 01:04 AM

messaging provides a reliable, flexible service for the asynchronous exchange of critical data

throughout an enterprise. Message queues provide two major advantages:

It is asynchronous: A messaging service provider can deliver messages to the requestor as

they arrive and the requestor does not have to request messages in order to receive them.

1.

It is reliable: A messaging service can ensure that a message is delivered once and only once.2.

In the future, Publish & Subscribe messaging systems over the Internet such as the Utility Services

package from alphaWorks , can be used for Web service invocations (see Resources).

Private WANs and Web service networks

Use of private WANs/extranets and Web services networks can be a suitable option for businesses

depending on Web services which are mission-critical. These private networks provide low network

latency, low congestion, guaranteed delivery, and non-repudiation. However, in some cases it could

be costly to have a private network.

SOAP and performance

SOAP is the defacto wire protocol for Web services. SOAP performance is degraded because of the

following:

Extracting the SOAP envelope from the SOAP packet is time-expensive.

Parsing the contained XML information in the SOAP envelope using a XML parser is also

time-expensive.

There is not much optimization possible with XML data.

SOAP encoding rules make it mandatory to include typing information in all the SOAP messages

sent and received.

Encoding binary data in a form acceptable to XML results in overhead of additional bytes added

as a result of the encoding as well as processor overhead performing the encoding/decoding.

The XML processor must be loaded, instantiated, and fed with the XML data. Then the method call

argument information must be discovered. This involves a lot of overhead as XML processors grow

to support more XML features.

The role of the XML parser in SOAP performance

Most existing XML parsers are too expensive in terms of code size, processing time, and memory

foot print because these parsers have to support a number of features like type checking and

conversion, wellformedness checking, or ambiguity resolution. All these make XML parsers require

more computing resources. Some applications can consider using of stripped down version of XML

parser which have a small code size and memory foot print.

Also, most of the current SOAP implementations are Document Object Model (DOM) based. DOM

parsers are inherently s low to parse the messages. SAX-based SOAP implementations can be used

to increase throughput, reduce memory overhead, and improve scalability.

Compressing XML

SOAP uses XML as its payload. And if we consider thousands of SOAP messages being transmitted

over the Web, the network bandwidth is being pushed to its limit. XML's way of representing data

usually results in a substantially larger s ize than representing the same data in binary, which is on

average 400% larger. This increase of the message size creates a critical problem when data has to

be transmitted quickly, which effectively results in increase of the data transmission time. Some

application designs should consider techniques for compact and efficient representation. One of the

ways to achieve this can be to compress the XML -- especially when the CPU overhead required for

compression is less than the network latency.

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

4 of 10 05/15/2008 01:04 AM

Other factors affecting Web service performance

There are still more factors that can affect Web service performance that are outside the control of

the Web service application, such as:

Web server response time and availability.

Original application execution time like EJB/Servlets in Web application server.

Back-end database or legacy system performance.

Approaches to provide proactive Web service QoS

Service providers can proactively provide high QoS to the service requestors, by using different

familiar approaches like caching and load balancing of service requests. Caching and load balancing

can be done at both Web server level and at Web application server level. Load balancing prioritize

various types of traffic and ensure that each request is treated appropriately to the business value it

represents.

A Web service provider can perform capacity modeling to create a top-down model of request-traffic,

current capacity utilization, and the resulting QoS. A service provider can also categorize Web service

traffic by the volume of traffic, traffic for different application service categories, and traffic from

different sources. This will help in understanding the capacity that will be required to provide good

QoS for a volume of service demand and for future planning like capacity and type of load balancing

Web application servers and/or Web servers (for example, the number of servers required for

setting up a clustered server farm).

Service providers can provide differentiated servicing by using the capacity model to determine the

capacity needed for different customers and service types and by ensuring appropriate QoS levels

for different applications and customers. For example, a multimedia Web service might require good

throughput, but a banking Web service might require security and transactional QoS.

Transactional QoS

Transactional QoS refers to the level of reliability and consistency at which the transactions are

executed. Transactional QoS is crucial for maintaining the integrity of a Web service. Transactions

are very important for business processes to guarantee that a set of related activities are treated

and completed as a s ingle unit of work. If an exception occurs while executing a transaction, the

transaction has to be recovered back to a consistent state. This property is called the "atomicity" of

a transaction. Other than property of atomicity, transactions in a stricter sense should satisfy

consistency, isolation and durability properties. All these four properties are together called "ACID"

properties (see the s idebar).

There are several approaches to provide transactional QoS.

The most popular approach, which is traditionally used in

Web application architectures is the two-phase commit.

Two-phase commit provides a transaction coordinator which

controls the transaction based on the idea that no

constituent transaction is allowed to commit unless they are

all able to commit. This approach of using a transaction

coordinator to ensure atomicity is used in Java Transactional

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

5 of 10 05/15/2008 01:04 AM

Service (JTS), CORBA OTS, and in most database

management systems.

But there are new complications when we are thinking of

transactions involving Web services. The Web services used

by a particular application or Web service are often

distributed remotely over the Web as well as owned by

different parties. Having a central transaction coordinator,

which dictates the rules and performs the commits and

rollbacks, in a Web services environment is very tedious to

implement considering the transaction coordinator does not

have full control over all the resources. Also, two-phase

commit protocol involves one or other form of resource

locking. Longer periods of resource locking will result in serious scalability issues. Therefore even

though it is possible to use, extreme care should be taken to make sure that resources are not

locked for long periods of time.

The OASIS Business Transactions technical committee has released the Business Transaction

Protocol (BTP) which extends the two-phase commit transaction management approach to address

the needs of disparate trading partners that use XML to exchange data over the Web. BTP allows

both the normal ACID transactions and non-ACID transactions (termed as "cohesions") for long

lasting transactions that span multiple enterprises.

Another approach called compensation is based on the idea that a transaction is always allowed to

commit, but its effect and actions can be cancelled after it has committed. For example, it may be

possible to order a shipment, and then later cancel the shipment if the required shipment process

has not yet started. Canceling the shipment is an example of a compensating transaction; it

compensates for the initial transaction that ordered the shipment. In compensating transaction,

each "real" transaction has an associated "compensating" transaction. This "compensating"

transaction element describes a way to revert changes done by the "real" transaction and return to a

previous consistent state. If any transaction aborts, the caller executes the corresponding

compensating transaction for all the transactions that have previously committed. Two major

problems associated with compensating transactions are:

Compensating transactions, unlike two-phase commit, may not satisfy all the four "ACID"

properties at all times -- this means there is always a probability for a failure.

Traditionally designed two-phase commit transactions have to be redesigned to provide way

for compensation.

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

6 of 10 05/15/2008 01:04 AM

A simple method to measure response time of your Web services

A simple method to measure the performance characteristics of your Web services can be

developed by adding a little bit of extra functionality in the service proxy. Service proxies in Web

services are s imilar to stubs in Java RMI. They contain the code that is specific to a binding within the

service interface, thereby hiding the complex network communications details from the client. For

example, if the binding is a SOAP binding, then the service proxy will contain SOAP-specific code that

can be used by the client to invoke the service.

The steps involved in developing a proxy capable of measuring response time is as follows:

Generate service proxy from the WSDL service definition file.1.

Modify the generated service proxy to add code to clock the time (see Listing 2).2.

Re-compile the modified service proxy.3.

Develop a client program to create a object of the service proxy and invoke the necessary

methods .

4.

Step 1: Generate a service proxy from service definition

Typically, service proxies are not written by the programmer. Service proxies can be easily

generated from the WSDL file. Web Service Toolkits (including the alphaWorks WSTK) provide tools to

generate service proxies (see the s idebar). A sample WSDL service definition for an EchoService is

given in Listing 1. This is a s imple Web service, which echos back the original string with "Hello"

appended to it.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="EchoService"
 targetNamespace="http://www.echoserviceservice.com/EchoService-interface"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.echoserviceservice.com/EchoService"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<message name="InechoRequest">
 <part name="meth1_inType1" type="xsd:string"/>
</message>
<message name="OutechoResponse">
 <part name="meth1_outType" type="xsd:string"/>
</message>
<portType name="EchoService">
 <operation name="echo">
 <input message="InechoRequest"/>
 <output message="OutechoResponse"/>
 </operation>
</portType>
<binding name="EchoServiceBinding" type="EchoService">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="echo">
 <soap:operation soapAction="urn:echoservice-service"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

7 of 10 05/15/2008 01:04 AM

 namespace="urn:echoservice-service"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:echoservice-service" use="encoded"/>
 </output>
 </operation>
</binding>
<service
 name="EchoService">
 <documentation>IBM WSTK 2.0 generated service definition file</documentation>
 <port binding="EchoServiceBinding" name="EchoServicePort">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
</service>
</definitions>

Step 2: Modify the generated service proxy

Even though the machine-generated Service Proxy code is not to be edited, let us s lightly bend this

rule by adding a few lines of code. These added lines instantiates a Timer object to measure the

time it takes to bind to the server and invoke a method. This is illustrated in the sample code given in

Listing 2.

import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.encoding.*;
import org.apache.soap.rpc.*;
import org.apache.soap.util.xml.*;
import mytimer.Timer;
public class EchoServiceProxy
{
 private Call call = new Call();
 private URL url = null;
 private String SOAPActionURI = "";
 private SOAPMappingRegistry smr = call.getSOAPMappingRegistry();
 public EchoServiceProxy() throws MalformedURLException
 {
 call.setTargetObjectURI("urn:echoservice-service");
 call.setEncodingStyleURI("http://schemas.xmlsoap.org/soap/encoding/");
 this.url = new URL("http://localhost:8080/soap/servlet/rpcrouter");
 this.SOAPActionURI = "urn:echoservice-service";
 }
 public synchronized void setEndPoint(URL url)
 {
 this.url = url;
 }
 public synchronized URL getEndPoint()
 {
 return url;
 }
 public synchronized java.lang.String echo
 (java.lang.String meth1_inType1) throws SOAPException
 {

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

8 of 10 05/15/2008 01:04 AM

 if (url == null)
 {
 throw new SOAPException(Constants.FAULT_CODE_CLIENT,
 "A URL must be specified via " +
 "EchoServiceProxy.setEndPoint(URL).");
 }
 call.setMethodName("echo");
 Vector params = new Vector();
 Parameter meth1_inType1Param = new Parameter("meth1_inType1",
 java.lang.String.class, meth1_inType1, null);
 params.addElement(meth1_inType1Param);
 call.setParams(params);

 // Start a Timer
 Timer timer = new Timer();
 timer.start();

 Response resp = call.invoke(url, SOAPActionURI);

 // Stop the Timer
 timer.stop();
 // Print the response time by calculating the difference
 System.out.println("Response Time = " + timer.getDifference());

 // Check the response.
 if (resp.generatedFault())
 {
 Fault fault = resp.getFault();
 throw new SOAPException(fault.getFaultCode(), fault.getFaultString());
 }
 else
 {
 Parameter retValue = resp.getReturnValue();
 return (java.lang.String)retValue.getValue();
 }
 }
}

Step 3: Re-compile the modified service proxy

The modified service proxy source file has to be recompiled s imply by using javac command or by

using any other compiler.

Step 4: Develop a client program

Develop a client application, which can use the service proxy to invoke the Web service. This could be

a s imple Java program or a AWT/Swing based Java GUI application.

Conclusion

Quality of services is an important requirement of business-to-business transactions and thus a

necessary element in Web services. The various QoS properties such as availability, accessibility,

integrity, performance, reliability, regulatory, and security, need to be addressed in the

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

9 of 10 05/15/2008 01:04 AM

implementation of Web service applications. The properties become even more complex when you

add the need for transactional features to Web services. Some of the limitations of protocols such as

HTTP and SOAP may hinder QoS implementation, but there are a number of ways to provide

proactive QoS in Web services.

Resources

Reliable HTTP (HTTPR) implements atomicity to HTTP.

The Blocks Extensible Exchange Protocol (BEEP) can also package Web services data for

delivery.

Read the Direct Internet Message Encapsulation (DIME) specification to understand data

encoding in Web services.

Learn more about the IBM Web services conceptual architecture.

Download the Web Services ToolKit from alphaWorks.

Learn more about Java Messaging Services.

Learn more about the OASIS group's Business Transaction Protocol (BTP).

Learn more about message queuing and IBM MQSeries.

About the authors

Anbazhagan Mani is a software engineer at IBM Software Labs in India. He has experience working in

WebSphere family of tools, XML, Java technologies, BPM, Workflow, and Object technologies.

Recently, he has been working on Web services QoS, P2P computing, and Business Process

Integration. You can reach him at manbazha@in.ibm.com.

Arun Nagarajan is a software engineer at IBM Global Services in India. He has previously worked in

XML and Java technologies like JavaBeans, J2EE, and WebSphere. Currently, he has been working in

different Web services technologies such as SOAP, WSDL, UDDI, etc. You can contact him at

anagaraj@in.ibm.com.

Understanding quality of service for Web services http://www.ibm.com/developerworks/library/ws-qualit...

10 of 10 05/15/2008 01:04 AM

