
14 IT Pro March ❘ April 2005 1520-9202/05/$20.00 © 2005 IEEEP u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Web
Services:
What’s
Real and
What’s Not?
Kevin J. Ma

W eb services, service-oriented archi-
tectures (SOAs),and all the atten-
dant buzzwords and acronyms are
on the lips of just about anyone

interested in network communication. Vendors
are scrambling to provide infrastructures that have
enough capabilities to warrant putting at least one
of these terms in the accompanying marketing lit-
erature. SOAs in particular are beginning to

eclipse Web services as the “lat-
est paradigm.” But the ideas
underlying SOAs are hardly
new.The term may be chic, but
the notion of replacing propri-
etary interprocess communica-
tion with abstracted, well-
defined, and ubiquitously in-
vokable services has long been
the goal of system designers.
And computer scientists have
never ceased their quest for

greater abstraction and further encapsulation at
all levels, from programming languages to appli-
cation interfaces.

I suspect that SOAs are garnering interest, not
because they are a novel approach, but because
Web services are becoming sufficiently mature for
developers to realize and reevaluate their poten-
tial. The evolution of Web services is at a point
where designers can start to see how to implement
true SOAs.They can abstract a service enough to
enable its dynamic and automatic selection, and
Web services are finally offering a technology that
is rich and flexible enough to make SOAs a real-
ity. But that is exactly why it might be premature
to start marketing SOAs as a paradigm while no
one is still completely sure what Web services can
offer. If Web services are a de facto technology for
implementing SOAs, deeply understanding the

former must be a prerequisite for developing the
latter. Unfortunately, since the inception of Web
services,a barrage of hype has hidden many of the
realities and issues surrounding them. Hopefully,
this article will clear away some of the fluff.

“WEB” SERVICES
In the most literal sense, a Web service is any

service provided over the Web, which by infer-
ence might include common gateway interfaces
(CGIs), HTML forms, Practical Extraction and
Report Language (PERL), Java scripts, and the
like. In practice, however, most Web service
designers view the “Web” part of Web services as
a misnomer.Although most Web services rely on
the Hypertext Transfer Protocol (HTTP) binding
as a transport mechanism—hence the Web
moniker—it is certainly not a requirement. In
Gartner’s definition,Web services use XML as the
data format, Internet protocols for transport, and
one or a combination of the Simple Object Access
Protocol (SOAP), the Web Services Description
Language (WSDL), or universal description,
discovery, and integration (UDDI)—currently
the three most recognized Web services standards
(W. Andrews, “Web Services in Action,” Aug.
2001, http://www3.gartner.com/resources/109000/
109040/109040.pdf).

In large part, the term “Web” services evolved
because HTTP emerged as the primary choice of

Understanding the
state of Web services
is the first step
toward implementing
the architectures that
support their use.

Binary XML?

Resources

Inside

March ❘ April 2005 IT Pro 15

transport binding. This is hardly surprising, given the
prominence of the Web in the last decade. Academia has
embraced Web-based registration, distance learning,
homework submission, and research. Businesses rely on
Web-based portals for online purchasing, electronic pay
stubs, and database interfaces. Consumers rely on e-com-
merce and e-mail, and enjoy recreational surfing. Small
wonder many everyday services have migrated to the Web
and that by extension HTTP has become ubiquitous. It
helps that HTTP has a robust infrastructure for both trans-
port and security and a large constituency of developers
and technicians.And although implementations of HTTP
servers and clients are platform dependent, the ubiquity
of the protocol across platforms makes HTTP itself as
good as platform independent.

OLD IDEAS IN A NEW PACKAGE
Although many vendors view SOA as a unique para-

digm, you can implement a SOA’s functionality in many
ways. Information is a commodity. For decades, techniques
have been refined for acquiring and parsing information.
Gathering data over the Internet has evolved quite a bit,
from basic file retrieval via the file transfer protocol (FTP),
to the dynamically generated content and the personal-
ized GUI of Web pages today.The data has become much
more sophisticated; it is no longer enough to just return
static files. Web servers and browsers alike run scripts,
invoke services, and process and collate data.Web services
serve simply as a means for implementing remote proce-
dure calls (RPCs). Ignoring the amorphous levels of
abstraction, encapsulation, and extensibility,Web services,
RPCs, and service or method invocation seek the same
outcome. Web-enriched media content has extended the
idea of autonomous transactions;Web services are just the
next evolution in network-based information exchange.

Through this lens, SOA adopts a much more familiar
look.As Figure 1 shows, the fundamental interaction of a
SOA looks very much like the client-server architecture.
A service requester (client) sends a message to the service
provider (server), and the provider returns a response,
either the requested information or confirmation that
some action has occurred. The transaction might be syn-
chronous or work via asynchronous call back, and it is pro-
tocol independent. Though some might consider this an
oversimplification, in reality, the needs are fairly simple
and the underlying paradigms should not be needlessly
complex.

Web services provide a method for implementing the
simple architecture in Figure 1, while offering additional
features and extensibility. Figure 2 depicts the basic Web
service architecture.The transaction starts with the service
provider communicating its intent to offer services to the
UDDI registry. The service provider stores a WSDL rep-
resentation of the service in the registry to be distributed
upon request.At some point later, a node wishing to con-

sume a service contacts the UDDI registry to find a serv-
ice provider. If the registry finds a match, it returns the
WSDL description, which the client interprets.The client
then formats a request and forwards it to the service
provider, which returns a response. All the messages and
data are in XML and encapsulated in SOAP messages.

This is the general idea of how a Web service transaction
should occur, although admittedly, the picture lacks some
detail and some of the basic technologies are still too
immature for general consumption. The next step is to
abstract this transaction hierarchically, such that the serv-
ice invoked can, itself, be one or more Web services. The
Business Process Execution Language (BPEL), described
later, provides just this functionality. As such, it offers a
means of orchestrating Web service conversations, pro-
viding the automation aspect of SOAs.This, coupled with
the dynamic nature of UDDI service resolution, repre-
sents a suite of technologies that with XML, SOAP, and
WSDL are suitable for implementing SOAs.

Service
provider
(server)

Service
requester

(client) Response

Request

Figure 1. Service-oriented
architecture in a simple form.

In many ways, an SOA is merely
a client-server architecture in a

new context.

Service
provider

Service
requester Response

Request

UDDI

Lo
oku

p
Publish

Figure 2. Web service architecture.
The lines represent Web service
transactions between entities,

most likely with an HTTP
transport binding.

16 IT Pro March ❘ April 2005

W E B S E R V I C E S

KEY LANGUAGES AND TECHNOLOGIES
Many technologies enable Web services, and research is

already focusing on some that might streamline future
implementations. Although many of these technologies
are maturing quickly, Web services in general are still in
their infancy, so this selection represents only a snapshot
of significant developments.

Extensible Markup Language
XML is a subset of Standard Generalized Markup

Language (SGML) that allows the use of tags and attributes
to format data. Unlike Hypertext Markup Language
(HTML), currently the most prominent markup language,
XML has no restrictions on the tags or
attributes that mark up a document.
Consequently, it is much richer and more
descriptive than HTML,which defines a
limited set of tags and attributes sufficient
for describing only basic Web pages.

One of XML’s more useful features is
its plain-text-based encoding, which
means no arcane knowledge of proprietary data formats is
required to decipher messages and data.This feature is also
one of XML’s biggest drawbacks. During the transmission
of XML-based messages, the verbosity of this encoding
method significantly increases bandwidth use,and its plain-
text readability is a security concern. Service providers
often employ secure sockets layer (SSL) encryption to add
privacy and mitigate security risks. HTTP compression
(usually with gzip encoding) can reduce bandwidth con-
sumption, although it increases processing.Another alter-
native under investigation is the use of binary XML,which
is the basis for products like Expway’s BinXML series
(http://www.expway.com). Nonetheless, although these
other encoding methods are becoming more widespread,
plain-text-based encoding is still the predominant method.
The sidebar “Binary XML?” explains the advantages and
disadvantages of text and binary XML.

XML schemas
Given this absolute freedom to define new proprietary

markups, application designers required a way to place
constraints on their document sets. With no way to vali-
date their documents’ conformance, applications that
processed the documents were susceptible to data errors,
malicious documents, unhandled cases, and the like.
SGML’s document type definitions (DTDs) offer a method
for describing and validating documents,but they take val-
idation only so far. XML schemas, written using XML, let
document creators define simple and complex data types
as well as constraints such as sequence order, number of
occurrences, and valid data values.As such, XML schemas
provide a way to conduct a basic integrity check of XML-
formatted data. This capability makes them key to a Web
service’s application-level security.

Extensible Stylesheet
Language Transformations

Extensible Stylesheet Language Transformations
(XSLT) is a subset of the Extensible Stylesheet Language
(XSL) that lets document creators define a translation to
reformat XML documents.XSLT accomplishes this by cre-
ating scripts that specify text for insertion when the tag or
attribute matches a rule defined in the script.

Initially, XSLT found use in reformatting XML into
HTML with the aim of creating Web-browser-friendly rep-
resentations of XML documents (similar to cascaded
stylesheets). More recently, it has also found use in bridg-
ing gaps between legacy data formats and nascent XML

encodings. It is suitable for performing
primitive data processing functions to
enhance aesthetics, such as converting
an XML document into HTML for
viewing through a Web browser, or to
enable interoperability, such as con-
verting FiXML back to Fix when com-
municating with a legacy server.

Although XSLT is not necessarily directly related to serv-
ice invocation, it can be critical to deploying a Web service
if the desired response is not raw XML data.

Simple Object Access Protocol
At present, SOAP seems to be the technology of choice

for Web services. It is a platform-independent,XML-based
protocol for remote (or local) method invocation. SOAP
defines an XML-based framework for unidirectional mes-
sage exchange, accommodating the use of either HTTP or
the Simple Mail Transfer Protocol (SMTP) as the transport
mechanism.SOAP defines a message encapsulation format
that comprises an <Envelope>,any number of <Header>s,
and a single <Body>. It also specifies rules for processing
<Header>s at intermediate hops but restricts <Body> pro-
cessing to the end receiver.The <Body> contains the user’s
XML data, and the <Envelope> specifies the service to be
invoked.The data in the <Body> must be in a structure that
both the requesting and receiving parties understand.
Typically, those interfaces are described in WSDL, and the
requester has to make sure that the request conforms to the
interface. SOAP also separately defines transport-layer
bindings to specific, frequently used protocols. Currently,
the only defined bindings are for HTTP and SMTP.

Services typically employ a request-and-response archi-
tecture.An HTTP session is inherently synchronous, as is
the underlying TCP connection.The RPC-like transaction
model is thus a natural extension of the synchronous,
HTTP-based, SOAP messaging infrastructure. The
requester will typically embed input data into a HTTP
POST request and the service will respond with the data
embedded in the HTTP response. SOAP also supports
asynchronous messaging (through the use of Web service
call backs), though they are less prevalent. In this case, the

At present, SOAP
seems to be the

technology of choice
for Web services.

March ❘ April 2005 IT Pro 17

HTTP response would contain no data, and the service
would respond with an HTTP POST of its own, at some
later time. This call-back architecture does require, how-
ever, that the client have an HTTP server and a valid call-
back service enabled.

Web Services Description Language
WSDL provides an XML grammar for describing all the

pertinent information about a Web service, including its

name, transport binding, and message format. Requesting
agents can use the WSDL description to understand the
particular service’s interface, and UDDI uses WSDL for
this purpose.

Work remains in refining the ability to interpret WSDL,
however.WSDL describes the data structures involved in
a Web service transaction, but the method a machine uses
to parse and interpret user input is less defined, primarily
because of the large gap in machine intelligence research.

One of the founding principles of XML
is its human readability and compatibility
with SGML. Human readability is a key
benefit because humans perform many
of the design and debugging tasks in
creating documents and testing appli-
cations. But although representing data
in a way that humans find intuitive
helps decrease the performance time
of human tasks, it increases the machine
processing time, since machines must parse and process
the text. In other words, data designed for humans by
humans is not optimal for machines. Computer scien-
tists have long waged war to close the human-versus-
machine thinking gap, and the latest battle seems to be
between text-based and binary XML.

Binary XML exists in many forms, and proprietary for-
mats are permeating monopolistic applications.The chief
benefit is processing time.Businesses invest huge amounts
in computers and data storage and demand peak effi-
ciency from their capital expenditures.The wasted space,
bandwidth,and cycles spent storing, transmitting,and pro-
cessing human-readable XML that no human has read
since its creation takes its toll on the bottom line.
Reverting to a proprietary binary XML format to recoup
time and money is a powerful business argument against
the technological moral high ground—the one that says
binary XML somehow subverts human productivity.

Some doubt the need to go to the other extreme, sug-
gesting that a standard gzip encoding can compress text
to an acceptable degree. Many storage devices provide
gzipping functionality, and HTTP provides support for
gzip as well. But although this solves the problem of disk
space and bandwidth, it actually increases the required
processing.Applications must gzip the data before writ-
ing it to disk or transmitting it, and then another opera-
tion must unzip it before the server can parse it. Some
argue that riding the Moore’s law curve more than off-
sets the extra processing required; others say that per-
formance is still being left on the table.

Binary XML takes a different approach
to increasing performance, and reducing
XML document file size is only one com-

ponent of the possible performance
increase.The key to binary XML is that
it is not a post-processed encoding, like

gzip. Binary XML is a full representa-
tion of the document, which an XML
parser can interpret. There is no “first

gunzip then parse.” There is just
“parse.” Gzip, while not lossy, uses backward pointers
to reduce redundancy, which in effect rearranges the
data and makes it hard to parse. Making the document
itself smaller and retaining its order means that the
server can parse it normally and thus faster.

Proponents of the status quo, beyond arguing that
binary XML is just plain wrong and that human read-
ability is key, feel that the existing XML infrastructure is
too far along. It would take too long to create a standard
and to upgrade applications, especially with the prolif-
eration of homegrown binary XML formats.The task of
developing a binary XML standard could become moot
if proprietary formats become so entrenched that noth-
ing can supersede them. Upgrading is an issue with most
popular protocols, but bandwidth and computational
power are commodities that command a premium.

The human readability argument goes something like
this: Human readability increases worker productivity
and permits a greater abstraction level, which means that
if the XML version is intuitive enough, the worker’s
experience base becomes less important. On the other
hand, workers and managers alike would probably argue
in favor of paying workers for their familiarity with the
product.And both would argue in favor of anything that
increases data-processing throughput. I believe every-
one would embrace a binary XML standard if it became
available. A standardized way to convert from human-
readable text to machine-optimized binary would, of
course, please both sides. But until then, gzip and faster
CPUs will have to do.

Binary XML?

18 IT Pro March ❘ April 2005

Although WSDL can aid in verifying a constructed SOAP
message, work remains to define methods for creating a
message and populating the correct value using the infor-
mation WSDL provides. A more practical application of
WSDL is to use these high-level descriptions to automat-
ically generate code stubs for methods and data structures,
XML generation and parsing,HTTP messaging,and a Web
services infrastructure.The result is a different abstraction
level for Web services definition. A programmer will still
be required for the full implementation, but service devel-
opers can ignore the end system’s minutia during the ser-
vice’s design and investigation phase, which means that
people other than software developers can help define,
prototype, and implement the service.

Universal description, discovery,
and integration

UDDI specifies a registry of Web services,similar to num-
bers in a phone book.Given a service’s general description,
it retrieves a list of matching services.Service providers can
dynamically publish information and services, and service
requesters can search through the registry to find personal
information about a service provider as well as technical
information about its services.The UDDI registry maintains
a centralized database of Web services, classified by geog-
raphy, service type, provider information, and so on; it also
defines a standard API for requesters to query the database.

UDDI’s intelligent searching mechanism is still in the

early stages, much like the intelligent inter-
pretation of WSDL. The ability to parse a
human request for a service and correctly
match it to a human description of a service
without the give and take of human conver-
sation is a thorny problem. Researchers and
practitioners are continually refining the inter-
faces and semantics for creating a utopic
UDDI, but work has yet to reach sufficient
stability or maturity for wide deployment. In
fact, it might not ever reach that state.
Moreover, without this functionality, public
UDDI’s usefulness is low,relative to the other
key technologies described here. However,
private UDDI—where the same organization
that produced the service deploys the serv-
ice—is more useful. In this context, it offers a
layer of abstraction that lets the client forego
a hard-coded interface. Instead, the client can
use a well-known identifier to search the
UDDI registry for the most up-to-date inter-
face information.

Business Process Execution
Language

A relative newcomer to the Web services
arena is BPEL, an XML-based standard that

major software vendors—BEA, IBM, Microsoft, SAP, and
Siebel—are developing.As Figure 3 shows in a simplified
form, BPEL enables the abstracted orchestration of mul-
tiple Web services by letting designers describe conditional
and parallel interactions among Web services. The
response value of one or many services can trigger the
invocation of the next service or services. BPEL lets devel-
opers define multiple paths through the script, given dif-
ferent responses. In effect, this means that developers can
create large, conglomerate Web services by conditionally
stringing together constituent Web services. Some of the
popular examples include online purchasing and online
loan approval, where the Web site uses Web service inter-
faces to process orders and applications. Online retailers
can automate supply chain management through Web
service interfaces that individual vendors—the warehouse,
shipping company, auditors, bank and credit card compa-
nies, and so on—supply.Theoretically the service provider
can describe the generic purchase transaction, essentially
the interactions between these vendor entities, as a busi-
ness process and encapsulate it within a BPEL script.
However, much like UDDI, these types of interorganiza-
tion transactions are not yet practical enough to be preva-
lent. For now, organizations can use BPEL in controlled,
internal transactions—those that don’t traverse the public
Internet or share data with anonymous entities.They can
script the retrieval and collation of data from separate enti-
ties like databases and mass storage, ensuring a high level

W E B S E R V I C E S

Service

Servers

Service

Service

BPEL

Server
Client

Response

Request

Service

ServerClient

Response

Request

Figure 3. Simplified diagram of how
BPEL works. By describing conditional
and parallel interactions among Web
services, designers can build a service

conglomeration.

March ❘ April 2005 IT Pro 19

of security and reliability for these transactions that
stay within the organization or a network of trusted
partners.

Although BPEL is not a component technology of
Web services, it is key to their prolifieration because
it advances their scope.Web services can move beyond
simple RPCs, isolated transactions, and singular mes-
sages to a richer and more dynamic conversation-
based model.BPEL increases the level of automation
and empowers Web service consumers with the abil-
ity to orchestrate large,process-oriented interactions.

Security
Web service security is undergoing massive

research, with data security being one of the major
topics. SSL and transport-layer security (TLS) pro-
vide trusted message-level security through Hyper-
text Transport Protocol Security (HTTPS), which is
essentially HTTP over SSL. The ability to address
XML’s flexible nature, however, requires a more
granular, policy-based security architecture.The idea
is complex,encompassing user roles within a data file,
each with different trust levels, defined by policies,
and enforced through multiple cryptographic and
authentication algorithms.A host of Web service stan-
dards attempt to better define these ideas.
Specifications like WS-Trust and WS-Policy, and all
the other ancillary addenda and extensions to WS-
Security, are still far from complete. Even the more
well-defined standards like WS-Security and the
Security Assertion Markup Language (SAML) are
still fighting for traction. Although developments in
security will accelerate, at least for the near term, the
well-understood and well-deployed HTTPS is a pru-
dent choice for security.

WEB SERVICE IMPLEMENTATION
As the previous description implies, the ultimate

goal of Web service technologies is autonomous inter-
action through intermachine communication; this
goal is not yet a reality. Even without such intelligent
agents and sophisticated registries, however, propri-
etary Web service implementations still benefit any
who can use an existing client-server architecture.
Some of the most obvious benefits are

• the ability to customize data representation and
processing,

• interoperability with existing Web-based infra-
structure,

• platform independence through standardized
interfaces,

• access to SSL/TLS security through HTTPS,
• bandwidth subscription mitigation through HTTP

compression, and

Web Services Trends
➤ “Time Well Spent: Web Services Standards Mature

More,” C. Abrams and D. Plummer, Nov. 2004; http://
www3.gartner.com/teleconferences/attributes/attr1037
88 115.ppt.

➤ “Migrating to a Service-Oriented Architecture, Part 1,”
K. Channabasavalah, K. Holley, and E. Tuggle,
Dec. 2003; http://www-106.ibm.com/developerworks/
webservices/library/ws-migratesoa/.

Web Services Standards and Protocols
➤ “XSL Transformations (XSLT),” J. Clark, ed., Nov.

1999; http://w3c.org/TR/xslt/.
➤ “The TLS Protocol Version 1.0,” T. Dierks and C.Allen,

Jan. 1999; ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt.
➤ “The SSL Protocol Version 3,” A.O. Freier, P. Karlton,

and P.C. Kocher, Nov. 1996; http://wp.netscape.com/
eng/ssl3/.

➤ “Security Assertion Markup Language (SAML) 2.0
Technical Overview,” J. Hughes and E. Maler, eds., July
2004; http://www.oasisopen.org/committees/downloads.
php/7874/sstc-saml-tech-overview-2.0-draft-01.pdf.

➤ “SOAP Version 1.2 Part 0: Primer,” N. Mitra, ed., June
2003; http://w3c.org/TR/2003/REC-soap12-part0-
20030624/.

➤ “Business Process Execution Language for Web
Services Version 1.1,” S. Thatte, ed., May 2003;
http://www-128.ibm.com/developerworks/websevices/
library/ws-bpel/.

➤ “UDDI Version 3,” L. Clement and colleagues, eds.,
Oct. 2004; http://uddi.org/pubs/uddi v3.htm.

➤ “Web Services Description Language (WSDL) Version
2.0,” D. Booth and C. Liu, eds., Dec. 2004; http://
w3c.org/TR/2004/WD-wsdl20-primer-20041221/.

➤ “Web Services Security: SOAP Message Security 1.0
(WS-Security 2004),” A. Nadalin and colleagues, eds.,
Mar. 2004; http://www.oasis-open.org/wss/2004/01/oasis-
2004010-wss-soapmessage-security-1.0.pdf.

➤ “XML Schema Part 0: Primer,” D. Fallside and P.
Walmsley, eds., Oct. 2004; http://w3c.org/TR/
xmlschema-0/.

➤ “Extensible Markup Language (XML) 1.0, 3rd ed.,” F.
Yergeau and colleagues, Feb. 2004, http://w3c.org/
TR/2004/REC-xml-20040204.

Web Services Infrastructures
➤ Apache Web Services Project, http://ws.apache.org.
➤ gSOAP, http://www.cs.fsu.edu/ engelen/soap.html.

Resources

20 IT Pro March ❘ April 2005

• the promise of a fully dynamic Web service architecture
with role-based security policies and authenticated trust.

Issues
The ability to customize data structures in an easily deci-

pherable format and still have a standard API for parsing
and processing all proprietary data is a win-win scenario
from the developer’s perspective, although its benefits are
hard to quantify overall.The idea of accessibility and scal-
ability are also somewhat less tangible.The ability to eas-
ily integrate functions into a Web portal with a standard
Java infrastructure means that services can become avail-
able to anyone with a browser. When offered through a
ubiquitous interface, proprietary applications lose their
limitations. Any Web-based method can achieve accessi-
bility.The Web services approach can be as simple as for-
matting messages for transmit using a SOAP
encapsulation. For developers, this standardized format-
ting is a boon and as the industry moves forward, the inter-

operability and data abstraction that Web services provide
can mean less duplicated effort and thus higher efficiency.

From a more concrete standpoint, the ability to take
advantage of the existing SSL/TLS infrastructure is
another reason for the popularity of Web-based
approaches.HTTPS is well deployed,well understood,and
well supported.Although more-specific security standards
for Web services are under development, SSL/TLS pro-
vides a tried and true mechanism for blanket security.

Most of these bonuses do not come without a cost, how-
ever. The overhead of plain-text versus binary encoding
can be large. Descriptive XML tag names only compound
the size bloat of messages. The SOAP encapsulation and
HTTP headers are required as well, which can make data-
transfer sizes quite large.The exact effect of this drawback
is hard to gauge. The use of SSL/TLS security certainly
adds additional messaging overhead for connection setup
and teardown and can introduce a monumental increase in
processing resources because of the costly nature of cryp-
tographic operations. Moreover, an infrastructure based
on platform-independent, interpreted languages (Java,
PERL, or Python, for example) can be much less efficient
than platform-compiled code, resulting in additional per-
formance hits.

Options
Developers have many options for implementing basic

Web services.All the major software vendors are offering
infrastructures, including Microsoft with .Net, IBM with
WebSphere, and BEA with WebLogic. These infrastruc-
tures are complete with custom applications and interfaces,
integrated UDDI and BPEL support, and the like. For
those seeking a less sophisticated (but also less expensive)
approach, the open-source community also has some pack-
ages. A few of the more popular ones are Apache Axis
Java,Apache Axis C++, and gSOAP C/C++. Each of these
open-source options offers the ability to implement a sim-
plified Web service architecture,but they are not as sophis-
ticated as the packages that for-profit vendors offer.Their
subset of features encompasses the core functionality of
SOAP encapsulation, HTTP transport, SSL/TLS security,
and Zlib compression.

Despite their lack of sophistication, these open-source
options are more than adequate for most current applica-
tions, although the support level might not meet the needs
of all Web service providers. Open-source options are cost
effective approaches to software purchasing,but providers
should also consider the frustration and delays that stem
from sparse documentation and long development cycles.
Fast, cheap, and functional is certainly achievable with
open-source software and simple scenarios, but they might
be less suitable for those developing complex services.
gSOAP. In 2001, a group at Florida State University devel-
oped gSOAP. The group still manages gSOAP, but has
made it available to the open-source community through

W E B S E R V I C E S

Provider

Requester

SO
AP r

es
ponse

SO
AP r

eq
ues

t
HTT

PS

Figure 4. gSoap’s Web service
tunnel paradigm.

Provider

Requester

SO
AP r

es
ponse

SO
AP r

eq
ues

t
HTT

PS

Legacy
back end

Figure 5. Apache’s Web service
proxy approach.

March ❘ April 2005 IT Pro 21

Source-Forge.gSOAP provides good documentation,plat-
form independence, and a compiler tool that does a nice
job of generating most of the necessary code for the low-
level SOAP infrastructure. Given a C header file (or
WSDL definition file), gSOAP generates stub functions
for constructing and parsing the XML data representation.
It also includes built-in lightweight HTTP support, as well
as an OpenSSL extension to support HTTPS and a Zlib
extension to support HTTP compression.

Using gSOAP, developers can create custom end-to-end
applications through the tunnel paradigm in Figure 4.
gSOAP handles the TCP, HTTP, XML, and SOAP infra-
structure behind the scenes. It automatically generates the
XML code and provides a standard library for TCP,HTTP,
SSL,and compression support.A complete tool,gSOAP in
effect creates an interoperable and secure logical pipe
through which to tunnel requests from the client to the
server, in a complete end-to-end package. With all this
infrastructure included,developers are free to concentrate
on the application’s true functionality and value.
Apache. In 2000, Apache began working on the Apache
SOAP project, but abandoned it after beginning its Axis
project in 2003. Apache’s approach is slightly different
from gSOAP’s. Apache initially implemented the Axis
package as a Java servlet, which sits atop the Apache Web
server and Apache Jakarta Tomcat servlet infrastructure.
Axis provides SOAP protocol support and service admin-
istration tools, taking advantage of the Apache Xerces
XML processor for XML parsing.Apache’s approach fits
well with applications that run on a Linux-based Web
server and provide services to a Web browser-based inter-
face.Apache is well known for its open-source Web infra-
structure and many ancillary projects. OpenSSL and Zlib
support are included with Apache Web server.

With Apache, developers can create applications with
more of the proxied transaction paradigm in Figure 5.This
paradigm fits well with scenarios such as Web portals, SSL-
based virtual private networks, and connections to legacy
back ends. The architecture can exploit existing infrastruc-
ture to mitigate risk when migrating to Web services. The
full-service Web server and Java infrastructure will,however,
have greater resource requirements (for both memory and
CPU) and thus affect performance more significantly, rela-
tive to the lightweight gSOAP infrastructure.

A POWERFUL ROADMAP
Web services have been around for quite a few years,but

they are just starting to find their way into industry. The
goals and ideals are not new: standards-based protocols,
platform independence, conversational transactions,
machine semantics, and machine autonomy.The problems
are the same; it’s just that technologies are finally making
inroads toward solving them.

Web service technologies still need time to mature and
require more research to realize their ultimate potential,

but this does nothing to diminish their current usefulness.
Both proprietary and standardized protocols offer many
options for internode communication, and SOAP is just
one of them. However, with industry momentum building
behind XML and SOAP,Web services appear to be pulling
ahead of the other options. Even if they never realize their
full potential, Web services are still a viable means for
implementing network communication. And they can be
a roadmap for an incredibly powerful communication
toolset and infrastructure. ■

Kevin J. Ma is a software engineer at Cisco Systems. Con-
tact him at kema@cisco.com.

For further information on this or any other computing
topic, visit our Digital Library at http://www.computer.
org/publications/dlib.

25%

N
o

t

a

m
e

m
b

e
r

?

J
o

i
n

o

n
l

i
n

e

t
o

d
a

y
!

save

on al l

conferences

sponsored

by the

IEEE

Computer Society

I E E E

C o m p u t e r

S o c i e t y

m e m b e r s

w w w. c o m p u t e r. o r g / j o i n

