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Abstract

Recently, the term Web services orchestration has been introduced to address some issues related to Web services composition,
that is the way of defining a complex service out of simpler ones. Several proposals for describing orchestration for business
processes have been presented in the last years and many of these languages make use of concepts as long-running transactions and
compensations for coping with error handling. WS-BPEL 2.0, the most credited candidate for becoming a standard, provides three
different mechanisms allowing to cope with abnormal situations: exception, event and compensation handling. This complexity
makes it difficult to formally define the framework, thus limiting the formal reasoning about the designed applications. In this
paper we advocate that three different mechanisms for error handling are not necessary and we formalize a novel orchestration
language based on the idea of event notification as the unique error handling mechanism. To this end, we formally define the three
BPEL mechanisms in terms of our calculus. It is possible to take advantages of this formal description in two ways. Firstly, this
language represents by itself a proposal of simplification for WS-BPEL 2.0 including an unambiguous specification. Secondly,
an implementor of an actual WS-BPEL 2.0 orchestration engine could implement simply this single mechanism providing all the
remaining ones by compilation. With this attempt we intend to give a concrete contribute towards the improvement of the quality
of the BPEL specification, the applicability of BPEL itself and the implementation of real orchestration engines. Finally, as a case
study we consider some of the hundreds of open issues met by the WS-BPEL designers and we propose a solution making use of
the experience gained developing our algebra.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Service Oriented Computing (SOC) [17] is an emerging paradigm for distributed computing and e-business pro-
cessing that finds its origin in object-oriented [7] and component computing [42]. One of the main goals of SOC is
enabling developers in building networks of integrated and collaborative applications, regardless of both the platform
where the application or service runs (e.g., the operating system) and the programming language used to develop them.

Web services is a set of technologies supporting SOC. It provides a platform on which we can develop applications
taking advantage of the Internet infrastructure. A Web service, specifically, supports its operations by associating any
functionalities to specific access points available over the network in such a way that they can be exploited, in turn, by
other services. The W3C [45] official definition of Web service is the following:
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“A Web service is a software system identified by a URI, whose public interfaces and bindings are defined
and described using XML. Its definition can be discovered by other software systems. These systems may then
interact with the Web service in a manner prescribed by its definition, using XML based messages conveyed by
Internet protocols.”

The Web services framework is essentially based on three technologies: SOAP, WSDL and UDDI. SOAP [39]
(Simple Object Access Protocol) is a protocol defining how services have to interact with each other. It is based on
XML [49] (eXtensible Markup Language) and describes the documents structure to be used for invoking services.
By basing the specification on XML makes it possible to overcome the problems arising when integrating different
operating systems, object models and programming languages. In order to achieve flexibility, SOAP abstracts away
from the underlying transmission protocol (typically HTTP, SMTP, FTP, ...). WSDL [12] (Web Services Description
Language), instead, describes the operations supplied by services, including expected parameters and return values.
Finally, since it is necessary to have a central market place where publishing WSDL documents to allow other parties
to find and use them, UDDI (Universal Description, Discovery and Integration) [43] has been introduced.

1.1. Web services orchestration

Web services technologies provide the way to build complex services out of simpler ones. Then, the composition
can be, in turn, exposed as a service in the same way of basic components. In order to support services composition
the so called orchestration languages have been proposed.

A business process orchestration consists of the aggregation of Web services by programming business rules or
patterns governing services interactions, and has the ability to reuse the created aggregations [20]. Business rules can
be seen as the ingredient that sequences, coordinates, and manages interactions among Web services. To program a
complex cross-enterprise workflow task or business transaction, for example, it is possible to logically chain discrete
Web service activities into inter-enterprise business processes.

Different organizations are presently working on additional layers which have to deal with workflow based com-
position of Web services. The most important proposals that have been presented in the last years are: IBM’s WSFL
[23] and Microsoft’s XLANG [3,41]. A more recent proposal, which aims at integrating both WSFL and XLANG,
is Web Services Business Process Execution Language [1] (WS-BPEL or BPEL for short). It is a workflow-based
programming language that describes sophisticated business processes that orchestrate Web services. It allows for
a mixture of block and graph-structured process models, thus making the language expressive at the price of being
complex. So far, BPEL represents the most credited candidate to become a future standard in the field of Web services
orchestration. For this reason it deserves to be investigated and considered as a touchstone for any further effort in this
field.

An orchestration language must support activities for both communicating with other Web services and handling
workflow semantics. One can think of a basic activity as a component that interacts with something external to the
process itself. In contrast, structured activities manage the overall process flow by specifying the order in which
composing activities have to run. Business process orchestration requirements — as presented in literature [34] —
involve asynchronous interactions, flow coordination, business transaction activity and management. More in detail,
orchestration languages for Web services should exhibit the following behaviours:

e Sequence

e Parallel

e Conditional

e Send/Receive to/from other WS on typed ports (WSDL)
e Invocation of WS

e Error handling

In this paper we will investigate with particular attention the BPEL recovery framework, relatively to the last point
above. BPEL provides three different mechanisms to deal with abnormal situations: exception, event and compensation
handling.! Fault handler and compensation handler are thought to be used at different stages of computation: the former
during the execution of an activity while the latter when it has been completed. While fault (and sometimes event)

1 1t is worth to note that the BPEL event handling mechanism was not specifically designed for error handling. Although it is not a goal of this
work, we consider that the proposed language still allows for all the remaining usages of the original mechanism.
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handlers, are provided by typical concurrent programming languages, compensation handlers can be considered a
peculiarity of orchestration languages. Compensations are related with long running web transactions.

Web transactions are transactional interactions between organizations [24]. They are long running, therefore classic
ACID properties of transactions are not enough, since they make sense only when trusted parties are involved over
short periods of time and they are not appropriate in a loosely coupled world of autonomous trading partners where
hard locking of local resources is unfeasible. So, since business applications require transactional support beyond
the classical approach, BPEL introduces the concepts of long running transaction and compensation as most existing
orchestration languages do when describing loosely coupled activities. Compensations are actions which attempt to
“reverse” the effects of previous actions; they are carried within a transaction when it needs to be cancelled. The meaning
of reversing effects depends on each application. For ACID transactions in a DBMS, the transaction coordinator and
the resource controlled by it know at any time all the uncommitted updates and have full control over the order in
which they must be reversed. In the case of business transactions, however, the compensation behavior is itself a part
of the business logic and must be explicitly specified.

1.2. Contribution of the paper

BPEL is not equipped with formal semantics (as other existing proposals) and, since it includes a large number of
aspects, it is difficult to formally reasoning on processes behavior.

In light of this observation, the semantics of a BPEL fragment is formally addressed in this paper. In particular,
we focus our efforts on the specification of event, fault and compensation handlers behavior. Besides, we advocate
that three different mechanisms for error handling are not necessary and we formalize a novel orchestration language,
webm s, Which is based on the idea of event notification as the unique error handling mechanism. Our belief is supported
also by different works recently proposed by other researchers who are using similar mechanisms (see for example the
extensions of the CORBA transactional system reported in [15]).

webi, is obtained by extending the m-calculus with a transactional construct composed by two processes, say P
and Q, and identified by a unambiguous event name, say x. During the normal execution of P, the specific event x can
occur, raised by a parallel thread. If this happens P is terminated and Q starts.

We show how BPEL mechanisms for error and event handling can be programmed atop our calculus. Moreover, in
order to show the adequacy of webmo, as orchestration language the main activities of BPEL are encoded into webm.
As a consequence, we indirectly provide a formal semantics also for basic and structured activities of BPEL.

We consider that such a proposal represents a significant contribution in two directions. Firstly, webm, represents
by itself a simplification of WS-BPEL 2.0 including an unambiguous specification, thus making possible to formally
reason on orchestration processes. Secondly, an implementor of an actual WS-BPEL 2.0 orchestration engine could
implement simply this single mechanism providing all the remaining ones by compilation.

Finally, a couple of the most interesting open issues met by BPEL designers have been taken into consideration.
In particular, we show how a solution for these issues can be programmed in webm, thus proving that there exists a
expressiveness gap between the two languages. This result highlights the suitability of our proposal for orchestration
scenarios.

1.3. Related work

In this paper we mainly refer to BPEL, the most likely candidate to become a standard. Other languages have been
presented, among them WS-CDL [19], another workflow-based composition language which claims to be in some
relation with fusions [35] and solos [21]. In particular, WS-CDL is built atop the Global Model formalism by Nickolas
Kavantzas (as presented in [18]) which is based on the Explicit Solos Calculus [13], the theory underlying the Fusion
Machine, a virtual machine implementing in a distributed manner the rr-calculus.

Other papers discussing the formal semantics of compensable activities in this context are: the work by Hoare [16]
which is mainly inspired by XLANG, the calculus of Butler and Ferreira [10] which is inspired by BPBeans [11], the
mt-calculus [6] considering BizTalk and the work [9] dealing with short-lived transactions in BizTalk. The work in [8]
also presents the formal semantics for a hierarchy of transactional calculi with increasing expressiveness.

In this paper we only consider the fragment of BPEL concerning concurrency, synchronization, events, faults
and compensation handling. Besides computational constructs, another aspect which deserves to be investigated are
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correlation sets. Since Web services allow us simple forms of interactions (one-way or request-response) such mech-
anism provides a mean for correlating several interactions. Such an orthogonal issue has been separately investigated
in [44].

Concluding, some authors believe that time should be introduced both at the model level and at the protocols and
implementation levels [22,3-5,26]. The specification of XLANG, for instance, provides a notion of timed transaction
as a special case of long running activity. Also BPEL can exhibit a similar behaviours using timers. This is a very
appropriate feature when programming business services which cannot wait forever for other parties reply.

1.4. Outline of the paper

The paper is structured as follows. Section 2 presents the BPEL fragment on which we focus our attention. Section 3
is firstly devoted to describe the main requirements an orchestration language should provide and motivates the choice
of starting by the w-calculus. Then, our language webm, is presented with the relative syntax and semantics. Section
4 describes how main BPEL activities can be encoded in webr,, while Section 5 describes the behavior of event, fault
and compensation handlers and shows how these mechanisms can be programmed. Section 6 presents some open issues
in BPEL design and how they can be solved in our calculus. Finally, Section 7 reports some conclusive considerations.

2. WS-BPEL 2.0

BPEL is, in practice, a layer on top of WSDL. The information contained in WSDL documents defines message
types and port types which represent the operations supported by the service and the interaction modalities. This
information is then used by BPEL for specifying the flow of actions to perform. A BPEL document is an XML-based
document that can be executed by an orchestration engine which is the central coordinator. The engine will read the
BPEL document and will invoke the necessary Web services in the specified order. The process itself will be offered
as a Web service and can be invoked in the same way.

The structure of a BPEL process is described by the following fragment of XML-Schema [50] (attributes are omitted
since they do not change the meaning of the parts we are interested in):

<element name="process" type="bpws:tProcess"/> <complexType
name="tProcess"> <complexContent>
<extension base="bpws:tExtensibleElements">
<sequence>
<element name="import" type="bpws:tImport" minOccurs="0" maxOccurs="unbounded"/>
<element name="partnerLinks" type="bpws:tPartnerLinks" minOccurs="0"/>
<element name="partners" type="bpws:tPartners" minOccurs="0"/>
<element name="variables" type="bpws:tVariables" minOccurs="0"/>
<element name="correlationSets" type="bpws:tCorrelationSets" minOccurs="0"/>
<element name="faultHandlers" type="bpws:tFaultHandlers" minOccurs="0"/>
<element name="compensationHandler" type="bpws:tCompensationHandler" minOccurs="0"/>
<element name="terminationHandler" type="bpws:tTerminationHandler" minOccurs="0"/>
<element name="eventHandlers" type="bpws:tEventHandlers" minOccurs="0"/>
<group ref="bpws:activity"/>
</sequence>
</complexType>

In afew words, a BPEL process is composed of: (i) the list of partners involved in the process and their role, (ii) the mech-
anisms to manage events (eventHandlers) and abnormal situations (faultHandlers and compensationHandler),
(iii) the business process, that is the activities that must be performed to accomplish the service.

The main goal of this paper is to achieve a deeper understanding of error handling mechanisms. In the following we
will describe only the elements relevant to get the goal (activities, scopes and the recovery framework). Activities, in
essence, provide a mean for message passing (basic), concurrency and synchronization (structured). The XML-Schema
fragment describing the activity elements follows:
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<group name="activity">
<choice>
<element name="empty" type="bpws:tEmpty"/>
<element name="invoke" type="bpws:tInvoke"/>
<element name="receive" type="bpws:tReceive"/>
<element name="reply" type="bpws:tReply"/>
<element name="assign" type="bpws:tAssign"/>
<element name="wait" type="bpws:tWait"/>
<element name="throw" type="bpws:tThrow"/>
<element name="rethrow" type="bpws:tRethrow"/>
<element name="terminateexit" type="bpws:tTerminate"/>
<element name="flow" type="bpws:tFlow"/>
<element name="switch" type="bpws:tSwitch"/>
<element name="while" type="bpws:tWhile"/>
<element name="sequence" type="bpws:tSequence"/>
<element name="pick" type="bpws:tPick"/>
<element name="scope" type="bpws:tScope"/>
<element name="compensate" type="bpws:tCompensate"/>
</choice>
</group>

The following sections are devoted to describe the main activities (divided in basic and structured), the event, fault
and compensation handling mechanisms. For the sake of simplicity, we abstract away from some syntactical details.
Moreover, to make more intelligible the syntax, elements will be expressed by using a BNF (Backus—Naur Form)
formalisms instead of XML-Schema (in the same style of the BPEL specification). For completeness, we just recall the
meaning of frequency operators: el?, el+, el* mean respectively zero or one, one or more, Zero or more occurrences
of the element el.

2.1. Basic activities

Basic BPEL activities are described in the following sections.

2.1.1. Invoke
Invoke an operation of a Web service. The invocation can be both synchronous and asynchronous accordingly with
the interaction modality used by the invoked service. The invoke activity is defined as follows:

<invoke partnerLink="ncname" portType="qname" operation="ncname"
inputVariable="ncname"? outputVariable="ncname"?
standard-attributes>

</invoke>

In a few words, partnerLink, portType and operation are used to indicate the specific operation supplied by a
certain partner, the access point of the invoked operation and the transmission protocol used to transmit SOAP requests
(e.g., SMTP, HTTP, .. .) inputVariable and outputVariable represent instead the variables passed as input to and
received as output from the service (if a response is expected), respectively.

2.1.2. Receive

Wait for a request. A receive activity has to specify the interacting partner in terms of its role in the process, port
type and supplied operation. The semantics of a process where more than one receive associated with the same partner,
portType and operation are simultaneously enabled is undefined. The syntax for receive is as follows:
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<receive partnerLink="ncname" portType="qname" operation="ncname"
variable="ncname"? createInstance="yes|no"?
standard-attributes>
standard-elements
</receive>

2.1.3. Reply
It is used to generate a response. A meaningful constraint is that the reply activity must always be preceded by a
receive activity for the same partner, port type and operation.

<reply partnerLink="ncname" portType="qname" operation="ncname"
variable="ncname"? faultName="qname"?
standard-attributes>
standard-elements
</reply>

2.1.4. Throw

It can be used to explicitly signal an internal fault. Any fault is required to have a globally unique name. When the
throw is performed, the name has to be specified as well as some variables containing information about the faults.
This is done by the following syntax:

<throw faultName="qname" faultVariable="ncname"?
standard-attributes>

standard-elements
</throw>

Faults are caught by fault handlers. We will describe fault handlers in Section 2.3.2.

2.1.5. Compensate
The compensate activity is used to invoke the compensation handler. The syntax is

<compensate scope="ncname"? standard-attributes>
standard-elements
</compensate>

Since compensation handlers are associated to scopes, the relative attribute is used to indicate the target of the
activity. It is worth noting that compensation handlers can be invoked only by fault handlers or by compensation
handlers associated with outer scopes. If no compensation handler is defined, the default handler compensates all the
children scopes.

2.1.6. Empty
It represents a terminated activity.

<empty standard-attributes>
standard-elements
</empty>

2.2. Structured activities

Structured activities describe how a business process is created by composing basic activities into complex structures
expressing workflow, control patterns, dataflow, faults handling, external events management and coordination of
messages exchange between process instances involved in a business protocol.
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Main structured activities of BPEL include: (i) ordinary sequential or branching composition (sequence and
switch), (ii) parallel composition and synchronization (f1ow), and (iii) nondeterministic choice (pick).
The description of these activities follows.

2.2.1. Sequence

It allows for sequential composition of activities. A sequential activity contains one or more activities that are
performed in the order in which they are listed within the sequence element. The sequence activity completes when
the final activity in the sequence has completed.

<sequence standard-attributes>
standard-elementsactivity+
</sequence>

2.2.2. Switch

Case-statement approach. The activity consists of an ordered list of one or more conditional branches defined
by case elements (followed by an optional otherwise branch). The case branches are considered in the order in
which they appear. The first branch whose condition holds (condition are expressed by boolean expressions) defines
the activity to be performed by the switch. If no branch condition holds then the otherwise branch is performed
if it exists, otherwise the switch immediately terminates. The whole activity completes when the selected activity
completes.

<switch standard-attributes>
standard-elements
<case condition="bool-expr">+
activity
</case>
<otherwise>?
activity
</otherwise>
</switch>

2.2.3. Pick

It is used to perform the nondeterministic execution of one of several paths depending on an external event. The
form of a pick is a set of branches of the form event-activity where exactly one of these branches will be selected.
A branch is selected if the event associated with it occurs. After the pick activity has accepted an event, the other
events are no longer accepted by that pick. The possible events are the arrival of some message or an alarm clock
based on a timer. Each pick activity must include at least one onMessage event. Remember that the semantics of a
process in which two ore more receive actions for the same partner, porttype and operation are simultaneously enabled
is undefined. The same thing holds in the case of the pick statement. The activity waits the occurrence of one of the
defined events and performs the associated activity. If more than one of the events occurs then the selection depends on
which one occurred first. If the events occurs almost simultaneously, there is a timing and implementation-dependent
race. The activity completes when one of the branches is triggered by the occurrence of its associated event and the
corresponding activity completes. The syntax of pick element follows:

<pick createInstance="yes|no"? standard-attributes>
standard-elements
<onMessage partnerLink="ncname" portType='"qname"
operation="ncname" variable="ncname"7?>+
<correlations>?
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<correlation set="ncname" initiate="yes|no"7>+
</correlations>
activity
</onMessage>
</pick>

2.2.4. Flow

Parallel execution of primitive activities. The £1ow construct provides concurrency and synchronization. The most
fundamental semantic effect of grouping a set of activities in a flow is to enable concurrency. A £f1low completes when
all of the activities it contains have completed. The simplest use of this activity is equivalent to a nested concurrency
construct. The flow syntax is defined as it follows:

<flow standard-attributes>
standard-elements
<links>?
<link name="ncname'>+
</1links>
activity+
</flow>

2.2.5. Links

This feature — an inheritance left by WSFL — allows to set up certain constraints on the elements inside a flow.
This constraint (called link) allows to specify some order on the execution of the parallel activities. Using links a f1ow
construct can be viewed as a graph (this was the basic paradigm of WSFL). Nodes are activities and edges are the links
expressing the interdependencies among activities, that is the order with which they have to be executed.

Links are used to express synchronization dependencies between activities. Abstracting from the XML-based syntax,
a link with its name represents a connection between two activities: one defined as the source and one defined as
the target. Both the source and the target must define explicitly their role in the syntax. The source activity may
also specify a transition condition (if the condition is not defined it is intended to be true). For simplicity, we shall
not describe crossing-boundary link (i.e. links where the source is inside the flow construct while the target is not, or
viceversa. For this kind of link some restrictions holds: for example a link cannot cross a scope).

2.3. Scope

Scope provides a behavior context for each activity inside it. Any scope has a primary structured activity which
defines its normal behavior and the scope is shared by all the nested activities. Besides activities, scopes might also
contain fault, compensation and event handlers. Variables definition inside a scope holds until it is active. A scope
becomes active when its activities can be executed and terminates when all the activities it contains are completed. It
is important to point out that the two mechanisms for dealing with abnormal situations, the fault and the compensation
handler, are in essence concerning with different stages of the computation. In particular, fault handler is the mechanism
used during the execution of the scope activities, while the compensation is used after the successful termination of
the scope. The definition of the scope element follows:

<scope variableAccessSerializable="yes|no" standard-attributes>
standard-elements
<variables>?

</variables>
<correlationSets>?
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</correlationSets>
<faultHandlers>?

</faultHandlers>
<compensationHandler>?

</compensationHandler>
<eventHandlers>?

</eventHandlers>

activity
</scope>

Any scope can include fault, compensation and event handlers whose description follows.

2.3.1. Compensation handler

If defined the compensation handler contains the activity to be performed in the case we are willing to compensate
the activity of the scope. The compensation handler is installed (i.e. it is allowed to be performed) when the scope
terminates in a successful way or, in other words, if no fault has been thrown during the execution and all the activities
have been performed. It is allowed to consult the variables state as they appear at its termination and to interact with
other services. Compensation handlers can be provided by the following syntax:

<compensationHandler>?
activity
</compensationHandler>

2.3.2. Fault handler

The catch element allows handling a fault specified by a fault name. catchAll, instead, is able to capture any
fault not specifically handled. Faults are signalled by the throw activity which interrupts the normal execution of the
scope activating the relative fault handler, if defined. In the opposite case, a default handler is executed.

The default handler compensates all the children scopes and the pending fault is then rethrown to the parent scope
(by specification, the whole BPEL process is considered a scope). By definition, the scope managing the signalled
fault has not a normal termination and consequently its compensation handler will not be installed. To define a fault
handler the following syntax is required:

<faultHandlers>?
<!-- there must be at least one fault handler or default -->
<catch faultName="qgname"? faultVariable="ncname"7?>*
activity
</catch>
<catchAll>?
activity
</catchAll>
</faultHandlers>

2.3.3. Event handler
Any scope, as well as the whole business process, can be associated with event handlers. The life cycle of these
handlers is the same of the associated scope (either it terminates successfully or faulty). Any handler is relative to a
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particular event (an incoming message or a timeout”) and defines the activities to be performed if this event occurs.
Moreover, messages that are caught by an event handler are consumed and — in the same way as happens for receive
activities —itis not allowed that a message sent from a certain partnerlink, portType and operation can be simultaneously
consumed by more than one receive or event handler. Activities performed by an event handler can be anything except
compensate, that is the invocation of a compensation handler. When an event occurs, the corresponding handler is
concurrently executed with the main activity. Other event will also be handled concurrently, even in the case of two
identical occurrences.

<eventHandlers>?
<!-- there must be at least one onMessage or
onAlarm handler -->
<onMessage partnerLink="ncname" portType="qname"
operation="ncname"
variable="ncname"7?>*

<correlations>?
<correlation set="ncname" initiate="yes|no">+

</correlations>
activity

</onMessage>

<onAlarm for="duration-expr"? until="deadline-expr"7?>*
activity

</onAlarm>

</eventHandlers>

3. The orchestration calculus webm

Although BPEL covers all the aspects presented in the previous section, its current specification is rather involved.
A major issue is error handling.

As explained, BPEL provides three different mechanisms which allow us to cope with abnormal situations: fault,
compensation and event handling. Documentation shows ambiguities, in particular about the interdependencies among
these mechanisms. Therefore, it is difficult to use the language, and we want to clarify this aspect.

Our goal is the definition of a clear model with the smallest set of operators which can meet the behaviours introduced
above, offering a reasonable simplicity to the application designers. We start from the w-calculus [32,30,37], a well
known process algebra which has been widely studied during the last 15 years. It is simple and appropriate for
orchestration purposes. It includes:

e a parallel operator allowing explicit concurrency,

e arestriction operator allowing compositionality and explicit resource creation,
a recursion or a process definition operator,
a sequence operator allowing causal relationship between activities,
an inaction operator which is just a ground term for inductive definition on sequencing,
message passing and especially name passing operators allowing communication and link mobility.
The main reason to use the 7 -calculus for formalization is because the so called Web services composition languages,
like XLANG, WS-BPEL and WS-CDL, claim to be based on it, and they would therefore allow rigorous mathematical
treatment. However, no interesting relation with process algebras has really been proved for any of these languages,
nor an effective tool for analysis and reasoning, either theoretical or software based, has been released. Therefore, we
see a gap that needs to be filled, and we want to address the problem of composing services starting directly from the
m-calculus. This is not to say that the w-calculus is superior to other models, such as Petri nets [36].

2 In this paper we do not deal with temporal aspects, thus this case is not considered.
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Although the m-calculus seems to offer an adequate framework for orchestration, by itself it does not support
any transactional mechanism. Programming complex business processes with failure handling in terms of message
passing only is not reasonable; also, the Web services environment requires that several operations have transactional
properties and be treated as a single logical unit of work when performed within a single business transaction. Therefore,
below we shall consider a lightweight and conservative extension of the w-calculus that covers transactions. The
language we present is a slight extension of the one presented in [27] to analyze a case study of Web services
orchestration.

3.1. Syntax

The syntax of webm, processes relies on countable sets of names, ranged over by x, y, z, u, ... Tuples of names
are written iZ. We intend i € I with I a finite nonempty set of indexes.

P =
0 (nil)
|P|P (parallel composition)
| Y% (7). P; (alternative composition)
|if (x =y) then P else Q (conditional)
| % () (output)
| (x)P (restriction)
| 'x(W).P (lazy replication)
[{P; P), (transaction)

A process can be the inert process 0, a parallel composition of processes, an alternative composition consisting of
input guarded processes that consumes a message X; (W;) and behaves like P;{1i / ii;}» a conditional branch based on
name equality, an output x () sent on a name x that carries a tuple of names ¥ , a restriction (x) P that behaves as P
except that inputs and messages on x are prohibited, a replicated input !x (). P that consumes a message x {(w) and
behaves like p{ﬁ /i) 'x (). P, or a (Web) transaction (P ; R}, that behaves as the body P until a transaction abort
x () is signalled, in this case when it occurs it behaves as the compensation R.

Names x in outputs, inputs, and replicated inputs are called subjects of outputs, inputs, and replicated inputs,
respectively. It is worth to notice that the syntax of webm, processes simply augments the asynchronous x-calculus
with transaction process.

The input x (). P, restriction (x)P and replicated input !x().P are binders of names u#, x and u, respectively.
The scope of these binders is the process P. We use the standard notions of «-equivalence, free and bound names of
processes, noted £n(P), bn(P) respectively. In particular fn({P ; R),) = fn(P) U fn(R) U {x} and a-equivalence
equates (x)({P ; Qb,) with (z)({P{2/,}; Of%/x}),). We also define bn;(P) as the set of bound names of P with
inputs and replicated inputs as binders.

In this paper we consider only processes in Process which is the set composed of well-formed webmr, processes,
whose definition follows.

Definition 3.1 (Well-formedness). A process is well-formed if the two following conditions hold:
(1) (Output capability of input names) Received names cannot be used as subjects of inputs or of replicated inputs.
More formally if a process, say P, contains u (V) or lu(v) then u & bn; (P).
(2) (Unicast activation) Transaction names are distinct. Different transactions cannot share the same activation
name and every abort message is able to activate a single compensation. Formally, if a process is of the form
PiI{P; Qb | P2I{R; Sb, | P;forsome Py, P> and P3 then x # y.

The first of these properties guarantees that if a name is received by a certain process it does not use that name
to perform input on it. Such a condition is strictly related with the fact that the access points of Web services, that is
the operations, are available on specific channels. In this way we avoid a situation where different services support
the same operation. The second is intended to avoid ambiguity on scope names reflecting BPEL itself, that is no any
transaction is univocally identified.
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3.2. The semantics

Now we shall give the semantics for the language in two steps, following the approach of Milner [31]. This
approach consists in separating the laws which govern the static relations between processes from the laws which
rule their interactions. We shall achieve this by defining firstly a static structural congruence relation over processes.
A structural congruence relation equates all processes we will never want to distinguish and it is introduced via a
collection of axioms that allow minor manipulation on the processes structure. This relation is intended to express
some intrinsic meanings of the operators, for example that parallel composition is commutative. Secondly, we shall
define the way in which processes evolve dynamically by means of an operational semantics. In this way we simplify
the statement of the semantics just closing with respect to =, i.e. closing up to structural congruence.

Definition 3.2. The structural congruence = is the least congruence satisfying the abelian monoid laws for parallel
(associativity, commutativity and 0 as identity) closed with respect to a-renaming and the following axioms:
1. Scope laws:

@W0=0, wWP=WwP,
Plw)Q =) (P|Q), ifugin(P)
(@P; Qb= @(P; Oy, ifz¢{x}Ufn(Q)

2. Transaction laws:

0: 0),=0
WP : QbyIR: R') = (P: Q) I{R: R,

3. Floating law:
(z@ P Qb =7@) (P ; Q)

The scope laws are standard while novelties regard transaction and floating laws. The law (0 ; Q), = 0 defines
committed transactions, namely transactions with 0 as body. These transactions, being committed, are equivalent
to 0 and, therefore, cannot fail anymore. The law ({P ; Q)| R ; R'), =(P; Oby [{R; R’} moves transactions
outside parent transactions, thus flattening nested transactions. Notwithstanding this flattening, parent transactions may
still affect children transactions by means of transaction names. The law (zZ (i) | P ; R), =z (u)|{P ; R), floats
messages outside transactions, thus modelling the fact that messages are particles that independently move towards their
inputs. The intended semantics is the following: if a process emits a message, this message traverses the surrounding
transaction boundaries until it reaches the corresponding input. In case an outer transaction fails, recoveries for this
message may be detailed inside the compensation processes.
The dynamic behavior of processes is defined by the reduction relation.

Definition 3.3. The reduction relation — is the least relation satisfying the following axioms and rules, and closed
with respect to =, (x)_, _ |_,and { _; Q),:

(com)

X ()| 2. P — P/

(REP)

x(0) | x@).P — P{E/g} | \x(&).P
(FAIL)

TOUP: Oy — Q P#£0

(IFT)

if (x =x) then P else Q —> P
(IFF)

if (x =y) then P else Q — Q0 xXFy

Rules (com) and (rep) are standard in process calculi and models input—output interaction and lazy replication. Rule fail
models transaction failures: when a transaction abort (a message on a transaction name) is emitted, the corresponding
body is terminated and the compensation activated. On the contrary, aborts are not possible if the transaction is already
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terminated, namely every thread in the body has completed its own work. It is worth noting that we consider terminated
a transaction when its main activity is equal to 0, thus it is not in a terminated state if the main activity is a process
P which behaves as 0, in the sense that it is semantically equivalent to 0. For instance (x)x () behaves as 0 but it is
not considered terminated thus the transaction can react to the fail signal. Finally (ift) and (iff) reflect the intended
behavior for conditional branching.

4. Expressing WS-BPEL 2.0 semantics

In this section our goal is to give the semantics of WS-BPEL 2.0: we will do this in terms of webm,. This effort is
intended to show the flexibility of the algebra with respect to orchestration purposes when compared with real languages.
Practically, we limit our work to a subset of the whole BPEL. We consider mainly basic activities, structured activities
and error handling, letting Correlation Sets, Partner and data handling as future work. Preliminary results appeared can
be found in [28], while an application of those results in [14].

A consistent feeling regarding significant relations between 7 -calculus and orchestration languages is spreading,
both in the academia and in the industry [38]. Although all this hype, to formally compare such languages is not
trivial.

BPEL for example cannot completely deal with name mobility if not coupled with another specification, WS-
Addressing [47], which is just a W3C member submission. Nevertheless, another meaningful difference is that
WS-BPEL combines computational and concurrent constructs while m-calculus is essentially focused on concur-
rency.

In particular, BPEL allows both global name and global states over computation and message passing. Furthermore
it combines sequencing with concurrency allowing synchronization patterns. In these cases interleaving and name
binding create confusing behavior with respect the natural & -calculus semantics.

Let us consider the following example where we use the symbol ; to express the sequential composition of BPEL:

((x().P1Q); RIS T
Normally, the m-calculus semantics allows the binding of u simply over P according to the rule
@) |x@).P — P{/z)

and the closure over parallel composition.

Differently, the sequencing of BPEL is not a prefix operator like this and would allow the substitution over all the
scope where names are defined including R, S, T and even the remaining part of Q at the moment of the receiving.
This is a typical global state semantics of sequential programming languages that, when combined with concurrent
flow makes very intricate to model such behavior with the w-calculus.

Furthermore, BPEL has not a formally defined semantics and this significantly complicates the understanding and
the attempt of comparing its behavior with the one of the -calculus. All these points, in our opinion, should convince
us to be very careful when associating process algebra and workflow languages (particulary BPEL which has been the
main touchstone of our investigation).

Anyway, a mapping is possible if it is limited to concurrency and synchronization mechanisms of BPEL, paying
attention to these few complication which will be adequately remarked also in the following.

4.1. Core BPEL syntax

Now let us give the formal machinery necessary to express the encoding. Firstly we present a syntax for the core
language we intend to consider in the following. As said, we are abstracting from several aspects of the language
focusing on workflow and failure handling. Furthermore we want to abstract form verbose XML syntax.

The syntax of BPEL processes relies on countable sets of port names, ranged over by x, y, z,u, i, o0, ..., fault
names, ranged over by f, g, h and scope names, ranged over by z, 7/, ... Tuples of names are written .



R. Lucchi, M. Mazzara / Journal of Logic and Algebraic Programming 70 (2007) 96-118 109

A =

empty (empty)
| invoke(xy, i, &) (synch invoke)
| invoke(xy, 1) (asynch invoke)
| receive(xy, i) (receive)
| reply(xs, 0) (reply)
| throw(f, 0) (throw)
| compensate(z, 0) (compensate)
| sequence (A, A) (sequence)
| flow (A, A) (parallel)
| switch (x =y) A; A (conditional)
| pick ((x,i1, A), (x, i, A)) (alternative)
| scope, (A, Se, S¢, A) (scope)

This syntax is quite intuitive and it simply represents an abstraction for the actual BPEL syntax. Sequence, parallel,
conditional and alternative are here composed by only two activities. Clearly, the composition can be extended to an
arbitrary number of activities by nesting multiple statement.

The scope construct deserves some considerations. Here S, (resp. Sy) is a finite set of triples of the form (x, u, A)
(resp. (f, i, A)). Informally, (x, &, A) (resp. (f, i, A)) means that the event related to port name x (resp. the exception
f) is handled by the activity A which receives as parameters u.

The term scope, (A, Se, S7, Ac) defines a scope, whose name is z, where A represents the process associated with
the scope, S, the set of handled events, Sy the set of handled exceptions and, finally, A. the compensation activity
associated with that scope.

In the following we consider only BPEL activities in A ppgy, which is the set composed of well-formed activities. The
definition of well-formedness for activities is essentially the same used for websw processes and can be obtained simply
by rephrasing syntactical constraints defined in Definition 3.1 (e.g., scope names unequivocally identify scopes).

4.2. Semantics

In this section we give the semantics in terms of our algebra. To this end we define the function [ [l z) : AppeL —
Process which maps BPEL activities into webmy, processes. Such processes execute the BPEL activity and flag out
v (u) to signal termination. The role played by & will be clarified later. Shortly, the tuple is used as a way to pass received
names in sequenced activities in the continuation passing style encoding (see Section 4.4.1). It is worth noting that this
expedient does not completely solve the problem of variables state alignment (e.g., in parallel composed processes the
problem still holds) but it supports value passing in the most significant cases (sequential composition). Considering
shared global variables is beyond the scope of this paper, anyway it is well-known in the literature that global accesses
can be avoided in favour of message passing and viceversa. Message passing can be used to implement shared memory:
a global state can be a particular process which receives read and write messages and operates the required tasks; and
message passing can be done using shared variables as communication channels [40].

In the following we compositionally define this function. We assume the names ranged over y,y’, . . . as fresh names.

4.3. Basic activities
Let us consider basic activities.

4.3.1. Empty

The empty behavior <empty/> has a natural mapping in 0. Although such an activity do nothing, as will be clear
in the following we have to signal it has been enabled (i.e. terminated) to support sequential composition. We express
the encoding as

[emptylly @) = ¥ (&)
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4.3.2. Asynchronous (one-way) invoke

BPEL allows asynchronous invocation of services available over the network. Differently from the complete syntax
(see Section 2.1.1) here we are abstracting from some details of the invoked service by using a channel as service
identifier (i.e. identifying a specific operation of a certain service). In particular, any operation implemented by a Web
service can be considered associated to a channel which is dedicated to receive invocations of the supplied operation.
We translate this behavior as follows:

[[invoke(xs, Dl @) = Xs (i) |V (i)
where x; is the access point of the service. It is worth noting that, since we are considering the asynchronous invoke,
the encoding does not guarantee that when the termination is signalled the invocation has completed.

4.3.3. Synchronous (request—response) invoke

Let us consider synchronous invocation of services: This kind of invocation needs two variables, we identify as o
the result of invocation. Here we need to introduce a session name r, which is a fresh name, to correlate the invocation
with its response (in particular, as we will show in the following, the invoked service S uses this channel to reply):

linvoke(xs, i, &)y @ = r (% (r, i) |7(3).¥ (i)

4.3.4. Supplying services
Accordingly with invoke activity defined above, x; represents a specific operation supplied by a service. In webmry,
the same specification looks like:

llreceive(xy, D) ly ) = X5 (r, ). (@)

where the name x; has to be publicly available (i.e. a global name) and r is the channel name to be used to perform
the reply activity if it is expected (in this case the invoke have to be programmed in a synchronous way accordingly
with Section 4.3.3 where r is a fresh name passed by the invoker).

4.3.5. Supplying response
Services with request—response interaction modality use reply activity to transmit the result of invocation. We
specify this behavior similarly to the invoke activity:

[[reply(xs, O)lly @y = X5 (0) |V (u)

4.3.6. Raising an exception

Raising an exception in our model consists of an output message on a failure channel that activates the handler
responsible for catching it, and by another output that signals to the scope that it has to be terminated (scopes and fault
handlers will be programmed in the following section). The throw( f, 0) is programmed as follows:

throw(f, )My @ = r( throw () | f (r,3) | r().5 (i)

where [ represents the exception name while o the value passed to the handler. The fault signal is composed of two
outputs: one is caught by the fault handler (f (r, 0)) which performs an output on r when it completes its activity, and
the other one (throw ()) by the scope that terminates its activity. The throw(f, 0) completes when the fault has been
handled.

4.3.7. Compensate
Compensation mechanism is programmed simply by performing an output on a channel, whose name is the fault
name, with parameters that have to be passed to the compensation handler as it follows:

[[compensate(z, &)y @ = Z (0) |y (i)

4.4. Structured activities

Let us consider structured activities.
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4.4.1. Sequential composition

Let sequence (A, A’) be the sequential composition of activity A and A’; the encoding of such an activity into
webm, follows.

[[sequence (A, ANy @) = y’([][A’]]]y(ﬁ) | y'(@).IA" Wy @) where § = fn(A")

At this point, there is a subtle point which deserves more attention. As previously mentioned, the sequencing of
BPEL is not a binder operator like the w-calculus. In particular, variables scopes infer different semantical behavior
with respect to usual binding of process algebra. The problem arises when sequentially combining two activities which
include some name input on common names. In these cases the encoding requires more attention. For this reason we
cannot simply trigger the second activity when the first one terminates but we require to pass additional information
to bind the free names of the second activity. In this paper we are claiming that any statement trying to assimilate
workflow languages like BPEL and m-like languages should be carefully analyzed and need a deeper investigation
where theoretical considerations play a central role.

4.4.2. Parallel composition

A crucial aspect of workflow languages for Web services is the opportunity of composing in parallel many activities.
Concurrency allows the versatility needed by the scenario but introduces some semantical complications of primary
importance.

BPEL allows the usage of links in flow activity. Links are used to express synchronization dependencies between
activities. This feature of BPEL is a legacy of WSFL and, in our opinion, represents another source of redundancy and
confusion for a workflow language. We intend to code this simply by message passing. Here, to keep the specification
small we ignore this aspect.

We express the semantics of this construct as

l£1ow (A" ANy = ¥'y" (WA Ty oy 1A T oy |3 G01).y" ). (@)

4.4.3. Conditional composition

Conditional composition in BPEL follows a case-statement approach. We present the basic case of two alternatives
with a boolean condition on name equalities which are naturally encoded by the conditional statement of our algebra.
Let A be the conditional composition of A" and A”, the specification in webmoo of A is the following:

[switch (x = x') A”; A”]]]y @ =1if (x = x') then I][A/]]]y (i) else [I[A”]]]y (i)

4.4.4. Alternative composition

Abstracting over service details (we simply write x; for a specific service) the alternative composition can be obtained
by the pick statement. Pick allows nondeterministic execution of one of several paths based on an external event, this
is the typical choice operator of the 7 -calculus. Let A be the alternative composition of A’ and A”, the specification in
webmso of A is the following:

lipick ((x1,i1, A), (x2, iz, Ay @) = X1GD-MA T @) + x232)-MA" 5 (2

5. Scope

Scopes can be thought as the wrapping structure containing BPEL processes. Activities inside scopes can be
associated to particular mechanisms to handle asynchronous events and failures. In this section our aim is to investigate
scopes semantics. To this end, we firstly describe our understanding of the scope behavior, then we describe how it
can be programmed in webms.

Let A, = scope;(A, S., Sy, C) be a scope. When nothing bad occurs (i.e. no fault happens), it behaves as A (the
main activity). As mentioned in Section 2.3, event and fault handlers both play their role during the execution of this
activity: they are enabled when A is performed and they are disabled when it terminates. The fundamental difference
is that events are handled concurrently with A while faults interrupt its execution.

In the case an event X (V) occurs during the normal execution of a main activity A, if an appropriate handler
(x,u, B) € S, is defined for some # and B, the event is consumed and the scope behaves as the parallel composition
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(i.e. flow) of A; and B{V/ 7). Here u represents the formal parameters of the handler. On the other hand, if during the
execution of a scope an exception throw(f, V) happens (note that exceptions can be raised only by the main activity)
two different behaviours are possible, depending whether the current fault is handled or not. In the first case, that is when
(f.u, B) € Sy for some u and B, the scope behaves as the fault handler B{E/ 7} where i are the names which represent
the formal parameter. In the opposite case, the scope behaves as the parallel composition of throw( f, V) (the exception
is rethrown to the outer scope) and the default handler compensating all the children scopes. Compensation handlers
are installed when the activity A terminates without faults. In this case, when compensate(z, 0) is performed, the
scope A; behaves as C {5/ 7} where i are names substituted by 0. On the other hand, if compensate(z, 0) is performed
when A has not completed, the scope behaves as the default handler compensating all the children scopes.

5.1. Encoding scopes in webms

All the described behaviours are allowed in the event based framework webs . In this section we shall show how the
mechanisms provided by the BPEL Recovery Framework can be programmed in our language. At the end, it should
be immediate to figure out that implementing failure resilient business processes within this single error handling
mechanism is both easy and effective. We intend this as a main contribution of this paper.

Following the approach used in the whole paper, we present how to specify the scope activity by means of webms,
processes. The specification we propose is essentially composed by many threads running in parallel, some managing
scope activities, other dedicated to event, fault and compensation handlers. We firstly describe these last three processes.

Let hy and h, be functions that, given a scope, return respectively the set of handled faults and handled events.
More precisely, h ¢(scope, (A, S, S¢, C)) = {x | (x, u,B) e Sy} and he(scope,(A, S,, S, C)) = {x | (x, i,B) €
Se} (when this is not ambiguous we will use shortcuts 4 ¢ (S¢) and £.(S.)). We also define s, as a function that, given
A € Appgr, returns the set of scope names contained in A. Consider that all these functions are simply syntactical
extractor. The following subsections are devoted to describe the three error handling mechanisms, and the concluding
subsection reports the encoding of scopes.

5.1.1. Event handler
Let S, be the set of handled events and y., a name used to signal the event handler has been disabled, the process
implementing the event handling behavior is as follows:

EH(Se, yen) = () ({ex | x € he(Se)})

enanO- (0[] 'x@& @ Yo Oais|  [[ 'ec@ A,

(x,1,A)ES, (x,10,Ax)ESe

The definition consists of two parallel processes: the first catching events while the second handling them. The signal
on channel en,, enables the overall process to became reactive to all the events included in S,. The transactions is
introduced to disable event handling: when the signal dis,, is raised, no events are longer considered and the termination
signal y., is performed. It is worth to note that actual event handling activities A, are outside the transaction. This
ensures that, once disabled the whole handler, the activities which are still alive can complete their execution as
underlined by the BPEL specification. Event handlers are composed in parallel and are specified by replicated input
guarded processes waiting for an incoming message on an event related channel. This allows concurrent management of
multiple events. The process executed when a specific event occurs are identified by [[A, ]]]? 0 i.e. the translation of the
BPEL body activity in webms, by means of the function introduced in the previous section. Finally, some consideration
on restricted names. Besides y’, which is used to signal the termination of any handler (we do not distinguish among
different handlers because we are not interested in when they complete), we restrict names e for any x € h,(S,) (that
we assume not appearing free in A, for any x € h.(S,)) in order to guarantee that the defined handlers can be activated
only within EH.

5.1.2. Fault handler
Let S be the set of handled faults and y s a name used to signal fault handler termination, the process implementing
the fault handling behavior is as follows:
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FH( Sz, yrm) =)
04 Y Fe WA | Trow ()Y 0-F O 1575 0) 5 577 Oaisy

(fii,A)eSy

The encoding of such a construct is rather similar to the event handling except for the fact that, when a fault is thrown,
the main activity of the scope must be terminated. After the fault handling, the entire scope has to be terminated as
well. Thus, fault handlers are encoded by alternative composition of input guarded processes waiting for a message on
a relative channel. Any process associated to a fault is programmed in such a way that, when it terminates, the whole
F H also terminates. When the fault handling completes, both the including scope and the activating throw(f, i) are
notified. The first by an output on y ¢5, the second by an output on r. As a consequence of this notification they will be
terminated. Note that, differently from event handlers, when a fault is caught, the process behaves as the mapping of
the associated activity in parallel with an output on throw. This second parallel activity will be received by the scope
which will be terminated.

5.1.3. Compensation handler

The compensation handler has to be programmed in a different way. Indeed it has to be enabled when the scope starts
and installed at the end of the execution if no fault happened. Moreover, it can react to a compensate invocation at any
time behaving in a way depending on the state of scope execution. Let A and C be scope and compensation activities,
z a scope name and y., a name used to signal handler installation. The process which manages scope compensation is
defined as follows:

CH(A,C,z, yen) =
encp()-{z(@).(CC(A, @) | throw () ; (V) 2@).MICT iy | Fen Wingty,

where CC (A, i) is an auxiliary process used to compensate children scopes of A:
cciaiy= ] Z@
7/'€sn(A)

Accordingly with Section 4.3.7, the compensation handler associated to a scope z has to react to an output on
channel z. In the case the handler has been enabled but not yet installed, the behavior is z().(CC(A, i) | throw ()).
Otherwise the handler behaves as (y')z().[[C 1y 1 Ve ) where yep, () signals the scope that the compensation has been
properly installed. The first behavior means the termination of the scope activity (throw ()) and the compensation of
children scopes (CC (A, i)). The second behavior, instead (the compensation handler has been installed), consists of
the compensation process defined by designers.

5.1.4. Scopes

Now we are ready to put together all this machinery to specify the whole scope construct. In the following, in order
to make more intelligible the specification, we use as shortcut en, , () to denote eny () | en,, (); similarly for disy y ().
Let A; = scope, (A, S., Sy, C) € Appgr be a scope and y’ a name not occurring free in A; A, semantics is defined
as follows:

[[scope (A, S, S, O)llyy =

V' Yeny rnyen(hp(AL))(throw)(enen, en pp, ency, disen, dis pp, instey)

EH(Se, yen) |

FH(Sy, yfn) |

CH(A,C,z, ycn) |

(eren pn.en O | IMAT7 (150 O 1 cO-disen, g O linsten ) | Yen - 0-yen 0.5 ()
| (O (throw () | dis gy () +10.€ ()

disen () | StopExecC(A) [ xs0.dispn () | yen -y rn0-Y' 0.3 O trow

where StopExecC(A) = [[esenamescay %s (-
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Firstly some considerations about restricted names. By restricting the name throw we allow only activities inside
the scope itself to rise an exception. By restricting all handled fault, we instead guarantee that these faults are caught
by the handler of this scope: they are propagated only in the case the fault is not handled by the current F H.

The program is the parallel composition of the event, fault and compensation handlers and by a process representing
the main activity of the scope. Such a process is a transaction whose meaning is the following: (i) the process executed
represents the activity of the scope, (ii) the process associated to the compensation of the transaction is programmed
for handling faults.

We proceed first by describing the encoding of the scope activity. It starts by enabling the event, fault and compen-
sation handlers, and by performing the process obtained by encoding the activity programmed in the scope in parallel
with other processes whose meaning is

o (x;0.(throw () |m ()) +1().c()): its meaning is managing the stop of scope activity which parent scopes can
invoke in order to stop the execution of children scopes (x; ()). The alternative composition of such functionality
with the input guarded process on ¢ guarantees that such an activity is available until [l[A]]]; (@) terminates.

e V' 0.1 () |cO.(disen, rn () | insten ()): it moves when the scope activity terminates, it disable stop handling and then
event and fault as well and installs the compensation handlers.

® Yen 0.y£r0-yern Q.Y (): such process is responsible of signalling the scope termination (in the case the scope com-
pletes in a successful way), that is event and fault handlers have been disabled and compensation handlers have
been installed.

Finally, in the case of successful termination the process of the transaction terminates thus the entire transaction as
well. During the execution of the scope activity events are handled by EH (Se, ye), faults by FH(Sy, y ;) and the
compensation by CH (A, C, z, Ycn)-

In the case a fault is thrown during the execution of the scope activity, an output on channel throw (and another one
on f which is the signalled fault which is received by F' H), which enables the compensation of the throw transaction
which terminates the main activity and then behaves as dis.p, () | StopExecC(A) | x50.dis r () | Yer 0.y 0.y 0. ().
Such process disables the event handler, stops the execution of any children scopes and signals the scope termination
after having verified that the event handler as well as the fault handler have been disabled and that the entire activity
A has been terminated. The process x;().dis sy, () can move only in one case, that is when the fault is not handled by
the scope raising the exception, in this case to disable its fault handler we need to interact with the process handling
the throw.

Finally, it remains to considerate the case where a compensation is invoked when the main activity is not yet
completed. In this case, C H compensates any scope child and signals (hrow) to the main activity that it has to be
terminated.

6. Open issues in WS-BPEL

In this section we present a couple of significant open issues of the hundreds ones in designing WS-BPEL. The
open issues list is publicly available on the OASIS web site [33]. Each of the chosen issues to be presented here
is firstly described and then a solution is proposed making use of the experience gained developing our algebra.
With this attempt we intend to give a concrete contribution towards the improvement of the quality of the BPEL
specification, the applicability of BPEL itself and the implementation of real orchestration engines. Furthermore we
intend to demonstrate, in real life scenarios, the added value of formal methods.

6.1. Completion condition

We cite the issue 6 of [48]:

“In BPEL a set of parallel activities is treated as finished if all activities have been completed. In many cases the
process does not need to wait for all the concurrent activities to finish for the overall objective to be reached. There
should be a way to express the “completion” of the desired objective, causing termination of all “unnecessary”
concurrent activities”.
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In webmr we have an easy way to obtain this behavior which in literature is called speculative parallelism. Speculative
parallelism is the parallel composition of several activities, representing alternative ways of achieving a goal, such that,
when one completes — the winner —, the remaining activities — the losers — are abandoned. For the sake of simplicity,
we consider only speculative parallelism consisting of two activities (the generalization is trivial) named A and B,
respectively. These activities are modelled by two transactions called x4 and xp, which are inside an outer transaction
responsible for deciding the winner and the loser. The definition is as follows:

(x4, xp, resp, acka, ackp)
{ (reqy () lansa(); (resp ((xp, acka)) | acka().0) ; cancels (),
| {reqp () | ansp(); (resp {(xa, ackp)) | ackp(); 0) ; cancelp ()],
lresp(x, y); Q1Y (D) s ¥4 (O 1x () D,

The transactions called x4 and xp send a request to a corresponding service — on names req 4 and reqp, respectively
— and wait for the answer. On reception of the answer — on names ansg and ansp, respectively —, the transac-
tions communicate their end on the private channel resp. The message carries two names: the first one is the name
of the opposite transaction while the second one is the name of an input where the transaction body is waiting
for an acknowledgement. When the outer transaction receives these two names, they are used to cancel the loser
and to acknowledge the winner. Each transaction has an associated compensation process able to cancel the task
itself. The compensation process of the outer transaction simply invokes the compensations of the inner transac-
tions.

6.2. Dynamic parallel processing

Citing the issue 4 of [48]:

“BPEL only supports the invocation of a single web service within an invoke activity. In many situations it is
required that a particular invoke activity results in the creation of many activity instances where the number of
instances is not known at design time but it is calculated at runtime from the contents of a set of data or references.
All instances are carried out in parallel and must be synchronized for completion of the activity. Typical example
for this type of processing is the sending of a request to a number of services. Processing of such an activity
includes fanning out the requests, collecting the results of the requests, and determining the overall (combined)
result of the different requests.”

The problem could be easily solved in the case we compose such activities in sequence (by using the while
construct), while to manage a dynamic number of activities in parallel we need to replicate activities and there is no
way, in BPEL, to synchronize them and then to implement the phase which collects anche combines the several results.
This expressiveness gap is a direct consequence of the fact that BPEL can replicate (i.e. create new instances) activities
only starting by a receive operation, but it does not provide any mechanisms to synchronize instances, thus preventing
to collect the results obtained by the termination of the several instances. On the other hand, webmr, provides the same
mechanism to replicate processes (lazy replication). In this case, however, it is possible to synchronize processes by
using channels to notify the completion of any instance of the activity to a process which is responsible for collecting
the result of any activity instance.

7. Conclusions

In this paper the semantics of a significant fragment of BPEL has been formally defined in term of webm. In
particular, we have shown how the event handler as well as the fault and the compensation handlers, which are the
closest ones to error handling, can be programmed by exploiting the event-based mechanisms we propose in our
calculus. With this work we intend to give a concrete contribution from the point of view of the orchestration language
specifications in terms of unambiguous semantics and of the feasible implementations of BPEL orchestration engines.
Finally, we also show how the language we propose is expressive enough to solve some open issues of BPEL, thus
proving an expressiveness gap between the two orchestration languages.



116 R. Lucchi, M. Mazzara / Journal of Logic and Algebraic Programming 70 (2007) 96-118

The aim of this paper has been analyzing Web services composition and workflow and, in particular, to investigate
the WS-BPEL error recovery framework. To get this task feasible we have been forced to simplify the whole language,
by considering only the relevant aspects. We intend to complete our investigation in the future considering further
details as variables and global states.

We consider this paper as the first step towards the definition of a formal framework for reasoning on WS-
BPEL orchestrations. To this end, as future work we intend to define some behavioural equivalences on webw
that could be used to analyse and compare the behaviour of webm orchestrations. Moreover, given that we pro-
vide WS-BPEL semantics in terms of webmw, once having defined such an equivalence we can directly inherit a
behavioural equivalence relation also for WS-BPEL processes by allowing thus the formal comparison of WS-BPEL
processes.

Some considerations about the choice of a -calculus based language are needed. One peculiarity of such language
is mobility: it is possible to transmit channel names that then can be used by any process receiving them. This aspects
is essential in the formalization of BPEL and in particular plays an important role in the formalization of interaction
with request-response services. Indeed, the invoker must send to the service a channel name to be used to return the
response, thus we have to exploit name mobility. Moreover, the importance of mobility grows if we also consider
WS-Addressing which makes it possible to dynamically define the access point of the services to be invoked. We
consider the webmy, language expressive enough to describe also WS-Addressing, such a investigation is left as future
work.

Other considerations about the formalisms to be used to formally describe the behavior of BPEL, and in general of
workflow-based orchestration languages, follow.

Van der Aalst in [46] raises a number of challenges for those advocating the use of w-calculus in the context of
workflow. He underlines that:

In the debate on Petri nets versus m-calculus many players in the “Web Service Composition Languages mar-
ketplace” are using demagogic arguments not based on concrete facts. [...] Hopefully, this note will contribute
to exposing the people that try to “hype” things like -calculus only for marketing purposes. Note that the big
discrepancy between the “Pi-hype" and reality will not only limit the applicability of Web Service Composition
Languages but also discredit a beautiful scientific framework like 7 -calculus.

One of the challenge raised by van der Aalst is

“Let the people that advocate BPEL4AWS, etc. show the precise relation between the language and some formal
foundation. People that cannot do this but still claim strong relationships between their language and e.g.,
m-calculus only cause confusion.”

In this paper we showed that the gap existing between BPEL and the r -calculus is significant yet not unsurmountable.
The main issues we underlined are essentially about mobility and sequencing. On these points the language is not very
faithful to the theory creating confusions. Other source of confusion is the fact that BPEL has not a formally defined
semantics and this significantly complicates the understanding and the attempt of comparing its behavior with the one
of the w-calculus. All these things, in our opinion, should convince readers to be very careful when associating process
algebra and workflow languages.

Another challenge we intend to remark is

Let the people that advocate a particular formal model (e.g., w-calculus) in the context of languages like
BPELA4WS, etc. demonstrate the use of analysis methods and tools based on this formal model (in some real life
setting).

This is not an evident task. Future developments of our work consist in considering the research directions suggested
by [25,29] in developing type systems and contracts for web services composition.
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