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Abstract—In this paper, we discuss the design, implementation, and experimental evaluation of a middleware architecture for

enabling Service Level Agreement (SLA)-driven clustering of QoS-aware application servers. Our middleware architecture supports

application server technologies with dynamic resource management: Application servers can dynamically change the amount of

clustered resources assigned to hosted applications on-demand so as to meet application-level Quality of Service (QoS) requirements.

These requirements can include timeliness, availability, and high throughput and are specified in SLAs. A prototype of our architecture

has been implemented using the open-source J2EE application server JBoss. The evaluation of this prototype shows that our

approach makes possible JBoss’ resource usage optimization and allows JBoss to effectively meet the QoS requirements of the

applications it hosts, i.e., to honor the SLAs of those applications.

Index Terms—Service Level Agreement, Quality of Service, QoS-aware application server, QoS-aware cluster, dynamic cluster

configuration, monitoring, load balancing.
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1 INTRODUCTION

DISTRIBUTED enterprise applications (e.g., stock trading,
business-to-business applications) can be developed to

be run with application server technologies such as Java 2
Enterprise Edition (J2EE) [43] servers (e.g., [20], [7], [23],
[10]), CORBA Component Model (CCM) [48] servers, or
.NET [39]. These technologies can provide the applications
they host with an execution environment that shields those
applications from the possible heterogeneity of the support-
ing computing and communication infrastructure; in addi-
tion, this environment allows hosted applications to openly
access enterprise information systems, such as legacy
databases.

These applications may exhibit strict Quality of Service
(QoS) requirements, such as timeliness, scalability, and high
availability, that can be specified in so-called Service Level
Agreements (SLAs) [38]. SLAs are legally binding contracts
that state the QoS guarantees an execution environment has
to supply its hosted applications.

Current application server technology offers clustering
and load balancing support that allows the application
designer to handle scalability and high availability applica-
tion requirements at the application level; however, this
technology is not fully tailored to honor possible SLAs.

In order to overcome this limitation, we have developed a
middleware architecture that can be integrated in an
application server to allow it to honor the SLAs of the
applications it hosts—in other words, to make it QoS-aware.
The designed architecture supports dynamic clustering of
QoS-aware Application Servers (QaASs) and load balancing.

The design of a QoS-aware application server requires a
careful assessment of the correct amount (and character-
istics) of the resources needed to meet application SLAs. In
general, applications hosted in application servers (e.g.,
Web applications, Web services) are characterized by high
load variance; hence, the amount of resources needed to
honor their SLAs may vary notably over time. In order to
ensure that an application SLA is not violated, one can
adopt a resource overprovision policy, based on evaluating
(either through application modeling or through applica-
tion benchmarking) all possible resources a hosted applica-
tion could require in the worst case and then statically
allocating these resources to the application. This policy can
lead to a largely suboptimal utilization of the hosting
environment resources; being based on a worst-case
scenario, a number of allocated resources could remain
unused at runtime. In contrast, optimal resource utilization
can be achieved by providing (and maintaining at runtime)
each hosted application with the minimum number of
resources required to meet the application SLA.

In view of the above observations, our middleware
architecture is principally responsible for the dynamic
configuration, runtime monitoring, and load balancing of
a QoS-aware cluster. It operates transparently to the hosted
applications (hence, no modifications to these applications
are required) and consists of the following three main
services: Configuration Service, Monitoring Service, and Load
Balancing Service. The relative responsibilities of these three
services are discussed in detail later in this paper.

The next section presents the context in which the
software solution under proposal, and the technologies
commonly deployed for implementing and hosting dis-
tributed enterprise applications, may be used.

1.1 Scenario

We are currently witnessing a trend in the IT market toward
the adoption of on-demand computing models, which allow

186 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 3, MARCH 2007

. The authors are with the Department of Computer Science, University of
Bologna, Mura Anteo Zamboni 7, 40126 Bologna, Italy.
E-mail: {lodig, panzieri, rossi, turrini}@cs.unibo.it.

Manuscript received 2 Feb. 2006; revised 27 July 2006; accepted 5 Dec. 2006;
published online 26 Jan. 2007.
Recommended for acceptance by W. Emmerich.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0024-0206.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



service providers to make computational resources available
to customers when needed.

Utility computing is one service provision model that can
be classified as an on-demand computing model. Utility
computing is an emerging industrial practice often defined
as “development in IT outsourcing, whereby service
capacity is provided as needed and the customers pay only
for the actual use” [21]. Its main goal is to maximize the
efficient use of the resources while minimizing the
enterprise costs. In other words, the utility computing
model supports a service provision that maintains the
minimum amount of computational resources necessary to
meet application QoS requirements.

In this context, resources can be acquired dynamically at
runtime by considering both the runtime conditions of the
computing environment and the gathering of the applica-
tion QoS requirements that are to be honored.

In the enterprise environment, component-based tech-
nologies, such as J2EE [43], CCM [48] or .NET [39]
application servers are often used to host distributed
enterprise applications. In this paper, we concentrate on
the J2EE framework and the support it provides to
application developers for the development of J2EE-based
applications. A J2EE-based application consists of managed
components, namely, servlets and Enterprise Java Beans
(EJBs), hosted in the servlet container and the EJB container,
respectively. These containers are the runtime environ-
ments for the application components and provide them
with a federated view of a collection of middleware services
for security, persistence, transaction, life-cycle management,
and so on. In addition, clustering is supported by most J2EE
commercial and open-source application servers, for scopes
of scalability, high availability, and resilience.

Clustering is a well-known architectural mechanism that
can be used to improve both throughput and availability of
a distributed application via load balancing and replication.
In the J2EE context, a cluster can be constructed out of
multiple application server instances that cooperate in order
to host distributed J2EE applications. In a clustered
environment, containers are distributed, and each node
runs an instance of them.

In current J2EE servers, the clustering support is
provided in the form of a service. In general, that service
requires the initial cluster configuration to consist of a fixed
set of application server instances. In the case of peak load
conditions or failures, this set of instances can be changed at
runtime by a human operator reconfiguring the cluster as
necessary (e.g., by introducing new server instances or by
replacing failed instances). In addition, current clustering
support does not include mechanisms to guarantee that
application-level QoS requirements are met. These limita-
tions can impede the efficient use of application server
technologies in a utility computing context. In fact, current
clustering design requires overprovision policies to be used
in order to cope with variable and unpredictable load and
prevent QoS requirements violations.

In view of the above observations, we have developed a
software architecture that allows dynamic J2EE application
server clustering and automatic cluster reconfiguration at
runtime. Our architecture allows a J2EE cluster to react to

possible changes of its own operational conditions that

could result in violations of application QoS requirements.
The architecture we have developed springs from an

earlier one designed in the context of the TAPAS EU-
funded project (IST Project No. IST-2001-34069) [40]. In
order to assess the effectiveness of our middleware
architecture in honoring SLAs, we implemented a proto-
type using the open-source, J2EE application server JBoss
[23]. Here, we describe our latest design and implementa-
tion and discuss the testing and evaluation.

The paper is structured as follows: The next section
introduces the concept of SLA and describes a specific
example used in our development. Section 3 discusses the
principal issues addressed in the design of the Configuration
Service, Monitoring Service, and Load Balancing Service
mentioned earlier. Section 4 describes our middleware
architecture prototype and examines its experimental eva-
luation. Section 5 compares and contrasts our approach with
relevant related work. Finally, Section 6 features our
conclusions.

2 SERVICE LEVEL AGREEMENTS

In current industrial practice, QoS requirements are

specified in so-called SLAs.
To date, no conventional standard definition of SLA

exists. Relevant research is underway to investigate the
definition of languages for SLA specification (e.g., [45],
[26]). Though the results of this research fall outside the
scope of this paper, we used a format inspired by SLAng
[45] for defining an SLA in the implementation of our
software architecture.

Our SLA represents a collection of contractual clauses
binding a QoS-aware cluster to the applications it hosts. We
term this SLA a hosting SLA. This is an XML file that
consists of two principal sections: Client Responsibilities and
Server Responsibilities. These define the rights and obliga-
tions of the application clients and the application server,
respectively. Both the Client and Server Responsibilities
may specify different levels of QoS, each related to some (or
all) operations of the hosted application. Hence, a client
obligation could specify the maximum number of requests
clients are allowed to send to the application, within a
defined time interval.

The following SLA fragment shows the requestRate,

which serves to capture this specific client obligation. The

fragment is part of a larger hosting SLA example for a

conventional bookshop application (used in our tests, as

discussed later). It provides clients with operations such as

“login,” “catalog,” “bookDetails,” “addToCart,” and so on.

<ContainerServiceUsage name=”HighPrority”

requestRate=”100/s”>

<Operations>

<Operation path=”catalog.jsp” />

<Operation path=”AddToCart” />

<Operation path=”checkout.jsp” />

<Operation path=”CheckoutCtl” />

</Operations>

...

</ContainerServiceUsage>
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Server obligations may include service availability
guarantees. The fragment of the hosting SLA below shows
possible availability guarantees for customers of a typical
bookshop application.

<ServerResponsibilities

serviceAvailability=”0.99”

efficiency=”0.95”

efficiencyValidity=”2”>

<OperationPerformance name=”HighPriority”

maxResponseTime=”1.0s”>

<Operations>

<Operation path=”catalog.jsp” />

<Operation path=”AddToCart” />

<Operation path=”checkout.jsp” />

<Operation path=”CheckoutCtl” />

</Operations>

</OperationPerformance>

...

</ServerResponsibilities>

The serviceAvailability attribute specifies the
probability with which the hosted application must be
available over a predefined time period (in the example
above, the daily availability of the bookshop application is
to be no less than 99 percent).

In addition, each application operation specified as part
of the SLA Server Responsibilities can be classified accord-
ing to a QoS attribute. In the example above, we opted for
the response time attribute maxResponseTime, as it is
used in most commercial SLAs (e.g., [1], [49], [33]) as an
effective parameter for measuring service responsiveness.

Finally, as pointed out in [9], the SLA may also specify
the percentage of SLA violations that can be tolerated,
within a predefined time interval, before the application
service provider incurs a (e.g., economic) penalty. The
efficiency and efficiencyValidity attributes cap-
ture this SLA requirement. In particular, in the example
above, these attributes specify that no less than 95 percent of
client requests are to be served within any two-hour
interval—in compliance with the SLA Server Responsibil-
ities requirements. Hence, we do assume that the SLA QoS
attributes (such as response time) can be violated during the
SLA efficiency validity period (two hours in the above
example), provided that the violation rate is maintained
below the SLA efficiency limit (in our example, the
percentage of tolerated violations is 5 percent).

3 THE MIDDLEWARE ARCHITECTURE

We have identified the following three main issues in the
design of our architecture:

1. Guaranteeing that the QoS requirements specified in
SLAs are met.

2. Optimizing the resource utilization in addressing
item 1, above.

3. Maximizing the portability of the software architec-
ture across a variety of specific J2EE implementations.

To address these issues, we conducted an in-depth
assessment of the state-of-the-art in the design of architec-
tures developed to meet the QoS requirements of distrib-
uted applications. This helped us to formulate a number of

recommendations and principles that guided our design.
Therefore, for example, these recommendations include the
need for a resource monitoring service that assesses the
resource state at runtime; the design of dynamic adaptation
facilities was based on principles derived from the feedback
control theory [35]. In addition, as we are dealing with a
clustered environment characterized by highly variable and
unpredictable load conditions, dynamic load balancing
mechanisms may be necessary. These mechanisms allow
us to balance client requests among clustered servers, based
on the actual load of those servers, thus preventing server
overloading.

In view of the above observations, we designed a
middleware architecture incorporating three principal
QoS-aware middleware services: a Configuration Service,
a Monitoring Service, and a Load Balancing Service. The
services were developed to minimize their interdependency
with specific J2EE implementations and maximize the
portability of our software architecture.

As already mentioned, this architecture is designed to be
deployed in a cluster of application servers. The cluster
consists of application server instances (termed nodes). Each
node hosts a replica of our services; our architecture
implements a primary-backup replication scheme [11] for
fault-tolerance purposes.

The principal responsibilities of the three services
mentioned above can be summarized as follows:

The Configuration Service is responsible for configuring
the QoS-aware cluster so it can meet the customer
application hosting SLA. The main activities performed by
the Configuration Service include configuring the cluster at
the time the hosting SLA is deployed in the QoS-aware
cluster (at SLA deployment time) and possibly reconfigur-
ing the cluster at runtime.

The cluster configuration process consists of building the
initial cluster by forming a group of nodes from a minimal
set of available nodes to ensure the service availability
requirement of the hosting SLA is met.

The runtime reconfiguration process consists of dyna-
mically resizing the cluster configuration, by adding or
removing clustered nodes, as needed. Adding nodes can be
necessary in order to handle a dynamically increasing load
and in case a clustered node fails and needs to be replaced
by an operational one (or possibly more than one); for this
purpose, a pool of spare nodes is maintained.

Releasing nodes may be necessary to optimize the use of
the resources. If the load on a hosted application signifi-
cantly decreases, some of the nodes allocated to that
application can be dynamically deallocated and included
in the pool of spare nodes for further usage.

The Monitoring Service is in charge of monitoring the
QoS-aware cluster at application runtime so as to detect
possible 1) variations in the cluster membership, 2) variations
in cluster performance, and 3) violations of the hosting SLA.

Thus, the Monitoring Service periodically checks the
cluster membership configuration to detect whether clus-
tered nodes should join or leave the cluster following
failures or voluntary connections to (or disconnections
from) the cluster. In addition, it monitors data such as
cluster response time, client request rate, and cluster SLA
violations to detect whether the cluster-delivered QoS
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deviates from what is required and specified in the hosting
SLA. Specifically, this service makes use of a collection of
parameters (see Section 4) computed and updated at run
time. These parameters allow the Monitoring Service to
keep track of the dynamic behavior of the cluster in order to
check whether or not the cluster is honoring the hosting
SLA at runtime; they serve to maintain 1) the cluster’s
operational conditions trend, 2) the operational conditions
trend of each clustered node, and 3) the cluster violation
rate trend.

The Load Balancing Service is implemented at the
middleware level and balances the load of HTTP client
requests among the clustered nodes; it contributes to
meeting the hosting SLA by preventing the occurrence of
node overload and avoiding the use of resources that have
become unavailable (e.g., failed) at runtime. The reason for
implementing load balancing at the middleware level is
twofold; namely, implementing load balancing at this level
allows independence from any underlying operating sys-
tem. In addition, the designed Load Balancing Service can
easily detect specific application server conditions, such as
server response time and cluster membership configuration.

The Load Balancing Service we have developed can be
thought of as a reverse proxy server that essentially
intercepts client HTTP requests for an application and
dispatches these requests to the nodes hosting that
application. It includes support for both request-based
and session-based load balancing. With request-based load
balancing, each individual client request is dispatched to
any clustered node for processing; in contrast, with session-
based load balancing, client requests belonging to a specific
client session are dispatched to the same clustered node
(this client-server correspondence is termed session affinity).

The Load Balancing Service is responsible for

1. intercepting each HTTP client request,
2. selecting a target node that can serve that request by

using specific load balancing policies,
3. deftly manipulating the client request to forward it

to the selected target node,
4. receiving the reply from the selected target node,

and, finally,
5. providing a reply to the client who has triggered the

request.

The load balancing policy embodied in our Service
(termed WorkLoad policy) is an adaptive policy, as we are
interested in dynamically balancing the load among
clustered nodes. This policy enables the Load Balancing
Service to select a lightly loaded node among those in the
cluster in order to serve client requests. For this purpose,
the policy considers the number of pending requests in the
Load Balancing Service queues associated with each
clustered node; so, when an incoming client request is
intercepted by the Load Balancing Service, the request is
forwarded to the clustered node with the shortest pending
requests queue. This policy allows us to dynamically
evaluate the expected performance of each clustered node,
even in the presence of load imposed by other services
running on the nodes.

We have compared, contrasted, and evaluated different
static and adaptive load balancing policies; in all, we favor

the use of our WorkLoad policy. For the sake of conciseness,
a report of this assessment is not contained in this paper;
interested readers can refer to [27].

3.1 QoS-Aware Middleware Services Interactions

Our QoS-aware middleware services cooperate with each
other to ensure hosting SLA enforcement and monitoring.

Fig. 1 shows how they interact. In Fig. 1, client requests
are intercepted by the Load Balancing Service. For each
request, the QoS delivered by the cluster is compared to the
desired level of QoS specified in the hosting SLA in order to
monitor adherence to this SLA. To this end, the Configura-
tion Service makes the hosting SLA content available to the
Monitoring Service. The Monitoring Service cooperates
with the Load Balancing Service to obtain the QoS delivered
by the cluster. Based on the retrieved QoS data, the
Monitoring Service computes and updates the monitoring
parameters (see Section 4), which serve to check whether
the cluster operational conditions are close to violating the
hosting SLA. Hence, the Monitoring Service first monitors
the SLA Client Responsibilities of the hosting SLA. If clients
send a higher number of requests than that allowed, clients
are violating the SLA. No corrective actions are performed
to reconfigure the cluster in this case; rather, an application-
level exception is raised that may cause the misbehaving
clients to be put in a position not to interfere with the
properly behaving ones. Second, the Monitoring Service
monitors the Server Responsibilities of the hosting SLA. If it
detects that the cluster SLA violation rate trend is close to
breaching the hosting SLA, it invokes the Configuration
Service so as to reconfigure the cluster. In this case, the
Configuration Service acts upon the cluster by adding new
nodes up to a predefined limit. That limit is a configuration
parameter obtainable via either application benchmarking
or application modeling. Its purpose is to identify an upper
boundary above which adding new nodes does not
introduce further significant performance enhancements.
This can be caused by factors such as increased coordina-
tion costs for cluster management and bottlenecks due to
shared resources such as a centralized load balancing
service or a centralized DBMS.

Note that the Configuration Service can augment the
cluster by introducing one new node at a time or more than
one in a single action. When adding one node at a time, a
waiting time elapses between the Configuration Service
reconfigurations following each node inclusion. This time
may be useful for handling the transient phase of a new
added node. The transient phase represents the time
elapsed from the introduction of the new node in the
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cluster until it reaches a steady state enabling it to serve the
client requests. On the other hand, adding more than one
node at a time can be useful to deal with possible flash
crowd events. In fact, these events may not be fully resolved
by adding just one node at the time to the cluster, owing to
the above-mentioned transient phase.

If the Monitoring Service detects that the cluster is
effectively responding to the injected client load (that is, the
violation rate trend of the cluster is significantly below the
hosting SLA limit), it invokes the Configuration Service to
act upon the cluster by releasing clustered nodes, as they
are no longer necessary.

In configuring/reconfiguring the cluster, the Configura-
tion Service produces a resource plan object. This object
includes the IP address of each clustered node belonging to
the built cluster configuration. In essence, the resource plan
specifies the resources to be used in order to construct the
QoS-aware cluster capable of meeting the input hosting SLA.

Node failures and voluntary connections to the QoS-
aware cluster are detected by the Monitoring Service, which
then raises an exception to the Configuration Service. In
both cases, the Configuration Service reconfigures the
cluster; that is, it updates the resource plan by removing
(or adding) the node(s) that have become unavailable (or
available); in addition, in case of node failures it adds new
nodes should the modified cluster configuration be incap-
able of meeting the hosting SLA.

Once the Configuration Service has produced the
resource plan, it transmits it to the Load Balancing Service,
as depicted in Fig. 1, to enable the Service to dispatch the
incoming client requests toward the new set of clustered
nodes. The Load Balancing Service does not need to be
statically configured with the membership of the cluster;
rather, it becomes aware of it at runtime, in line with
Configuration Service reconfigurations.

Finally, the architecture described in this paper should
be applicable, with minor adaptations, to any application
servers that support some form of “middleware extensions”
and allow such extensions to interact with the application
server’s cluster manager. Currently, this set of application
servers includes, for example, JBoss [23] and JOnAS [10].

4 A CASE STUDY: THE ENHANCED JBOSS

APPLICATION SERVER

We implemented a prototype of our middleware architec-
ture as an extension of the JBoss v. 4.0.4.GA [23]
application server. JBoss consists of a collection of middle-
ware services for communication, persistence, transactions,
and security [18]. These services interact by means of a
microkernel based on the Java Management eXtension
(JMX) specifications [29]. JMX defines a common software
bus that allows Java developers to integrate components
such as modules, containers, and plug-ins. These compo-
nents are declared as Managed Bean (MBean) services; they
are loaded into JBoss and administered by the JMX
software bus.

A number of JBoss application server instances can be
clustered in a local area network. A JBoss cluster consists of
a set of nodes, where a node is a JBoss application server

instance. To simplify our discussion, we assume below that
each clustered node is configured with a static IP address;
hence, each node runs in a dedicated clustered machine and
no DHCP server is used to dynamically assign the IP
address to the machines in a JBoss cluster. Our prototype
(termed QaAS) is a standard JBoss server enhanced with
our middleware architecture incorporating the three ser-
vices described above.

Fig. 2 shows how the QoS-aware cluster is implemented
with a number of clustered QaAS nodes.

This figure shows that every clustered node incorporates
a replica of the Configuration Service, Monitoring Service,
and Load Balancing Service, each implemented and in-
tegrated into the JBoss application server as an MBean.
Only one node in the cluster is responsible for SLA
enforcement, monitoring, and load balancing. We term this
node the cluster Leader. The remaining nodes, called slave
nodes, are used as backup servers in case the Leader crashes.

Possible Leader crash during configuration (or runtime
reconfiguration) is detected by the Configuration Services in
the slave nodes through their (local) Monitoring Services.
These Monitoring Services are alerted of the Leader’s crash
by the underlying group communication mechanism,
namely, JGroups [24], included in the standard JBoss
application server. JGroups [2] provides the clustered nodes
with reliability properties that include lossless message
transmission, message ordering, and atomicity. As a result,
should Leader crash occur, the following simple recovery
protocol is performed by the Configuration Service in-
stances deployed in the slave nodes. Every Configuration
Service is identified by a unique identifier (ID) consisting
of the IP address of the machine where the Configuration
Service is deployed. In addition, all Configuration Services
have a consistent cluster configuration state object; this is
the resource plan object mentioned earlier and consists of
a list of the IDs of the available clustered nodes. When
Leader crash is detected by the slave Monitoring Services,
the latter inform their local Configuration Services that a
new Leader must be elected. The Configuration Services
examine the IDs of the available nodes in the cluster
configuration state and elect the server with the minimum
ID as the new Leader. Note that, owing to the JGroups
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reliability properties mentioned earlier, all clustered nodes
have a consistent view of the current cluster membership;
hence, they can easily apply the simple deterministic
algorithm for Leader election introduced above.

The first election of the cluster Leader is triggered by the
hosting SLA deployment. In fact, the QaAS node where that
deployment occurs becomes the Leader. The Configuration
Service in the Leader node parses the input hosting SLA to
extract the QoS parameters that guide the required cluster
configuration (client requestRate, serviceAvail-

ability, efficiency); it then makes them available to
the Monitoring Service responsible for checking cluster
performance. For this purpose, the Monitoring Service is
constructed out of three components: SLA Violations
Monitor, Evaluation and Violation Detection Service, and
Cluster Performance Monitor.

In general, these components interact with each other to
implement a monitoring mechanism capable of dynami-
cally adapting to modifications of both the client load
characterization and node operational conditions. In our
implementation, we assume that node performance degra-
dation can be due to the load imposed by other services
running on the nodes (nodes can concurrently host and run
services other than QaAS).

The above-mentioned Monitoring components are in-
voked when incoming client requests are intercepted by the
Load Balancing Service. These requests are intercepted by a
LoadBalancingFilter implemented using the Servlet Filter
technology [17].

The main responsibilities of the Monitoring components
can be summarized as follows: The SLA Violations Monitor
is responsible for verifying whether or not the SLA
efficiency attribute is met within the SLA efficiency validity
period. When violations of the hosting SLA occur that may
result in (economic) penalties, the Monitoring Service raises
an exception to the application level.

The Evaluation and Violation Detection Service and the
Cluster Performance Monitor cooperate with each other in
checking, for each HTTP request, whether cluster response
time meets that specified in the hosting SLA, and triggering
the cluster reconfiguration, if necessary. The decision to
trigger cluster reconfiguration is based on a specific
warning threshold and a collection of indices maintained
by the Cluster Performance Monitor.

For the sake of conciseness, in this paper, we have not
described all these indices and thresholds (interested
readers should refer to [27]); rather, we focus on the most
relevant: the efficiency index.

The efficiency index allows the Monitoring Service to
check whether or not the current violation rate trend,
exhibited by the cluster and related to the current cluster
load conditions, may lead to SLA efficiency violations
during the validity period. This index is a negative integer
initialized to 0, which can be incremented or decremented,
during a fixed monitoring interval, depending on the SLA
response time violations.

Specifically, let E be the SLA efficiency; the efficiency
index is decremented by ð1=ð1� EÞÞ � 1, provided the
actual request response time violates the related SLA
maxResponseTime. As long as its value is not equal to 0,

it is incremented by 1 if the actual request response time
does not violate the related SLA requirement.

To clarify, let us consider the example SLA in Section 2.
This SLA states that the response time QoS requirements
can be violated at most 5 percent of the time, i.e.,
E ¼ 0:95, in any two-hour interval (as specified by the
efficiencyValidity attribute). Thus, for each incom-
ing client request, if the cluster does not meet the SLA
response time for such a request, the efficiency index is
decremented by ð1=ð1� EÞÞ � 1, i.e., 19 in this case
(otherwise, it is incremented by 1). This behavior guaran-
tees that if the index ranges within ½�ðð1=ð1� EÞÞ � 1Þ; 0�
(½�19; 0� in this case), the current violation rate trend
remains within the SLA efficiency. In contrast, if the index
falls below �ðð1=ð1� EÞÞ � 1Þ (�19, in this example), the
current violation trend of the cluster might lead to a
violation of the SLA efficiency.

In the latter case, the Monitoring Service may require a
cluster reconfiguration that adds new clustered nodes. To
this end, the efficiency index is periodically compared to a
dynamic threshold that depends on the SLA violations
trend. In particular, if the efficiency index exceeds the
threshold, reconfiguration is necessary to adapt the cluster
to the new load conditions. As stated above, other indices
and thresholds are maintained by the Monitoring Service.
These are used to decide if a node can be released from the
cluster by estimating the cluster performance trend without
that node [27].

The Configuration Service reconfiguration that adds (or
releases) clustered nodes has been implemented by using
two main techniques. The first technique consists of
checking if a pool of spare nodes is available; if it is, the
spare nodes are QaAS nodes ready to be used to serve client
requests. In contrast, in the second technique, the Config-
uration Service starts up (or shuts down) QaAS nodes. To
facilitate this, we implemented an external program (that is,
a program not integrated in the JBoss application server) to
be invoked to run (or shut down) QaAS nodes when
necessary. This external program can be also used to
acquire on-demand resources owned by third-party orga-
nizations. Note that, as the use of this program is time-
consuming (there is the start-up time to take into account
when a node is added to the cluster), the Monitoring
parameters can be properly configured to allow QaAS to
apply a more conservative node-releasing policy, and a
more timely node-adding policy, thus preventing SLA
violations.

4.1 Experimental Evaluation

The prototype described above has been used to carry out a
set of experiments aimed at assessing 1) the overhead
introduced by our middleware services in the JBoss
application server, 2) the scalability properties of our QoS-
aware cluster, and 3) the resource optimization achievable
in a QoS-aware cluster, while honoring the hosting SLA.

In our tests, we used a cluster configuration consisting of
several Linux machines interconnected by a dedicated 1 Gb
Ethernet LAN. Each machine is a 2.66 Ghz Intel Xeon
processor, equipped with 2 GB RAM. In the experiments
described below, one of these machines is dedicated to host
the cluster Leader; the other machines are used to host
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either the QaAS slave nodes serving the client requests or
the client program used to generate artificial load in the
cluster. In addition, a dual-processor machine is dedicated
to hosting the database used in the experimental evaluation,
namely MySQL [34].

As for the client program, we implemented our own
program in order to 1) specify a variety of client load
distributions, 2) specify different client request rates, and
3) simulate typical behavior of common browsers by
enabling caching of the static contents of the HTTP client
requests. Note that existing performance measurement tools
such as ECperf [13] or JMeter [25] do not provide us with all
these features.

The clustered servers homogeneously host a digital
bookshop application we developed (issues of homoge-
neous and heterogeneous deployment are discussed in
[28]). This provides clients with the operations mentioned
in Section 2. The bookshop application is a J2EE application
consisting of both Web and EJB components. The applica-
tion was constructed out of Java Server Page (JSP), Servlet,
Stateless Session Beans, and Entity Beans. We used Entity
Beans Container Managed Persistence (CMP) to represent
the application’s persistent objects mapped to the database.

Finally, in all experiments, we used a per-session load
balancing approach, disabling the HTTP session replication
on the clustered nodes serving the clients requests [42], [41].
With this setup, if a node crashes while serving a client
session, the session cannot be recovered at the application
server level. Consequently, either the client program
implements its own recovery mechanisms, or this program
may have to start the session again. This behavior is
reasonable for most Web applications; if this is not the case,
HTTP session replication must be enabled.

4.1.1 QaAS Overhead Evaluation

Our first concern was to assess whether our middleware
services were adding unnecessary overhead to the cluster
response time and throughput, in the absence of failures.
For this purpose, we instantiated the middleware services
in the cluster introduced earlier and used from one up to
four QaAS nodes. With these configurations, we ran two
sets of tests. In the first set, we directly injected equally
distributed artificial client requests to each available
standard JBoss node. In the second set of tests, we deployed
the hosting SLA, thereby enabling our services and directed
the client requests to the Load Balancing Service.

In both cases, the cluster provided the same throughput
and response time, showing that QaAS does not introduce
any significant overhead.

Note that introducing a reverse proxy implies perfor-
mance penalties; however, these are balanced by the HTTP
protocol optimizations performed by the Load Balancing
Service. Similar results can be obtained with advanced
HTTP reverse proxies such as Apache HTTP server with
mod_jk [32].

To conclude this section, we measured the saturation
point of the Load Balancing Service. For this purpose, we
used the in-memory database [19] replicated in each
clustered node to avoid it becoming a bottleneck. Hence,
we first injected artificial load directly onto the clustered

nodes and then through the Load Balancing Service until
we were able to identify the maximum load above which
the Load Balancing Service becomes a bottleneck. From this
test, we observed that the Load Balancing Service was
capable of supporting up to 450 requests per second
introducing no overhead. Note that this figure depends
principally on the Web page size rather than the number of
nodes used in the cluster.

4.1.2 QaAS Scalability Evaluation

The second experiment was conducted to evaluate the
scalability of the QoS-aware cluster we had developed. In
this experiment, we varied the number of nodes in the
cluster starting by one node, scaling up to four nodes. The
obtained results are shown in Table 1. It is clear that, by
augmenting the number of QaAS clustered nodes, QaAS
does scale, even if not in an entirely linear fashion. In fact,
as evident in Table 1, for two nodes, throughput is exactly
double compared to the value obtained with one node. With
three and four nodes, throughput keeps on augmenting,
although not linearly. We identified the cause of this
behavior in the database, which becomes a bottleneck. Note
that the Load Balancing Service could not have caused these
performance anomalies, as throughput is below the 450 re-
quests per second mentioned in the previous section.

4.1.3 Resource Utilization Evaluation

The purpose of this final experiment was to assess the
ability of our middleware to optimize clustered nodes
utilization without causing hosting SLA violations. In
carrying it out, we assumed that the absence of dynamic
clustering techniques (such as those enabled by QaAS)
means a resource overprovision policy is used. This
statically allocates as many nodes as possible to ensure
honoring the hosting SLA. The maximum number of nodes
available was fixed to four. Therefore, in an over-provision
policy, all four nodes are used; in contrast, to honor the
bookshop hosting SLA, our middleware allowed us to
dynamically allocate a minimum of one up to four clustered
QaAS nodes depending on the imposed load at different
time intervals. For the purposes of this experiment, nodes
were made available in a pool of spare nodes ready to be
included in the cluster as required.

In view of these assumptions, this final experiment
consisted of three principal tests. In the first, we set the SLA
efficiency attribute to 95 percent; this meant the most an
SLA response time requirement could be violated was
5 percent of the time over a predefined timeframe. This test
ran for approximately one hour; the results obtained are
illustrated in Fig. 3. We injected artificial load into the
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Response Time and Throughput in Clusters of

One, Two, Three, and Four Nodes



cluster following a simple request distribution: Our
program client gradually raised bookshop application
HTTP request rate up to 360 requests per second; the load
then gradually decreased to 2 requests per second. The bold
line in Fig. 3 shows this distribution. It follows that, if no
QaAS is being used, the standard JBoss clustering approach
has to allocate all four available nodes and maintain them
allocated to the bookshop application for the entire duration
of the test, regardless of the actual client load. In other
words, it needs resource overprovision (see the lighter area
in Fig. 3), which guarantees the hosting SLA is met. In
contrast, QaAS dynamically adjusts the cluster size as
necessary, augmenting the number of clustered nodes as
load increases and releasing nodes as load decreases, as
illustrated by the darker area in Fig. 3. In conclusion, to
offset SLA violations, the QaAS trend in resizing the cluster
follows the distribution of the imposed load, as shown in
Fig. 3 (yet again, the darker area mentioned above). In this
test, we also measured the percentage of SLA violations (see
Fig. 4). Here, the peaks correspond to the instant in which a
new node had to be added to the cluster for not incurring
SLA efficiency requirement violations; however, as can be
seen in Fig. 4, the SLA violation rate is maintained below
the limit imposed by the hosting SLA.

In the second test, we used a different load distribution.
This distribution was derived by analyzing logs from
Bologna University’s portal access. These logs contained
HTTP request rates relating to a period of approximately
24 hours. We augmented the rate frequency by a factor of

six compared to the original, thus obtaining a load
characterization distributed over 4 hours. This load dis-
tribution modification allowed us to have highly variable
request rates thus submitting the cluster to critical load
conditions. The results obtained by this test are shown in
Fig. 5. Here, it is evident that the load distribution presents
peaks which QaAS handles with an increased number of
used nodes. Even in this case, QaAS used clustered nodes
that follow the load distribution. The percentage of SLA
violations in this test are shown in Fig. 6, which reveals a
higher SLA violation rate compared to that observed in the
first test. This is chiefly caused by the critical conditions as
described above. However, here again, the violation rate is
maintained below the SLA limit, thus allowing SLA
honoring.

In the final test, we used the same load distribution as in
the first test and we observed the behavior of our
middleware architecture in the presence of node crashes.
Therefore, we shut down a QaAS node at runtime,
obtaining the results shown in Fig. 7. As depicted in
Fig. 7, when QaAS was using two clustered nodes, it
detected the node crash and added a new node in a timely
manner. This behavior corresponds to the peak in the QaAS
resource utilization graph in Fig. 7.

The percentage of SLA violations in this test are
illustrated in Fig. 8. In contrast to the first test, the number
of SLA response time violations augmented in correspon-
dence to the node crash up to 4 percent (owing to the
missing crashed node). Afterward, the SLA violations
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Fig. 3. Resource utilization.

Fig. 4. SLA violations.

Fig. 5. Resource utilization: real load.

Fig. 6. SLA violations: real load.



decreased until the end of the test. Note that, even in this
case, our middleware architecture did not exceed the
5 percent SLA efficiency limit; however, this architecture
is not designed to face an arbitrary number of failures.

5 RELATED WORK

Recent years have witnessed considerable research into QoS
enforcement and monitoring in the context of Web Services
[22], [37] and application server technologies (see below)
with a series of relevant proposals that have notably
influenced our approach to QaAS design. Here, we
compare and contrast our approach to these proposals.

De Miguel’s work [30] outlines new models of QoS-
aware components and QoS-aware containers. It proposes
an enhancement of such containers with facilities for QoS
configuration and negotiation. This approach differs from
our approach in that it involves new types of application
components and a new runtime environment for them in
order to meet nonfunctional application requirements.
We, however, have not created new types of application
components, choosing to integrate our middleware
services with those already provided by application
server technologies.

Resource clustering issues have been widely investigated
in the literature. For example, [47] describes techniques for
the provision of CPU and network resources in shared
hosting platforms (platforms constructed out of clusters of
servers), running potentially antagonistic third-party appli-
cations. The architecture proposed in [47] provides applica-
tions with performance guarantees by overbooking clustered
resources and combining this technique with commonly
used resource allocation mechanisms. This approach is
similar to that discussed in [4], which describes a frame-
work for resource management in Web servers, for
delivering predictable QoS and differentiated services.
However, in [4], application overload is detected when
resource usage exceeds certain predetermined thresholds,
while, in [47], detection takes place by observing the tail of
recent resource usage distributions. Shen et al. [44]
investigate the design and implementation of an integrated
resource management framework for cluster-based network
services. An adaptive multiqueue scheduling scheme is
employed inside each node of a clustered environment to
achieve both efficient resource utilization under quality

constraints and provide service differentiation. Nonethe-
less, although these approaches present techniques for
optimizing clustered resources, they differ from our
approach in that they operate at different levels of
abstraction and do not use the concept of SLA to specify
QoS requirements.

SLA enforcement and monitoring are discussed in [26],
[12]. They propose specific SLAs for Web Services and focus
on the design and implementation of an SLA compliance
monitor, possibly owned by Trusted Third Parties (TTPs).
In addition, [50] presents an architecture for the coordinated
enforcement of resource sharing agreements (SLAs) among
applications using clustered resources. The design ap-
proach here shares a number of similarities with our
approach (for example, resource sharing among applica-
tions is governed by the SLAs these applications have with
their hosting environment). However, prototype implemen-
tations of this architecture were developed at both the
HTTP level and transport level, rather than at the middle-
ware level, as in our approach.

Another project with notable influence on ours is the
IBM Oceano project [3]. Oceano is a prototype of a highly
available, scalable, and manageable infrastructure for an
e-business computing utility. It manages the resources of
the computing utility in an automatic and dynamic manner
by reassigning resources to distributed applications in order
to meet specific SLAs. Oceano includes SLA-driven mon-
itoring, event correlation, network topology discovery, and
automatic network reconfiguration. Though its approach is
quite similar to ours, to the best of our knowledge, its
prototype is not specifically applied to an application server
context, a move we propose in this paper. In addition,
Oceano’s load balancing takes place at the network level
rather than the middleware level.

In the J2EE context, several research projects examine
dynamic clustering management issues. In [8], the authors
discuss the design of a modular architecture to build
command and control loops to manage complex distributed
systems. Here, the architecture builds self-manageable J2EE
application server clusters to simplify the administration of
such distributed systems and enable dynamic reconfigura-
tion capabilities. These capabilities are effective both in case
of failures of J2EE components and in case of increased
cluster load. Nevertheless, to the best of our knowledge, this
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Fig. 7. Resource utilization: node crash.

Fig. 8. SLA violations: node crash.



work does not focus on providing dynamic clustering
techniques to honor SLAs, as we propose, and it monitors
low level resources such as CPU, memory, and disk I/O
usage rather than application level QoS requirements.

In [36], the authors present a platform that can manage
complex, multitiered applications. The platform is imple-
mented as an extension of the WebSphere application
server and each request is served by multiple resources,
distributed over multiple tiers. Here, service providers are
allowed to divide all requests from different Web applica-
tions into service classes, according to a user-defined policy;
in addition, each class is assigned a performance goal. This
describes a target response time and includes an impor-
tance level to determine the relative importance of meeting,
exceeding, or violating target SLA requirements. These
performance goals and importance targets serve to allocate
the necessary resources to the application requests. This
IBM research focuses on the same issues discussed in our
paper. However, in [36], the application server maps
observed performance to a continuous utility function
constantly adapting the hosting environment to maximize
that utility function; in our approach, however, QaASs use a
warning threshold and set of indexes to adapt the execution
environment to the changes occurring at runtime. An
implementation of the architecture proposed in [36], termed
WebSphere eXtended Deployment (XD), is currently avail-
able by acquiring a commercial license. This product is a
specialized software application, available for z/OS only.

In essence, our assessment of current commercial J2EE
application servers reveals that, with the exception of
WebSphere, they do not offer mechanisms for SLA-driven
dynamic resource management. Third-party companies
(e.g., Data Synapse [46]) offer extensions for commercial
and open-source J2EE application servers that could be
similar to our own; however, to date, no details are
available concerning such commercial products that allow
us to compare and contrast the performance of these
products with that we obtained from our implementation.

As for the load balancing activity, in [5], the authors
present an adaptive load balancing service implemented
using standard CORBA features. The key features of this
load balancing service, named Cygnus, are 1) it is able to
make load balancing decisions based on application-
defined load metrics, 2) it dynamically (re)configures load
balancing strategies at runtime, and 3) it transparently adds
load balancing support to client and server applications. In
contrast, our approach is applied to a component-based
technology such as J2EE; hence, we now focus on load
balancing services enabled in such an environment.

In a J2EE context, widely used proprietary application
servers such as WebSphere and WebLogic provide users
with HTTP load balancing mechanisms similar to our
solution. The WebLogic platform consists of a WebLogic
Server equipped with a set of Web server plug-ins. These
plug-ins are modules that can be added to third-party Web
Servers and configured appropriately to enable interactions
between the WebLogic Server and the application compo-
nents hosted inside proprietary Web Servers. In general, the
plug-ins are used to distribute the HTTP client requests
among the WebLogic clustered servers; their static load

balancing policies are 1) Round Robin, which cycles through
the list of WebLogic Server instances, and 2) Weight-Based,
which improves the previous Round Robin algorithm by
taking into account a preassigned weight for each server [6].
No adaptive policies are provided. Furthermore, these
plug-ins use a first list of target WebLogic Server instances
as the starting point for load balancing among clustered
members. After the first request is routed, a dynamic list of
servers is returned. This mechanism allows WebLogic to
provide users with a dynamic load balancing technique in
terms of variations in the cluster membership configuration
(our approach also provides this feature).

In the WebSphere application server, load balancing can
take place on two different levels. In fact, the first solution
proposed by WebSphere [15] includes the load balancing
mechanism inside a plug-in for the Web container. The
plug-in distributes the HTTP client requests based on two
different algorithms, namely, the Round Robin with Weight-
ing algorithm, which cycles through the list of WebSphere
instances and decrements their weight by 1 when a server is
first selected, and the Random algorithm. Note that, in
contrast to our WorkLoad policy, these two load balancing
strategies are static and unable to handle variations in the
computational load of the servers. In addition, the list of
available WebSphere instances is not dynamically deter-
mined, as in both our and WebLogic’s case; it is included in
a specific configuration file. The second solution proposed
by WebSphere [14] uses an IBM software packet named
WebSphere Edge Components, featuring a Load Balancer. This
Load Balancer consists of different components. The most
important is the Dispatcher component. The Dispatcher
distributes the load it receives to a set of servers contained
in the cluster, and then decides which server handles the
HTTP request, based on the weight of each server in that
cluster. The weight can be set as a fixed value (unchange-
able, regardless of the conditions of the balanced servers) or
dynamically computed by the Dispatcher. In this latter case,
the list of available clustered servers is obtained dynami-
cally. In conclusion, our approach is similar to the second
WebSphere solution.

6 CONCLUDING REMARKS

This paper has discussed the design, implementation, and
experimental evaluation of a J2EE-based dynamic clustering
architecture, constructed out of multiple, interconnected
QoS-aware application servers.

In our architecture, the size of the cluster can change at
runtime, in order to meet nonfunctional application
requirements specified within what we have termed a
hosting SLA.

Given this context, we have designed and developed a
set of services that optimize the resource usage of a J2EE
application, hosted in our clustered architecture, to allow
the application hosting SLA to be honored without
incurring in resource overprovision costs.

The experimental results we have presented show the
effectiveness of our approach; in particular, they show that
the efficient use of resources and the strict constraints
imposed by the SLA can be addressed by means of dynamic
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reconfiguration mechanisms even in the case of such
complex systems as a cluster of J2EE application servers.

As an extension of the work described in this paper, we
are investigating issues of dynamic resource management
when multiple applications are concurrently deployed in a
J2EE server cluster; these applications have their own
hosting SLAs and compete for the use of the same clustered
nodes.

The design principles and solutions we have adopted in
the development of our QoS-aware clustering mechanisms
may well be deployed in emerging application areas, such
as the Service Oriented Architecture (SOA) and Grid
computing areas.

As observed in [31], service providers will be offering
commercial services in SOAs, based on SLAs; in addition,
Grid provides an ideal framework for SOAs, as it enables
the management of collections of resources. It follows that
an SLA-driven approach to the dynamic allocation and
management of Grid resources, such as that described in
this paper, may well be incorporated as part of the Grid
architecture’s core middleware services [31], in order to
avoid the use of static, resource over-provision policies.

Therefore, our future work will include an investigation
into the use of our clustering mechanisms in these contexts
and in application servers distributed across wide area
networks. Finally, in order to augment the robustness of our
architecture, we will investigate issues of application server
fault-tolerance, in general, and survivability to multiple
server crashes, in particular.
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