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Abstract

Web Service (WS) discovery is a prerequisite for achiev-
ing WS composition and orchestration. Although a lot of
research has been conducted on the functional discovery of
WSs, the proposed techniques fall short when faced with the
foreseen increase in the number of (potentially functionally-
equivalent) WSs. The above situation can be resolved with
the addition of non-functional (Quality of Service (QoS))
discovery mechanisms to WS discovery engines. QoS-based
WS matchmaking algorithms have been devised for this rea-
son. However, they are either slow - as they are based on
ontology reasoners - or produce inaccurate results. Inaccu-
racy is caused both by the syntactic matching of QoS con-
cepts and by wrong matchmaking metrics. In this paper, we
present two Constraint Programming (CP) QoS-based WS
discovery algorithms for unary constrained WS specifica-
tions that produce accurate results with good performance.
We also evaluate these algorithms on matchmaking time,
precision and recall in different settings in order to demon-
strate their efficiency and accuracy.

1 Introduction

The success of the WS paradigm has led to a prolifer-
ation of available WSs, which are advertised in intra- or
inter-organizational registries. To enable their usage and in-
tegration, these WSs have to be discovered. So far, a lot
of research has been conducted on the functional discov-
ery of WSs. Researchers finally agree in using semantics
for WS description and reasoning mechanisms for WS dis-
covery. Prototypes have already been implemented [7] with
quite promising results. Unfortunately, functional discov-
ery of WSs is not sufficient, as there may be hundreds of
functionally-equivalent WSs. Users must be further assisted
in selecting the appropriate WS for their needs.

The solution to the last problem is the use of QoS in WS
description and discovery. QoS is a set of non-functional
properties that encompass performance characteristics. As
users are very concerned about the performance of WSs

they use, QoS can be used for discriminating between
functionally-equivalent WSs. Thus, the proposed solution
comprises: a) description of the QoS aspect of WSs; b) fil-
tering of WS functional results based on user constraints on
their QoS descriptions; c) sorting the results based on user-
provided weights on QoS attributes/metrics.

We have conducted a detailed study of QoS-based WS
description and discovery and have come up with a set of re-
quirements [9] for these two processes. For QoS-based WS
description, we have proposed a semantically rich, extensi-
ble QoS model as one of the requirements. This require-
ment seems to be quite strong as none of the existing re-
search approaches [11, 6, 14, 13, 15, 3, 2, 12, 5] satisfies it.
For this reason, we have developed an extensible ontology
language for QoS-based WS description called OWL-Q [8].
OWL-Q satisfies the above requirements set and comple-
ments the WS functional description language OWL-S.

There are two main approaches for QoS-based WS
matchmaking: a) ontology-based [15, 12, 5]; b) CP [2]
based [3, 2]. The first approach suffers from performance
problems due to the use of ontology reasoners. The second
approach is fast but the two research works adopting it re-
turn inaccurate results and do not provide advanced catego-
rization of results. In addition, both approaches do not pro-
vide useful matchmaking results for over-constrained QoS
demands. For these reasons, we have devised a semantic
QoS metric matching algorithm [8] and two complementary
CP-based and QoS-based WS discovery approaches [10]
exploiting it: one with unary and one with n-ary constraints.
These two approaches are accurate, provide advanced cat-
egorization of results and produce results even for over-
constrained demands but they have not been evaluated yet.

The purpose of this paper is to theoretically and empir-
ically analyze and compare the most prominent CP-based
and QoS-based WS matchmaking approaches: the match-
making algorithm of Cortés et. al. [2] and two alternative
versions of our unary-constraints-based matchmaking algo-
rithm. The fields of comparison are: time complexity, ac-
curacy (precision and recall [4]), categorization and size of
useful results. The theoretical outcome of this comparison
is verified by an empirical evaluation of these three algo-
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rithms. Careful tuning of experiment parameters gives rise
to different settings under which these algorithms are evalu-
ated, resulting in many useful conclusions that validate our
theoretical analysis.

The remainder of this paper is organized as follows:
Section 2 analyzes the main approaches in QoS-based WS
matchmaking. Section 3 analyzes and compares the three
matchmaking algorithms under consideration. Section 4 de-
scribes and analyzes all details of the empirical evaluation
conducted on these algorithms and discusses its main out-
comes. Finally, section 5 summarizes the paper and draws
directions for further research.

2 Related Work

QoS of a WS is a set of non-functional attributes that are
measured by one or more QoS metrics. These metrics spec-
ify the measurement method, schedule, unit, value range
and other details. A QoS specification of a WS is mate-
rialized as a set of constraints on a certain set of QoS met-
rics. These constraints restrict the domain of values of these
metrics. A QoS offer matches a QoS demand if and only if
its solution space contains combinations of metrics assign-
ments that conform with the demand.

There are two main categories of approaches in QoS-
based WS matchmaking that differ in the way they describe
QoS-based WS specifications and the way they perform
the matchmaking. Unfortunately, most of these approaches
provide only two categories of results: matched and failed
QoS offers. However, WS requesters would like to find out
more interesting features of the results. For example, they
would like to know which matched QoS offers are more
constrained than the QoS demand. In addition, these ap-
proaches do not offer useful results for over-constrained
QoS demands. The last drawback is actually a consequence
of the previous: when an over-constrained QoS demand is
issued, only failed matches are returned. This is not quite
useful as the WS requester does not know which QoS offers
violate the constraints of the QoS demand and which not. It
would be quite useful if failed matches were further catego-
rized into two subcategories indicating the amount of failure
(complete or not). Furthermore, it would be quite useful if
users were informed that they could obtain matched QoS
offers by relaxing a minimal number of their constraints.

The first category of approaches [15, 12, 5] uses ontolo-
gies to describe QoS-based WS specifications and reason-
ers to perform the matchmaking. These approaches can
provide advanced and accurate categorization of results but
they exhibit performance issues due to the technology they
use. Moreover, they don’t offer useful results for over-
constrained demands. In addition, although they are capable
of, they do not perform semantic QoS metric matching.

The second category of approaches uses syntactic lan-

guages to describe QoS-based WS specifications as a set of
constraints and a constraint solving engine for matchmak-
ing. Approaches of this category perform better but they ex-
hibit low accuracy. In addition, they don’t provide advanced
categorization of results and no useful results at all for over-
constrained demands. Moreover, as they use syntactic lan-
guages, they are not capable of performing metric matching
in comparison with the other category of approaches. Last
but not least, they use faulty matchmaking metrics which
further reduce accuracy. Degwekar, Su and Lam [3] use a
faulty matchmaking metric: a QoS offer matches a QoS de-
mand when they have common solutions. In this way, QoS
offers that may contain worse solutions than those of the
demand’s are returned as matching results. Cortés et. al. [2]
use a stronger but also faulty matchmaking metric: a QoS
offer matches a QoS demand if and only if it contains solu-
tions that are contained in the solution space of the demand.
In this way, QoS offers that perform better than what the
requester expects are removed from the result set.

3 Matchmaking Algorithms

In our previous work [10], we have identified that a QoS-
based WS discovery process consists of four sequential
tasks: alignment, matchmaking, optimization, and selec-
tion. The alignment task aligns QoS metrics of QoS offers
and demands during WS advertisement and inquiry respec-
tively by exploiting the semantic QoS metric matching al-
gorithm [8]. The matchmaking task matches available QoS
offers with the requested QoS demand and produces cate-
gories of results. The optimization task is executed when
the matchmaking task does not produce matching results
i.e. the QoS demand is over-constrained. In this case, one
or more of the constraints of the demand are relaxed so as
to produce the required results. The selection task orders
the matchmaking results by solving constraint optimization
problems based on weights given by the requester.

The primary focus of this paper is on the matchmaking
step. Based on the analysis of the previous section, we be-
lieve that the CP-based approach is more appropriate as it
performs better and can be further improved by exploiting
the QoS metric matching algorithm and by choosing a bet-
ter matchmaking metric. Based on these factors, we have
developed two different QoS-based WS matchmaking al-
gorithms [10] for unary and n-ary constraints respectively.
We analyze and compare the best CP-based approach of the
“Related Work” section with two different versions of our
unary-constraints algorithm. In this section, these three al-
gorithms will be theoretically compared based on the fol-
lowing factors: execution time, accuracy, advanced catego-
rization of results, and size of matchmaking results. The
empirical evaluation of these algorithms will be analyzed in
the next section.
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Assumptions and notation: Our basic assumption is
that the matchmaking scenario contains N QoS offers and
one demand that involve a conjunctive set of unary con-
straints. We also assume that these QoS specifications have
already been aligned with the QoS metric matching algo-
rithm and that they eventually involve the same number of
QoS metrics M . In addition, we assume that there are only
numeric (real or integer) QoS metrics. So in the worst case,
there will be 2 ·M constraints in each QoS specification as
each QoS metric will have at most two constraints (one re-
stricting its upper limit and another one restricting its lower
limit). Finally, we assume that the average execution time
of the constraint solving engine (CSE) for solving 2 ·M +1
unary constraints involving M metrics is T 2M+1

M .

3.1 The Algorithm of Cortés et. al.

Cortés et. al. [2] propose the concept of conformance
for matchmaking, which is mathematically expressed by the
following equivalence:

conformance (Oi, D) ⇔ s
(
Pi ∧ ¬PD

)
= f (1)

where s is a procedure returning true if the input Constraint
Satisfaction Problem (CSP) [2] is satisfiable or false other-
wise, and f=false. To explain, an offer Oi matches a demand
D when there is no solution to the offer’s CSP Pi that is not
part of the solution set of the demand’s CSP PD. In the im-
plementation of this approach, a CSE engine was used that
allowed the “NOT” operator. So conformance of one QoS
offer to one QoS demand was translated to satisfiability of
one CSP problem containing all the constraints of the offer
and the negation of all the constraints of the demand. Let us
try to analyze equivalence (1):
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So, the underlying CSE translates the conformance of offer
Oi to demand D to checking if all of the CSPs– constructed
by offer’s CSP PO

i and the negation ¬cD
j of a demand’s

constraint cD
j – are unsatisfiable. If any of the CSPs is sat-

isfiable then offer Oi does not match with the demand D.
In the worst case, each QoS specification will contain

2 ·M unary constraints and conformance checking will be
transformed to solving at most 2 · M CSPs, each contain-
ing 2 · M + 1 constraints. In addition, this conformance
checking will be performed N times, one time for each of

the N QoS offers. For brevity, let us call this matchmak-
ing algorithm ‘Algorithm 1’. Hence, Algorithm 1 will take
O

(
2 ·N ·M · T 2M+1

M

)
time. This algorithm produces two

types of results: a) exact results containing QoS offers con-
forming to the QoS demand; b) fail results containing non-
conforming QoS offers. So Algorithm 1 does not provide
advanced categorization of matchmaking results. In addi-
tion, this algorithm will produce only fail results in case of
over-constrained QoS demands.

The big disadvantage of Algorithm 1 is that the confor-
mance metric is faulty leading to low accuracy. The reason
is that this metric excludes from the exact matches result
set QoS offers that provide better or equal solutions with re-
spect to the solutions of the demand. For example, suppose
that provider and requester use the same metric X , measur-
ing the QoS Property of Availability, that has as value type
the set (0.0, 1.0). Further assume that the WS provider’s
CSP has the constraint: X ≥ 0.96 while the WS requester’s
CSP has the constraint: 0.95 ≤ X ≤ 0.999. Based on the
metric of conformance, the provider’s offer does not match
the request as it contains solutions greater than that of the
request’s, although these solutions are better. As accuracy is
measured based on the metrics of precision and recall [4],
Algorithm 1 has perfect precision (equal to 1.0) but recall
less than 1.0 as it suffers from the false negatives effect.

3.2 Modifications and Improvements

Motivated by the previous observation, we improve the
matchmaking metric of conformance as follows: an offer
Oi matches a demand D when its CSP Pi has solutions that
are either contained in the solution set of the demand’s CSP
PD or are ‘better’ than the demand’s solutions. A ‘bet-
ter solution’ contains a value for a metric that is ‘better’
than all the values of this metric in the demand’s solutions.
For unary constraints of arithmetic metrics, ‘better’ is trans-
lated to ‘greater than’ for positively monotonic metrics (e.g.
Availability) or to ‘less than’ for negatively monotonic met-
rics (e.g. Response Time) while ‘worse’ is translated to ‘less
than’ or ‘greater than’ respectively.

Continuing the example of the previous paragraph, we
search for those constraints of the QoS demand whose nega-
tion ‘scans’ the worse solutions of the QoS offer. The object
of research is the constraint 0.95 ≤ X while its negation is
the constraint 0.95 > X . Observe that if we try to solve
the CSP containing the constraint 0.95 > X and the con-
straint of the QoS offer X ≥ 0.96, we get no solution. So
‘worse’ solutions are not found. Conversely, the negation
of the constraint X ≤ 0.999 searches for better solutions
than that of the demand’s. Thus, for positively monotonic
metrics X like the one of the example, we are interested in
QoS demand’s unary constraints of the form: a ≤ X , as
the negation of these constraints scans for worse solutions
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of the QoS offer under consideration. Symmetrically, for
negatively monotonic metrics X , the demand’s ‘interesting’
constraints have the following form: X ≤ b.

Based on the analysis above, we change the metric of
conformance as follows: Conformance of a QoS offer Oi

and a QoS demand D is true if and only if all CSP prob-
lems PO

i – constructed from all the constraints of the of-
fer and the negation ¬cD

j of an ‘interesting’ demand’s con-
straint cD

j , where ‘interesting’ means the a ≤ X demand
constraints for positively monotonic metrics and the X ≤ b
demand constraints for negatively monotonic metrics– are
unsatisfiable. In this way, we create a new matchmaking
algorithm called ‘Algorithm 2’ by altering Algorithm 1.

In the worst case, each QoS specification will contain
2 · M unary constraints and conformance checking will
be transformed to solving at most M CSPs that contain
2 ·M + 1 constraints. So the time complexity of the match-
making Algorithm 2 will be: O

(
N ·M · T 2M+1

M

)
. This

new matchmaking algorithm is faster than Algorithm 1. In
addition, Algorithm 2 is accurate as it corrects the ‘false
negative’ problem of Algorithm 1. However, this algorithm
still does not offer advanced categorization and does not
produce results for over-constrained QoS demands. This
is the reason we modify Algorithm 2 so as to enable these
features.

To enable advanced categorization of results, we have to
find offers with better solutions than those of the demand.
So we have to solve all possible CSPs (2 · M ) instead of
M so as to produce the following categories of conforming
offers: a) super offers promise at least one better solution
than the demand’s; b) exact offers contain a solution set that
is a subset of the demand’s solution set. For producing ex-
act matching results for over-constrained demands, we have
to first split non-conforming results into two categories: a)
partial results that do not violate all ‘interesting’ QoS de-
mand’s constraints; b) fail results that violate all M ‘inter-
esting’ constraints of the demand. We also have to introduce
weights to the constraints. Then, if an over-constrained de-
mand is issued, we execute a constraint relaxation task [10]
that promotes some partial results as exact.

This new algorithm, called ‘Algorithm 3’, is actually
the algorithm proposed in [10]. In the best case, Algorithm
3 will solve M + 1 CSPs of M metrics and 2 · M + 1
constraints for each QoS offer. In the worst case, it will
solve 2 · M CSP problems of the same form. So its com-
plexity is Ω

(
N · (M + 1) · T 2M+1

M

)
in the best case and

O
(
2 ·N ·M · T 2M+1

M

)
in the worst. As it can be seen, Al-

gorithm 3 is the slowest of the three algorithms.

4 Evaluation

In this section, we present and analyze the results of a set
of experiments carried out for testing the performance and

accuracy of the QoS-based WS matchmaking algorithms.

4.1 Experimental Setup

The algorithms and their experiments were implemented
in Matlab. Matlab was selected as it is faster than Java or C
and offers a constraint optimization package. However, this
package could not solve mixed-integer programming prob-
lems so we had to add the free MOSEK optimization tool-
box for Matlab. As a result, there was a restriction on the
number of CSP variables (at most 100). The tests were per-
formed on a computer with Microsoft Windows XP Home
as the operating system, a 1.8Ghz AMD Athlon micropro-
cessor and 512 megabytes of RAM.

In each experiment a series of tests were executed. The
number of these tests depended on the step of increase on
one tuning parameter (e.g. a value from 10 to 50 with step
10 translates to five tests) while the other tuning parameters
had specific values. This type of parameters was used for
constructing a specific random input to the matchmaking
algorithms. Each test was executed 15 times producing 15
values for each measured metric for every algorithm. From
these 15 values, only the average or minimum was regis-
tered depending on the nature of the measured metric. So in
the end of each test, every algorithm had exactly one value
registered for each metric.

4.1.1 Tuning parameters

Tuning parameters were used for constructing a specific
random input, common to every matchmaking algorithm at
each run of a test. The tuning parameters taken into account
were the following:

adscn: this parameter indicates the number of QoS of-
fers that have to be constructed from a specific random QoS
demand.

matchper: this parameter indicates the percentage of
QoS offers that are conforming to the random QoS de-
mand. In addition, it indirectly indicates the percentage
of non-conforming QoS offers. There will be a total of
m = round (adscn ·matchper) matching QoS offers and
a total of nm = adscn−m non-matching QoS offers in the
randomly constructed input.

bmper: this parameter indicates the percentage of super
offers among all matching offers. In addition, it indirectly
indicates the percentage of exact offers among all matching
offers. There will be a total of: b = round (bmper ·m)
super offers and a total of e = m − b exact offers in the
randomly constructed input. This parameter also controls
the recall accuracy metric of Algorithm 1 as it expresses the
percentage of ‘false negatives’ that this algorithm produces.

partper: this parameter indicates the percentage of par-
tial offers among all non-conforming QoS offers. It also
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indirectly indicates the percentage of fail offers among
all non-conforming QoS offers. There will be a total of
p = round (partper · nm) partial offers and a total of
f = nm− p fail offers in the randomly constructed input.

arity: this parameter indicates the arity of WS specifi-
cations’ constraints. For all conducted experiments, this pa-
rameter was set to 1 so as to produce only unary constraints.

metrcn: each randomly produced QoS-based WS specifi-
cation contains metrcn metrics and 4 ·metrcn constraints.
For every QoS specification, each metric has 2 constraints
indicating the limits of its type (e.g. for an real valued met-
ric in [1,4] we have the constraints: x ≥ 1 and x ≤ 4) and
2 constraints indicating the limits of the specification (e.g.
for the same metric we can have x ≤ 3 and x ≥ 2).

realper: this parameter indicates the percentage of real
valued metrics among all metrics. In addition, it indirectly
indicates the percentage of integer valued metrics among all
metrics. There will be r = round (realper ·metrcn) real
valued metrics and i = metrcn − r integer valued metrics
in each randomly constructed QoS-based WS specification.
Each real valued metric takes just one of the three available
real types randomly. These types are: [0.0, 1.0], [0.0, 100.0]
and [0.0, 1000.0].

sintper: this parameter indicates the percentage of short
int valued metrics (values in [0,255]) among all metrics.
In addition, it indirectly indicates the percentage of long
int valued metrics (values in [0,65535]) among all metrics.
There will be si = round (sintper · i) short int valued met-
rics and li = i − si long int valued metrics in each ran-
domly constructed QoS-based WS specification. Accord-
ing to Cortés et. al. [2], increasing the percentage of long
integers causes matchmaking execution time to increase.

hardstat: this parameter indicates the nature of the QoS
demand’s constraints. If it is set to 1, then all constraints
are hard (weight=2.0). If not, then some constraints are ran-
domly selected to be hard and some to be soft (weight in
(0.0, 1.0)). In all conducted experiments, it was set to 1.

4.1.2 Comparison metrics

Comparison metrics are actually parameters used to com-
pare the performance of the algorithms under consideration.
For our experiments, we used the following:

Matchmaking time: this parameter indicates the average
execution time of a matchmaking algorithm for the 15 runs
of each test.

Precision: QoS-based WS matchmaking is an instance
of an information retrieval problem. There are two pop-
ular metrics for measuring the accuracy of an information
system: precision and recall. If correct is the set of correct
results and ret is the set of returned results, then precision is
expressed as: |correct∩ret|

|ret| . Each run not only randomly cre-
ates a set of QoS offers and one demand but also creates the

accurate categories of results for the purpose of our evalua-
tion. So it creates the following sets: super, exact, partial
and fail. In each run, algorithms 1 and 2 produce the fol-
lowing results: exacti and faili, where i is one of 1 and
2. Thus, their precision is: preci = |(super∪exact)∩exacti|

|exacti| .
In each run, algorithm 3 produces the following results:
superi, exacti, partiali and faili, where i is 3. Its pre-
cision is: preci = |(super∪exact)∩(superi∪exacti)|

|superi∪exacti| . After the
execution of 15 runs, each algorithm will have as its preci-
sion the minimum of the precision over all runs. In other
words, precisioni = min (preci).

Recall: Based on the previous analysis, re-
call is expressed as: |correct∩ret|

|correct| . In each run,
the recall of algorithms 1 and 2 is: reci =
|(super∪exact)∩exacti|

|super∪exact| and the recall of algorithm 3 is:

reci = |(super∪exact)∩(superi∪exacti)|
|super∪exact| . In the same manner,

after 15 runs, all algorithms will have as their recall:
recalli = min (reci).

Len: this parameter indicates the average size of the
matching results for the 15 runs of each test. For algorithms
1 and 2, each run has: Len = |matchi|. For algorithm 3
each run has: Len = |superi ∪matchi|.

4.1.3 Input creation

As explained previously, each test of an experiment created
a series of 15 runs. At each execution of a run, a new ran-
dom input was created based on the values of the tuning
parameters. Then this input was fed to the matchmaking al-
gorithms. After the execution of these algorithms, the val-
ues of the comparison metrics for every algorithm were de-
rived. A new random input was created for each run in order
to test the matchmaking algorithms with different input el-
ements each time. However, it must be indicated that the
number of input elements remained constant at each test.

Each random input construction created one QoS de-
mand and adscn QoS offers. The QoS demand was created
first having metrcn QoS metrics and 4 ·metrcn unary con-
straints, as was explained earlier. Each metric was granted
with a random value type (real, short or long int) according
to the realper and sintper tuning parameters. In addition,
the monotonicity of each metric was assigned randomly.
Suppose x is the 1×metrcn array of metrics, then the QoS
demand could be expressed as: [blcD ≤ x ≤ bucD, blx ≤
x ≤ bux], where blx, bux are 1×metrcn arrays indicating
the low and upper limit respectively of the value types of
each metric and blcD, bucD are 1×metrcn arrays indicat-
ing the low and upper limit respectively of each metric.

After demand creation, adscn QoS offers were created.
Initially, each QoS offer was just a copy of the QoS demand.
Then each QoS offer was randomly classified as super, ex-
act, partial or fail according to the matchper, bmper and
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partper tuning parameters based on the following cases:
Case 1: If offer j was classified as super, then a ran-

dom number of metrics (< metrcn) was selected. If
selected metric i was positively monotonic, then its lim-
its were changed to: blcD(i) < blcj(i) < bucD(i) and
bucD(i) < bucj(i) ≤ bux(i). Otherwise, its limits were
changed to: blx(i) ≤ blcj(i) < blcD(i) and blcD(i) <
bucj(i) ≤ bucD(i). The other not selected metrics had
their limits changed to: blcD(i) < blcj(i) < bucD(i) and
blcj(i) ≤ bucj(i) < bucD(i).

Case 2: If offer j was classified as exact, then all metrics
had their limits changed to: blcD(i) < blcj(i) < bucD(i)
and blcj(i) ≤ bucj(i) < bucD(i).

Case 3: If offer j was classified as partial, then a ran-
dom number of metrics (< metrcn) was selected. If se-
lected metric i was negatively monotonic, then its lim-
its were changed to: blcD(i) < blcj(i) < bucD(i) and
bucD(i) < bucj(i) ≤ bux(i). Otherwise, its limits were
changed to: blx(i) ≤ blcj(i) < blcD(i) and blcD(i) <
bucj(i) ≤ bucD(i). The other not selected metrics had
their limits changed to: blcD(i) < blcj(i) < bucD(i) and
blcj(i) ≤ bucj(i) < bucD(i).

Case 4: If offer j was classified as fail, then for each met-
ric i we had the following cases: If it was negatively mono-
tonic, then its limits were changed to: blcD(i) < blcj(i) <
bucD(i) and bucD(i) < bucj(i) ≤ bux(i). Otherwise, its
limits were changed to: blx(i) ≤ blcj(i) < blcD(i) and
blcD(i) < bucj(i) ≤ bucD(i).

Thus, in the end, each offer j could be expressed as:
[blcj ≤ x ≤ bucj , blx ≤ x ≤ bux].

4.2 Results

In order to empirically evaluate the performance and ac-
curacy of the three QoS-based WS matchmaking algorithms
in different settings, a series of eight (8) experiments was
conducted. Each experiment had the following values for
the tuning parameters: adscn = 10, matchper = 0.5,
bmper = 0.4, partper = 0.5, arity = 1, metrcn = 10,
realper = 0.5, sintper = 0.5, hardstat = 1. Note that at
each experiment a tuning parameter was increasing its value
according to a specific step until a specific upper limit.

In the first conducted experiment, we increased the num-
ber of QoS offers in order to observe the performance of
the matchmaking algorithms. We expected a linear increas-
ing performance behavior for all algorithms according to
the time complexity analysis of the previous section. In-
deed, as can be seen in Figure 1, this is the case. In addi-
tion, Algorithm 2 was the fastest followed by Algorithms
1 and 3 in decreasing order of performance. This was also
indicated by the time complexity analysis of the previous
section. As far as accuracy is concerned, all algorithms had
precision = 1.0. Recall was also 1.0 for all algorithms

except Algorithm 1 that had recall equal to 0.6. This was
also predicted as the percentage of super matches among
all matches is the same as the percentage of ‘false nega-
tives’ produced by Algorithm 1. For the majority of the
experiments, we had bmper = 0.4 and matchper! = 0.0,
so the accuracy of the algorithms does not change.

In the second experiment, we increased the number of
QoS metrics in order to observe the performance of the
matchmaking algorithms. We expected a linear increasing
performance behavior for all algorithms according to the
time complexity analysis of the previous section. Indeed,
as can be seen in Figure 2, this is the case. In addition, the
performance order between the algorithms did not change.

In the third experiment, we increased the percentage of
matched QoS offers among the fixed-sized population of
QoS offers (adscn = 20). As can be seen in Figure 3, Al-
gorithm 3 exhibited a stable behavior while the rest of the
algorithms exhibited a linear increasing performance behav-
ior. There is an explanation for this kind of behavior: Algo-
rithm 3 spends a constant amount of time in order to figure
out if one QoS offer is conforming or not to the QoS demand
and as long as the percentage of super and partial offers re-
mains constant so does its whole matchmaking time. On the
other hand, for each QoS offer the other algorithms spend
time depending on the position of the first violating con-
straint in the order of the constraints. When the percentage
of matching QoS offers increases, the total percentage of
violating constraints decreases so the other algorithms will
have to do more and more work.

In the fourth experiment, we increased the percentage of
super matches among the fixed-sized population of QoS of-
fers (adscn = 20). Concerning matchmaking time, every
algorithm exhibited an almost stable behavior except from
algorithm 1 that exhibited a decreasing linear behavior. The
behavior of Algorithm 1 was expected. Better matching
QoS offers are ‘false negatives’ for this algorithm so their
increase causes a decrease in the number of matched QoS
offers. This behavior is indicated in Figure 4. Concerning
accuracy, all algorithms had precision equal to 1.0. Recall
was also again 1.0 for all algorithms except Algorithm 1. As
can be seen from Figure 5, recall of Algorithm 1 decreases
in the same amount as bmper increases. So, indeed, bet-
ter match offers represent ‘false negatives’ for Algorithm 1.
Thus, we can definitely express that: rec1 = 1− bmper.

In the fifth experiment, we increased the percentage of
partial matches among the fixed-sized population of QoS
offers (adscn = 20). As can be seen in Figure 6, Algorithm
3 had a stable behavior while the rest of the algorithms ex-
hibited a small increasing linear behavior. This kind of be-
havior can be explained. As long as matchper! = 0, Algo-
rithm 3 performs the same amount of work for every non-
conforming QoS offer. On the other hand, the rest of the
algorithms do considerably more work for partial results
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Figure 1. Plot of Matchmaking Time w.r.t the
Number of QoS Offers.
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Figure 2. Plot of Matchmaking Time w.r.t the
Number of QoS Metrics.
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Figure 3. Plot of Matchmaking Time w.r.t the
Percentage of Matched QoS Offers.
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Figure 4. Plot of Matchmaking Time w.r.t the
Percentage of Better Matching QoS Offers.
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Figure 5. Plot of Recall w.r.t the Percentage of
Better Matching QoS Offers.
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Figure 6. Plot of Matchmaking Time w.r.t the
Percentage of Partially Matching QoS Offers.
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than for fail results so when the number of partial results
increases so does the whole matchmaking execution time.

In the sixth and seventh experiments, we had adscn =
10, metrcn = 20 and we increased the percentage of real-
valued QoS metrics and short-integer-valued QoS metrics,
respectively, in the QoS-based WS specifications. The re-
sults were exactly the same and similar to those of the fifth
experiment. More specifically, algorithms 1, 2 and 3 had
approximately a stable performance behavior. This can be
explained as follows: MIP uses better techniques for feasi-
bility checking than CP. This is the reason why this result
comes in contrast to the results of the similarly conducted
experiment in [2].

In the last experiment, we had metrcn = 10,
matchper = 0.0 and we were increasing the number of
QoS offers. We wanted to observe the performance of the
algorithms when there are no matches (i.e. the QoS demand
is over-constrained). Algorithm 3 exhibited a big linear in-
creasing performance behavior while the rest of the algo-
rithms exhibited a very small linear increasing performance
behavior. This can be explained as follows: Algorithm 3
spends a specific amount of time for each non-conforming
QoS offer. So as the number of non-conforming QoS of-
fers increases, so does the matchmaking time. On the other
hand, the rest of the algorithms need only to solve one to
three CSPs each of the time for every QoS offer. That’s
why their matchmaking time increases so slowly. In this
type of experiment, we cannot define accuracy. However,
we can compare these algorithms on the size of conforming
results. As expected, Algorithms 1 and 2 do not produce
any result. On the other hand, Algorithm 3 always produces
exactly one result that violates the smallest number of QoS
demand’s constraints. Due to page limitations, we do not
include a figure showing the above results.

5 Conclusions

This paper presented a theoretical and empirical analysis
of three QoS-based unary-constrained WS matchmaking al-
gorithms: the one proposed in [2] and two different versions
of the one we are proposing in [10]. The evaluation of these
three algorithms validated the conclusions of the theoretical
analysis. In addition, it revealed other interesting results.
The two versions of our algorithm perform quite fast. How-
ever, when it comes to advanced categorization of results
and return of conforming results for over-constrained QoS
demands, only one performs well with the penalty of in-
creased matchmaking time. So for increased accuracy we
always pay a performance penalty.

For future work, we plan to analyze and evaluate a QoS-
based WS matchmaking approach with n-ary constraints
like the one we have proposed in [10]. We also plan to
devise an algorithm that uses other CP techniques [1].
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