
On Web Services Aggregation

Rania Khalaf1 and Frank Leymann2

1 IBM TJ Watson Research Center, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

2 IBM Software Group, Boeblingen, Germany
ley1@de.ibm.com

Abstract. The Web services framework is enabling applications from
different providers to be offered as services that can be used and
composed in a loosely-coupled manner. Subsequently, the aggregation
of services to form composite applications and maximize reuse is key.
While choreography has received the most attention, services often need
to be aggregated in a much less constrained manner. As a number of
different mechanisms emerge to create these aggregations, their relation
to each other and to prior work is useful when deciding how to create
an aggregation, as well as in extending the models themselves and
proposing new ones. In this paper, we discuss Web services aggregation
by presenting a first-step classification based on the approaches taken
by the different proposed aggregation techniques. Finally, a number
of models are presented that are created from combinations of the above.

Keywords. business process modeling, composition, aggregation,
web services.

1 Introduction

Web services [10,20] offer an XML-based framework that embodies the concepts
of the Service–Oriented Computing (SoC) paradigm, created as a result of the
movement away from the tight integration previously required for distributed
IT offerings that cross enterprise boundaries. In the SoC model, applications
from different providers are offered as services that can be used, composed, and
coordinated in a loosely-coupled manner.

The Web services framework consists of an extensible, modular stack of
open XML-standards that enable an application to expose its functionality in
a machine–readable, implementation–neutral description such that it may be
discovered, bound to, and interacted with possibly over a number of different
protocols regardless of its location in the network. This environment is therefore
intrinsically heterogeneous, distributed, and dynamic.

With a viable service model in place, the aggregation of services to provide
composite applications and maximize reuse becomes key. For example, service
aggregators may reuse services that have already been created, or offer new
services formed by choreographing interactions with available services offered
by other providers. Although Web services overlay on top of existing IT tech-
nologies, the Web services environment is more dynamic and loosely coupled.

B. Benatallah and M.-C. Shan (Eds.): TES 2003, LNCS 2819, pp. 1–13, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

2 R. Khalaf and F. Leymann

In comparing agents and components, [18] notes that agents concentrate on dy-
namicity and components concentrate on composability. Web services need both,
making their aggregation models of particular interest.

Choreography-based composition has taken the forefront when considering
aggregation in Web services. However, other less-structured aggregation models
exist. As multiple languages and mechanisms are proposed, understanding their
relation to each other and to prior composition and aggregation models is useful
when deciding how to create an aggregation, as well as in extending the models
themselves and proposing new ones.

In this paper, we study prevalent aggregation mechanisms by creating a clas-
sification that groups them based on their approach and applicability. The aim
of this classification is two-fold. First, it distills the space by grouping aggrega-
tion mechanisms based on their design goal, allowing one to step back from the
plethora of acronyms, specifications, and systems. Second, it begins identifying
primitive aggregation techniques, allowing one to reason about useful combina-
tions.

We present each of the approaches in the classification and discuss future
work. Finally, a number of models created from combinations of the above are
presented.

2 Background: Defining Web Services

Before discussing aggregation, we provide an overview of the functional descrip-
tion of a Web service, usually provided by the Web Services Description Lan-
guage (WSDL)[8]. WSDL embodies the Web services principle separating the
abstract functionality of a service from its mappings to deployed implementa-
tions, thereby enabling an abstract component to be implemented by multiple
code artifacts and deployed using different communication protocols and pro-
gramming models.

In WSDL, the abstract part consists of one or more “portTypes”, constituting
the service’s interface. PortTypes specify supported operations and their input
and/or output message structures. These may then be used by third parties
aggregating compo-nents or by client code invoking operations.

The concrete part of a WSDL definition consists of bindings, ports, and
services. A binding is a mapping of a portType to an available transport protocol
and data encoding format. A port provides the location of a physical endpoint
that implements a portType using one of the available bindings. A service is a
collection of ports.

The aggregation mechanisms covered in the rest of this paper, in particular
those performing type–based aggregation, will make extensive use of the WSDL
definitions of their constituent services.

3 A Classification of Web Services Aggregation

For the focus of this paper, we define Web services aggregation as the combina-
tion of a set of Web services to achieve a common goal. An aggregation may be

On Web Services Aggregation 3

created both at the interface–level (agnostic to service implementations), or di-
rectly at the instance level. The former provides more flexibility in allowing late
binding to actual deployed instances. We consider mechanisms whose purpose is
the first–class creation of such aggregates.

Agreements
Recursive

Wiring

Constrained Unconstrained

Service
DomainsChoreography

Aggregation

Grouping

Fig. 1. Classification of Web Services Aggregation Models

The classification driving the discussion is illustrated in figure 1, and dis-
cussed in detail throughout the paper. The initial split depends on whether or
not the aggregation is constrained. Unconstrained aggregation does not impose
any control on the interactions between the services used or on the services that
may be part of the aggregation. Approaches of this kind include simply grouping
a set of services in one “bag” or defining an architectural setup through the use
of join points and connectors.

On the other hand, constrained aggregation imposes constraints on the aggre-
gated services, specifically regarding the functionality they must support and/or
the interactions they may have with each other and with the aggregate itself.
Three sub-categories are presented: choreography, service domains, and agree-
ments.

This classification may be extended at each of the current leaves, and/or by
adding higher level branches if significantly different models are proposed. For
example, the choreography category can be further branched down based on the
process meta–model used, including “calculus-based” [28], “state-chart based”
[6],“graph-based” [16], and so on.

3.1 Unconstrained Aggregation

Grouping. Grouping simply provides a collection of services. Two cases are
presented here, grouping of interfaces and grouping of instances.

– Interface Inheritance
Multiple interface inheritance has been proposed for WSDL 1.2 in the form of
portType inheritance. It introduces substitutability semantics at the instance
level: An instance of a subtype in the inheritance hierarchy can be used
wherever an instance of one of its supertypes can be used. Copy semantics
apply at the specifications level as shown in figure 2, such that those of the
supertypes are copied to the subtype. The implementation of the subtype
provides a single endpoint with a single binding at which implementations

4 R. Khalaf and F. Leymann

op_x

op_b

op_a

op_1

op_2 portT
ype

op_b

op_a

portT
ype

op_1

op_2

portT
ype

Fig. 2. Aggregating interfaces using portType inheritance

of all inherited operations are made available. This is different from service
domains below.
While the area of multiple interface inheritance is relatively well understood
due to prior experience in OOP, two issues have to be addressed that com-
plicate the scenario for Web services: the lack of control over the portTypes
being extended (they may be owned by a third-party) and the introduction
of policies. The first leads to the problem of method signature clashes from
methods coming from two different, inherited portTypes. Normally, one may
be able to redefine or rename one of them, but those definitions may be out
of the control of the user extending them. The second complication is the
flexibility of the Web services quality of service framework, WS-Policy [3,
2]. Policies defining quality of service capabilities or requirements may be
attached not only to the concrete part of the WSDL (part of the binding, or
the port), but also to portTypes or operations within them. It is not yet clear
what this would mean to multiple portType inheritance. The problems that
could occur become clearer if one considers the following two cases: inherit-
ing two operations with the same signature and different policies; inheriting
a set of operations that may have conflicting policy requirements.

– Instance Grouping
An unstructured grouping of instances may be created to offer a number of
related service instances together to a user. One example of its use is the
creation of an aggregate as a collection of WSRP [15] portlets. Basically, a
number of portlets of arbitrary functionality may be added to a portal that
provides a unified access point to the user.
The WSRP specification enables portlets to be grouped into a portal, al-
lowing a user to interact with them from a single location such as a Web
page. While this approach is user-interface centric, it is one of the few exam-
ples of a pure grouping of instances. The container mediates the interaction
between the user and the embedded services, but the portlets themselves
are not connected to each other, and at the time of this writing, there was
no way in WSRP to specify piping the output from one into the input of
another as is done in “recursive wiring” below.

On Web Services Aggregation 5

export

plug

Aggregate’s
PT

Fig. 3. Aggregation using Recursive Wiring

Recursive Wiring. One form of aggregation is to wire services together such
that they may use each other’s services. The aggregation created in this way may
then itself be exposed as a service which can be wired and invoked. A simple
example is a service composed of a chain of filters, where each filter is a Web
service. Wiring occurs by connecting the output of the first filter to the input of
the next and so on. The input of the first filter and the output of the last one
may then be exposed on the aggregate.

This form of aggregation has been commonly used in component-based soft-
ware engineering where component definitions include pluggable “ports”, each
port referring to an interface. Components are wired by binding input ports to
output ports. The creation of compound components is done by binding an in-
put port on an internal component to an input port on the created compound
one, and similarly for output ports [23,25]. The wiring in these approaches is im-
plicit, defined as part of the component definitions themselves. In Java, a similar
approach is the use of event sources (output) and event listeners(input), with
wiring occurring by adding one Bean as a listener to events from another. [13]
presents a scripting language that makes the wiring first class. In [14], the focus
is on making the connectors themselves first class, with an architecture created
by combining components with connectors. Connectors are of different types,
which specify the behavior of the interaction between the services they connect.

In Web services, WSFL’s Global Models [16] define a variation on the recur-
sive combination of components using explicitly defined connectors. In Global
Models, directed “plug links” connect an output operation, opout , from a port-
Type of one service to the input operation, opin , from a portType of another
service. Message manipulations to match message types are enabled within the
plug link definitions. “Dangling” operations may be exported to the boundary
of the aggregation where they can be arranged in portTypes representing the
interface of the aggregate, as illustrated in Figure 3.

WSFL’s global model concept results in a recursive aggregation model at the
interface (portType) level. External usage of operations of these portTypes will
be delegated to the exporting operations. It can be perceived that the portTypes
at the boundary of the aggregate are implemented by the corresponding export-
ing operations, i.e. the aggregation mechanism specifies an implementation of the

6 R. Khalaf and F. Leymann

operations via delegation. This exporting of operations enables recursive com-
position, similar to the creation of the compound components described earlier
and to aggregation in COM [26].

The key differentiators between this model and those in the cited literature
are that the wiring in Global Models is at the operation level, it does not require
an exact mirror of the wired operations due to the ability to define message
transformations, and most importantly it does not refer to instances of services
but builds off of their abstract descriptions. The plug links may define a “lo-
cator”, however, that defines how an instance may be located at runtime (for
example, through a registry lookup).

3.2 Constrained Aggregation

Choreography. The wiring of services described above is based on the services
themselves driving an instance of the aggregate. This is not sufficient for more
complex cases such as those required in executing business functionality. In such
situations, one needs to model a business process by choreographing the inter-
actions with the services in the aggregate. The workflow and business process
modeling mechanisms used in Web services fall under this category. Choreogra-
phies are constrained, proactive compositions that drive the interactions with
the services they aggregate by defining execution semantics on a set of activities
that perform these interactions. These semantics may be defined in a number
of ways, such as connecting them with directed edges to form a DAG [21,16,
7], nesting them in compound activities with execution semantics [28], or using
Petri Nets [17].

Web services choreography languages are based on the interfaces of the ser-
vices, decoupled from specific service instances which may therefore be found
and bound to during either the design, deployment [9], or execution phases of
an aggregation. In [31,20], selection during execution enables the aggregate to
meet (global) quality of service constraints. There are two main reasons for this:
the dynamic nature of Service-Oriented Computing in which services and their
requirements may change frequently, and the need to reuse business process logic
across different implementations.

To illustrate, we describe one of the choreography mechanisms in more de-
tail: The Business Process Execution Language for Web Services (BPEL4WS).
The flow of control in BPEL4WS is defined using a combination of the afore-
mentioned graph and calculus based approaches. A predefined set of simple ac-
tivities is provided to: 1)perform Web services interactions: invoke operations
on Web services, receive and reply to invocations on the process itself from
the services it composes, and 2)provide additional functionality such as waiting,
throwing faults, and manipulating data associated with the process. Control is
defined using both (or either) directed control links and compound activities
that impose, on the activities that are contained within them, semantics such
as parallelism, sequencing, or non-deterministic choice. BPEL also defines com-
pensation and fault handling mechanisms, [11].

On Web Services Aggregation 7

Process PT

PTa

PTb

Fig. 4. Aggregating interfaces using choreography

BPEL4WS compositions are based purely on the interfaces of the composed
services, that is, their abstract definitions in WSDL (portTypes, operations,
and message types). From an architectural perspective, the resulting process is
itself a Web service that can be exposed using WSDL definitions that define the
portTypes it provides to clients. Additionally, the BPEL process also declares
which portTypes it requires from each of the services it composes.

Mechanisms for binding service instances to a process are intentionally left
up to the runtime and therefore out of the process definition. Dynamic binding
is enabled through the definition of an activity that, when activated, copies a
service reference from a received message (possibly from an invocation to a UDDI
registry lookup or from a known service provider) into the runtime.

The “executable variant” of this semantics results in proactively driving the
services as shown in figure 4. The “abstract interface variant” defines constraints
in using the corresponding operations. The latter includes the degenerated case
of a single portType, allowing one to specify ordering constraints in using the
operations of that port type. Similarly, message exchange patterns (MEP) [1]
between sets of portTypes can be defined via choreography.

In related work, semantic information is being used to enable the automatic
creation of choreographies. For example, [24] presents a backwards chaining plan-
ner to automatically compose a set of Semantic Web services by working from
a given goal.

Service Domains. A Service Domain is an aggregation formed by a set of
implementations that complement (or compete) with each other to collectively
implement a collection of portTypes. The service instances that may become part
of this aggregate are constrained by the set of portTypes the aggregate includes,
as illustrated in figure 5. The sum of the instances provides the implementation
of the interfaces in the domain, with the domain dispatching each incoming call
to the appropriate instance that can execute it. At the type level, a service
domain SD is a set of portTypes, i.e. SD = {pT 1, ..., pTn}. At the instance level
a service domain sd is a collection of ports, i.e. sd = {p1

1, ..., p
1
k(1), p

n
1 , ..., pn

k(n)}.

Here, each port pj
i ∈ sd is of portType pT j ∈ SD.

8 R. Khalaf and F. Leymann

op_b

op_a

op_1

op_2

instance
instance

instance

Fig. 5. Service Domains

The ports of a service domain sd may be provided by different service
providers. An instance of a service domain is created by attaching ports for
the aggregated portTypes to the instance. Different service providers may con-
tribute ports for the same portType, and a given service provider may contribute
ports of only a subset of the port types of the service domain.

A requestor is blind to the services constituting the aggregate, and picks a
portType that he needs to interact with an instance of. A “hub” managing the
instance of the service domain then selects a port of this portType from those
made available to it by the different providers, and dispatches the call made by
the requestor to it.

The next level of refinement of a service domain is the introduction of service
level agreements (SLA) [22] to be used in the dispatching: Each portType of
a service domain is associated with a set of SLAs. A provider that wants to
contribute a port of a portType of the service domain registers with one of these
SLAs, committing to the corresponding service level.

A requestor specifies a SLA with the service level he expects in his interac-
tions with the ports of the instance of the service domain. The hub managing
the instance of the service domain performs the choice underlying its dispatch
decision based on matching SLAs and optimizing overall resource utilization.
The owner of the hub specifies the rules to influence these choices.

This is similar to the aggregation model used in [27] and the service commu-
nities in [6], in which the service communities themselves are exposed as Web
services.

Agreements. Agreement based aggregation is much more loosely constrained
than choreographed aggregation. It is the creation of a distributed activity by
the temporary grouping of a set of service instances, at the end of which a joint
outcome is reached and possibly disseminated. This joint outcome is reached
based on the members of the aggregation following a pre-defined set of protocols.
Note that the portTypes of the services involved are not defined as part of this
aggregation mechanism; instead, it relies purely on the ports (service endpoints)
themselves.

One example is that of the sealed bid auction presented in [20]. Buyers and
sellers are Web services following a certain coordination protocol and being co-

On Web Services Aggregation 9

ordinated by an auctioneer. At the end of the bidding period, the auctioneer
decides who the winner of the bid is and informs both buyer and seller and the
temporary collection of services ceases to exist.

The Web Services Coordination specification (WS–C for short)[4] is a real-
ization of this approach. A distributed activity is a unit of computation that
involves a set of services and at the end of which these services jointly agree on
an outcome based on a coordination protocol. A coordination protocol consists
of a set of messages and a specification of how these messages are to be ex-
changed. Coordination types then group a set of coordination protocols needed
between the different services of a distributed activity. Additionally, methods
are defined for registering participating services with coordinators. WS-C pro-
vides a pluggable framework for this form of aggregation, such that different and
new coordination protocols may be used. The coordination protocols are defined
separately, for example the WS-Transactions specification (WS–Tx for short)[5]
describes two protocols for long-running transactions and for atomic activities.

WS–C has been considered in conjunction with WS–Tx. The use of this model
will depend on the ease of introducing new protocols for different aggregations
and additional real–world scenarios.

4 Instance Versus Interface Aggregation

The aggregation models discussed thus far aggregate either on the instances di-
rectly, such as is the case with service domains, or on the interfaces (WSDL
portTypes) of the aggregated services. In the latter case, the binding to actual
instances is done at some later point and is not the main concern of the aggre-
gate’s definition.

Table 6 summarizes the aggregation approaches defined above and shows cor-
responding Web services realization of these approaches. The level of granularity
added to this table is the separation of aggregation concerned with instances from
those concerned with interfaces.

5 Combined Aggregation Models

The categories defined above constitute different approaches to aggregation; how-
ever, useful patterns may be created by combining some of them together. The
youth of the Web services technology means that such combinations are still in
their very early stages. In this section, we describe a few possible combinations.

– Choreography with Agreements: The ability to coordinate multiple Web ser-
vices extends naturally to coordinating both within and among aggregates.
WS-Coordination (WS-C) was released in conjunction with BPEL4WS,
along with WS-Transaction (WS-Tx), to be used either separately, or in
tandem for more robust composition as described in [12]. The BPEL4WS
specification contains an appendix on using WS-C/WS-Tx to coordinate
nested scopes within a choreography.

10 R. Khalaf and F. Leymann

BPEL4WS,
MEPs

Service Domains,
Service Communities

WS-Coordination

Global Models
(WSFL)

WSDL PortType
Inheritance*

WSRP

Constrained

Unconstrained

Choreography

Service
Domains

Agreements

Recursive
Wiring

Grouping

how
what Types Instances

*proposed, not part of current specification

N/A

N/A

Fig. 6. Summary of aggregation mechanisms

– Choreographed Recursive Wiring: The model of choreography presented in
this paper has so far been from the perspective of the choreographing ser-
vice. However, it is necessary to define global interaction choreographies that
multiple partners may plug into. While recursive wiring allows plugging dif-
ferent services together, it does not restrict or define how they may interact -
execution semantics are part of the implementations of the services. Outside
of Web services, this requirement has been addressed in work on interorgani-
zational workflow. The approaches used in the workflow literature map onto
a combination of choreography and wiring: First, one must define the struc-
ture identifying the components and the channels of communication. This is
similar to Global Models in section 3.1, but recursiveness is not addressed.
Second, the literature defines interaction protocols either in terms of Petri
Nets [30] or as sets of Message Sequence Charts [29,19].
The realization of this combination will require further work in Web services,
as BPEL4WS defines a protocol that drives an interaction instead of what
is described here which is a protocol which defines how the different parties
should drive the parts of the interaction that they are participating in.

– Any Type-Based Aggregation with Service Domains: Type-based aggregation
mechanisms may refer to a service domain, restricting the choice of instances
at runtime to the discretion of the domain. One example of this approach is
used in [6] through its combination of choreography and service communities.

– Recursive Wiring with Instance Grouping: This combination results in in-
stance based recursive composition, wiring together the instances that make
up a grouping. For example, a set of portlets may be wired to pipe output
from one portlet and into another.

6 Conclusion.

The area of Web services aggregations is seeing a large amount of activity as
aggregation mechanisms are still evolving. Some are being extended and new

On Web Services Aggregation 11

ones created to enhance their capabilities. As multiple proposals emerge for
aggregating Web services, it is important to understand where the mechanisms
needed fit in and how they relate to existing approaches.

In this paper, we have discussed Web services aggregation by presenting a
first–step classification based on the approaches taken by the different proposed
aggregation techniques. The main commonality is that an aggregate is created
to group a set of services in order to achieve a common goal. From there, we have
shown an aggregation may be either constrained or unconstrained, depending on
how much structure is needed to achieve the goal in question and on how inde-
pendent the behavior of the constituent services may be from the composition
itself. A choreography presents a composition-driven aggregation which defines
control sequences of interactions with the aggregated services, whereas an ag-
gregate created using recursive wiring does not care about sequencing. Instead
it simply connects service interfaces together, so that once bound to instances
the service instances drive their interactions along these connections.The ways
in which aggregations may be formed is then further refined as shown in figure1.

As the Web services model itself (WSDL, policy, etc) stabilizes, aggregation
will become more central as it is a key capablity made more challenging by the
distributed, dynamic, and heterogenuous nature of Web services.With the aim
of clarification of aggregation models, and the youth of this technology, we have
started with a small set of categories that identify the main areas as they stand
today.

Ongoing work will reflect the effects of the evolution of core specifications,
including WSDL, as well as the growth and adoption of Web services aggregation
techniques. Refining and expanding the classification will consider both adding
categories, and additional dimensions for existing categories, such as level and
focus of constraints. We are also interested in identifying primitive aggregation
mechanisms, and understanding the conditions under which they may or may
not be combined

Acknowledgment. The authors acknowledge the contribution of comments on
this paper with our colleagues at IBM, in particular, Ravi Konuru, Stefan Tai,
and Francisco Curbera.

References

1. Web Services Message Exchange Patterns. Published online by W3C at
http://www.w3.org/2002/ws/cg/2/07/meps.html, July 2002.

2. Web Services Policy Attachment (WS-PolicyAttachment). Published online by
IBM, BEA, Microsoft, and SAP at
http://www-106.ibm.com/developerworks/webservices/library/ws-polatt, 2002.

3. Web Services Policy Framework (WS-Policy Framework). Published online by
IBM, BEA, and Microsoft at
http://www-106.ibm.com/developerworks/webservices/library/ws-polfram, 2002.

4. WS-Coordination. Published online by IBM, BEA, and Microsoft at
http://www-106.ibm.com/developerworks/library/ws-coor, 2002.

12 R. Khalaf and F. Leymann

5. WS-Transaction. Published online by IBM, BEA, and Microsoft at
http://www-106.ibm.com/developerworks/library/ws-transpec, 2002.

6. B. Benatallah, M. Dumas, and Z. Maamar. Definition and execution of composite
web services: The self-serv project. Data Engineering Bulletin, 25(4), 2002.

7. Fabio Casati, Mehmet Sayal, and Ming-Chien Shan. Developing e-services for
composing e-services. In Proc. of CAiSE2001, volume 2068 of LNCS, pages 171–
186. Springer-Verlag, 2001.

8. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. Published online by W3C at
http://www.w3.org/TR/wsdl, Mar 2001.

9. F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, and S. Weerawarana.
BPWS4J. Published online by IBM at
http://www.alphaworks.ibm.com/tech/bpws4j, Aug 2002.

10. Fancisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. Unraveling the web services web: An introduction to
SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2):86–93, 1 2002.

11. Francisco Curbera, Rania Khalaf, Frank Leymann, and Sanjiva Weerawarana. Ex-
ception handling in the bpel4ws language. In International Conference on Business
Process Management(BPM2003), LNCS, Eindhoven, the Netherlands, June 2003.
Springer.

12. Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and S. Weerawarana.
Web services, the next step: Robust service composition. Communications of the
ACM: Service Oriented Computing, 10 2003. to appear.

13. Francisco Curbera, Sanjiva Weerawarana, and Matthew J. Duftler. On component
composition languages. In Proc. International Workshop on Component-Oriented
Programming, May 2000.

14. Eric M. Dashofy, Nenad Medvidovic, and Richard N. Taylor. Using off-the-shelf
middleware to implement connectors in distributed software architectures. In Proc.
of International Conference on Software Engineering, pages 3–12, Los Angeles,
California, USA, May 1999.

15. A.L. Diaz, P. Fischer, C. Leue, and T. Schaeck. Web Services for Remote Portals
(wsrp). Published online by IBM at
http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/,
January 2002.

16. Frank Leymann et. al. Web Services Flow Language (WSFL) 1.0. Published online
by IBM at
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
May 2001.

17. Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service
composition. In Proc. of the Australian Database Conference(ADC2003), Adelaide,
Austaralia, 2003.

18. Denis Jouvin and Salima Hassas. Role delegation as multi-agent oriented dynamic
composition. In NetObjectDays, 2002.

19. E. Kindler, A. Martens, and W. Reisig. Inter-operability of workflow applications.
In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of LNCS,
pages 235–253. Springer-Verlag, 2000.

20. Frank Leymann. Web services: Distributed applications without limits - an out-
line. In Proceedings, Database Systems for Business, Technology, and Web (BTW),
LNCS. Springer-Verlag, Feb 2003.

On Web Services Aggregation 13

21. Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques.
Prentice Hall, 2000.

22. H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. A service level agree-
ment language for dynamic electronic services. Journal of Electronic Commerce
Research, 3, mar 2003.

23. Jeff Magee, Andrew Tseng, and Jeff Kramer. Composing distributed objects in
CORBA. In 3rd International Symposium on Autonomous Decentralized Systems
(ISADS97), 1997.

24. Mithun Sheshagiri, Marie desJardins, and Tim Finin. A planner for composing
services described in daml-s. In Conf. on Autonomous Agents and Multi-Agent
Systems(AAMAS03), Workshop on Web Services and Agent-based Engineering,
Melbourne, Australia, July 2003.

25. Vugranam C. Sreedhar. Mixin’up components. In Proc. of the international con-
ference on Software engineering (ICSE2002), Orlando, Florida, 2002.

26. Kevin Sullivan, Mark Marchukov, and John Socha. Analysis of a conflict between
aggregation and interface negotiation in microsoft’s component object model. IEEE
Transaction on Software Engineering, 25(4), 1999.

27. Y.S. Tan, B. Topol, V. Vellanki, and J. Xing. Manage web services and grid services
with service domain technology. Published online by IBM at
http://www-106.ibm.com/developerworks/ibm/library/i-servicegrid/, 2002.

28. Satish Thatte. XLANG. Published online by Microsoft at
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, 2001.

29. W. van der Aalst. Interorganizational workflows: An approach based on mes-
sage sequence charts and petri nets. Systems Analysis - Modelling - Simulation,
34(3):335–367, 1999.

30. W. van der Aalst and M. Weske. The p2p approach to interoganizational workflows.
In Proc. of CAiSE2001, volume 2608 of LNCS, pages 140–156. Springer-Verlag,
2001.

31. Liangzhao Zeng, Boualem Bentallah, Marlon Dumas, Jayant Kalagnanam, and
Quang Sheng. Quality driven web services composition. In Proc. of WWW2003,
Budapest, Hungary, May 2003.

	Introduction
	Background: Defining Web Services
	A Classification of Web Services Aggregation
	Unconstrained Aggregation
	Constrained Aggregation

	Instance Versus Interface Aggregation
	Combined Aggregation Models
	Conclusion.

