
Representation, Verification, and Computation of Timed Properties in Web
Service Compositions ∗

Raman Kazhamiakin
DIT, University of Trento
via Sommarive 14
38050, Trento, Italy
raman@dit.unitn.it

Paritosh Pandya
Tata Institute of Fundamental Research

Homi Bhabha Road, Colaba
Mumbai 400 005, India
pandya@tifr.res.in

Marco Pistore
DIT, University of Trento
via Sommarive 14
38050, Trento, Italy
pistore@dit.unitn.it

Abstract

In this paper we address the problem of qualitative and
quantitative analysis of timing aspects of Web service com-
positions defined as a set of BPEL4WS processes. We in-
troduce a formalism, calledWeb Service Timed State Tran-
sition Systems (WSTTS), to capture the timed behavior of
the composite web services. We also exploit an interval tem-
poral logic to express complex timed assumptions and re-
quirements on the system’s behavior. Building on top of this
formalization, we provide techniques and tools for model-
checking BPEL4WS compositions against time-related re-
quirements. We also present a symbolic algorithm that can
be used to compute duration bounds of behavioral intervals
that satisfy such requirements. We perform a preliminary
experimental evaluation of our approach and tools with the
help of an e-Government case study.

1. Introduction

One of the key aspects for the correctness of theWeb ser-

vice compositions is the correctness of the behaviors gener-

ated by the interactions among the participants of the com-

position. In the behavioral analysis of these compositions

we require not only the satisfaction of qualitative require-

ments (e.g. deadlock freeness of the interaction protocols),

but also of quantitative properties, such as time, perfor-

mance, and resource consumption.

Time-related properties are particularly relevant in this

setting. Indeed, in many scenarios we expect that a Web

service composition satisfies some global timed constraints,

and these constraints can be satisfied only if all the services

participating to the composition are committed to respect

∗This work is partially funded by the MIUR-FIRB project

RBNE0195K5, “KLASE”, by the MIUR-PRIN 2004 project “STRAP”,

and by the EU-IST project FP6-016004 “SENSORIA”.

their own local timed constraints. Consider for instance an

e-government scenario, where the distributed business pro-

cess requires the composition of information systems and

functionalities provided by different departments or organi-

zations (here, we will consider one of such scenarios, con-

sisting in providing the authorization to open a site for the

disposal of dangerous waste). The composite service can

comply with the timed commitments with respect to the na-

tional regulations (e.g., the duration of document analysis

phase) only if they are consistent with the time required by

all participating actors to carry out their part of the process.

In the analysis of such properties it is important not only

to check whether a certain requirement is satisfied, but also

to determine extremal time bounds where the property is
guaranteed to be satisfied. In e-government scenario, for

instance, it is important not only to demonstrate the ability

to complete the authorization procedure, but also to find a

maximal/minimal duration of such a procedure. However,

the computation of these durations by trial and error search

of the corresponding values is inherently incomplete and

highly inefficient.

In this paper we present an approach for modeling, val-

idating and computing the time-related properties of Web

service compositions defined by a set of BPEL processes.

We want to stress the fact that the time properties we want

to model and analyze are those that are critical from the

point of the business logic, i.e., they refer to the time re-

quired by the participating actor to carry out their tasks and

take their decisions, and to the assumptions and constraints

on these times that guarantee a successful execution of the

distributed business processes. In e-government scenarios,

there times are measured in hours and in days. The “techni-

cal” times, which are required, for instance, by the commu-

nications among BPEL processes and by the BPEL engines

to manage incoming and outgoing message, are orders of

magnitude smaller (seconds if not milliseconds) and can be

neglected in these scenarios.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

This work extends our previous results on the qualita-

tive analysis of time-related properties BPEL compositions

[9]. In [9] we define the formalism of Web Services Timed
Transition Systems (WSTTS), which allow for modeling the
timed behavior of a BPEL composition. WSTTS are closely

related to timed automata but incorporate design decisions

and features specific to Web service compositions. In [9]

we exploit the duration calculus logic for the representation

of complex timed requirements in the domain.

In this paper we extend the analysis capabilities of [9]

and introduce a decision procedure that can be used to

compute extremal durations of intervals satisfying required

properties. We adapt Quantified Discrete-time Duration

Calculus (QDDC, [12]) to model these properties and adopt

the algorithms of [13, 3] to perform the computation in

WSTTS models.

The structure of the paper is as follows. In Sect. 2 we

introduce the e-government case study that describes the

problemof analysis of time-related properties. Section 3 ex-

plains how the timed aspects of Web service compositions

are modelled in the formalism of WSTTS model, and intro-

duces the Duration Calculus logic exploited to capture the

complex quantitative timing requirements and constraints.

The qualitative and quantitative timed analysis approach is

discussed in Sect. 4 together with some experimental results

on the presented case study. Conclusions and future work

are presented in Sect. 5.

2. Case Study: e-Government Application

We illustrate our approach with an e-government appli-

cation. The goal of the application is to provide a service

that manages user requests to open sites for the disposal of

dangerous waste. According to the existing Italian laws,

such a request involves the interaction of different actors

of the public administration, namely a Citizen Service, a

Waste Management Office (WMO), a Secretary Service, a

Procedure Manager, a Technical Committee, and a Political

Board. In this application, the whole procedure is imple-

mented as a composition of Web services that serve as in-

terfaces to the processes of the above actors. We model the

composition using BPEL specifications to describe the in-

teractions among these actors. The high-level model of the

composition is presented in Fig. 1. The procedure describes

different phases of the application management where the

request is registered, the documentation is evaluated and

collected, the application is analyzed regarding the ecolog-

ical impact of the site, the public conference is scheduled

and organized, and final decision is provided.

Apart from the functional requirements, the execution

of the process in the choreography should respect a set of

timed requirements and constraints, dictated by Italian laws

or by the agreement among the involved parties. These re-

quirements (callouts in Fig. 1) specify, for example, that the

period of time between the application registration and the

notification of the Procedure Manager should not exceed 30

days, or that the participants can change the date within 5

days after the preliminary call. The behavior of the compo-

sition and the possibility to satisfy these requirements de-

pend on the time needed for the execution of the activities

the involved parties are responsible for. We remark that the

critical parameter is the duration of internal activities of the

participants, and not to the communication time, which can

be neglected.

In these settings, the Web service composition analysis

may become a long, error-prone process of finding bound-

ary time values that would ensure correctness of the com-

position with respect to functional and timed requirements.

Consider, for instance, the problem of determining the max-

imum time which can be spent by the Citizen to provide

integration documents and the Technical Committee to per-

form the analysis, such that the requirement to announce a

conference within 30 days after registration is satisfied.

The analysis of time-related aspects of the compositions

requires explicit representation of timeouts, operation du-

rations, and even complex properties expressing various

timed requirements. While timeouts can be represented in
BPEL, durations and timed requirements can not, and re-

quire specific way to be modelled. In our framework, we

assume that the answer times are negligible by default, and

that activities that have a non-negligible duration are an-

notated in the BPEL specification with an extra duration
attribute. In Fig. 1 an excerpt of the annotated BPEL is pre-

sented. Here a BPEL event handler “date modification” is

used to model a time-bounded possibility to change the date

of the conference. That is, the onAlarm activity is trig-
gered if the user does not call the “modifyDate” operation

within 5 days. On the contrary, the internal activity “verify

reviews” is equipped with a duration annotation to express

that certain time may be used for the reviews analysis.

While durations and timeouts can be easily represented

within BPEL, timed requirements can not and require more
powerful notations. Consider, for instance, the requirement

that the interval from the registration to the conference call

should not exceed 30 days, and it is followed by the in-

terval of length of at least 10 days, ending with the con-

ference. This requirement spans over many activities per-

formed by different parties. In order to be able to handle

it, it is necessary to provide a model of the behavior of the

BPEL processes that allows for an explicit representation

of time. Moreover, it is necessary to exploit techniques for

reasoning about time to check if this requirement is satis-

fied by the BPEL timed model. In the following sections

we demonstrate how these issues can be addressed with the

help of the WSTTS model, the duration annotations and du-

ration calculus for complex time requirements.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Procedure

Manager

Political

Board

Technical

Committee

Secretary

Service

Waste

Management

Office

Citizen Service

Initial

Request
Register

Protocol

Preliminary

Notification
Evaluate

Documents

Prepare

Integration

Public

Notification

Receive

Notification

Provide

Integration

Receive

Notification

Collect

Integration

Start

Procedure
Invoke

TC
Technical

Analysis

Verify

Reviews

Conference

Call

Send

Acts

Provide

Evaluation

Provide

Evaluation

Receive

Acts

Provide

Decision

Receive

Decision

Within 30
dd after the
registration

Final Call

Change

Date

Within 30
dd after the
registration

Within 30
dd after the
registration

Within 30 dd after the
registration, and at least

10 dd before the
conference

Within
5 dd

Conference

Within 90 dd
after the first

call

Within 30
dd

At least 5 dd before
the conference

* * * * *
<receive name="receive reviews" operation="submitReview"

partnerLink="TechCommPL"/>

<empty name="verify reviews"
duration="lessEqual(3D)" />

<flow name="conference call" >
<invoke name="Customer Call" operation="sendCall"

partnerLink="CustomerPL"/>
<invoke name="TechComm Call" operation="sendCall"

partnerLink="TechCommPL"/></flow>

<pick name="date modification">
<onMessage operation="modifyDate"

partnerLink="CustomerPL" >
<empty name="verify preferred date"/>
</onMessage>

<onAlarm name="modification timeout" for="PT5D">
<empty name="calculate date"/>
</onAlarm></pick>

<flow name="final call">
<invoke name="Customer Call" operation="sendFinalCall"

partnerLink="CustomerPL" variable="finalCallMsg"/>
<invoke name="TechComm Call" operation="sendFinalCall"

partnerLink="TechCommPL" variable="finalCallMsg"/>
</flow>

* * * * *

Figure 1. Waste management application processes

3. Modeling of Time-related Properties

The behavior of a BPEL service is described by se-

quences of activities. The semantics of these activities and

the execution time depend on the type of these activities.

For instance, the onAlarm activity is fired immediately
when the timeout expires. The assignment of variables may

be considered as an instantaneous activity, while the ser-

vice invocation operation may require an arbitrary amount

of time since it depends on the time required by the invoked

service to fulfill the request. In order to model such behav-

ior, we propose the Web Service Timed Transition System

(WSTTS) model, which adopts the formalism of timed au-
tomata for capturing the aspects specific to the Web service
domain. In this formalism, the fact that the operation takes

a certain amount of time is represented by time increment in

the state, followed by the immediate execution of the opera-

tion. In order to guarantee that the transition will take place

at the right moment of time, the states and transitions of

timed automata are annotated with the invariants and guards

of the special clock variables.

Intuitively, WSTTS is a finite-state machine equipped

with set of clock variables1. The values of these variables

1It is also equipped with the set of non-timed variables of finite do-
mains. For the sake of simplicity, we omit them in the formalism.

increase with the passing of time. A Web service compo-

sition thus is represented as a network of several such au-

tomata, where all clocks progress synchronously. In this

model, the states of the WSTTS are equipped with the

state invariants that express simple conditions over clocks.
The invariants should be true when the system is in the

state. Analogously, transitions are annotated with the set of

guards and resets. The former represent simple conditions
over clocks, and the latter are used to reset values of certain

clocks to zero. The semantic of WSTTS is defined as a la-

belled transition system, where either the time passes or a

transition from one state to another immediately happens.

Let X be a set of clocks. The constraints on the clock
valuesΦ(X) are of the form true | x ∼ c | φ1∧φ2, where

∼∈ {≤, <, =, �=,≥, >}, x ∈ X , and c ∈ T, a domain of

time values.

Definition 1 (WSTTS)
A WSTTS is a tuple (S, s0, A, T r, Inv), where

• S is the set of states and s0 is the initial state;

• A is a set of actions; each action is either an input ac-
tion ?m, an output action !m, or an internal τ action;

• Tr ⊆ S × A × Φ × 2X × S is the set of transitions
with an action, a guard, and a set of clocks to be reset;

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

• Inv : S → Φ(X) assigns invariants to the states.

In the definition, the effect of the transition

(s, a, φ, Y, s′) ∈ Tr from s to s′ is to perform a
communication or an internal action a, and to reset a set
Y ⊆ X of timers to zero. The transition is possible only if
the guard condition φ evaluates to true in the source state.
Now we define the semantics of a WSTTS. A clock val-

uation is a function u : X → T from the set of clocks to

the domain of time values. Let TC denote a set of all clock

valuations. Let u0(x) = 0 for all x ∈ X . We will write
u ∈ Inv(s) to denote that u satisfy Inv(s).

Definition 2 (Semantics of WSTTS)
Let (V, S, s0, A, T r, Inv) be a WSTTS. The semantics is
defined as a labelled transition system (Γ, γ0,→), where
Γ ⊆ S × TC is a set of configurations, γ0 = (s0, u0) is
an initial configuration, and→⊆ Γ × {A ∪ tick} × Γ is a
transition relation such that:

• (s, u)
tick
−→ (s, u + d), if (u + d) ∈ Inv(s), and

• (s, u)
a

−→ (s′, u′), if there exists (s, a, φ, Y, s′) ∈ Tr,
such that u ∈ φ, u′ = u[Y �→ 0], and u′ ∈ Inv(s′).

That is, either the system remains in the same state and time

passes, or a certain transition immediately takes place.

While the WSTTS allows to represent the behavior of a

particular service, the behavior of the Web service compo-

sition is modelled as a WSTTS network. In this model the
Web services communicate with each other synchronizing

on shared actions, or independently perform their internal

activities. The WSTTS network PP = (X, P1 ‖ · · · ‖ Pn)
consists of n WSTTS Pi over a common set of clocks

X . The semantics of the WSTTS network is given in
terms of global timed transition system (GTTS). We use

s̄ = (s1, . . . , sn) to denote a state vector, s̄0 to denote an

initial state vector, and s̄[si/s′i] to denote a state vector,
where the element si is replaced by s′i.

Definition 3 (GTTS)
Let (X, P1 ‖ · · · ‖ Pn) be a WSTTS network. Global timed
transition system has the form (Γ, γ0,→), where Γ ⊆ 〈S1×
· · · × Sn〉 × TC , γ0 = (〈s01, . . . , s0n〉, u0), and→⊆ Γ ×
{A ∪ tick} × Γ is a global transition relation defined by:

• (s̄, u)
tick
−→ (s̄, u + d), if (u + d) ∈ ∧iInvi(si);

• (s̄, u)
τ

−→ (s̄[si/s′i], u
′), if there exists a transition

(si, τ, g, Y, s′i) ∈ Tri, s.t. u ∈ g, u′ = u[Y �→ 0],
and u′ ∈ ∧iInvi(si);

• (s̄, u)
m
−→ (s̄[si/s′i, sj/s′j], u

′), if there exist a tran-
sition (si, ?m, gi, Yi, s

′

i) ∈ Tri, and a transition
(sj , !m, gj, Yj , s

′

j) ∈ Trj , s.t. u ∈ gi ∧ gj , u′ =
u[Yi ∪ Yj �→ 0], and u′ ∈ ∧iInv(si).

In other words, the model of GTTS allows for three kinds

of transitions: a time passing transition, where all clocks

increment their values; an internal transition of a partic-

ular WSTTS, and a shared communication action of two

WSTTS.

3.1. Mapping BPEL Constructs to WSTTS

We now give the definition of BPEL constructs in terms

of the WSTTS formalism. We remark that, by default, all

the activities of the underlying BPEL process are modelled

as instantaneous. The fact that a particular activity may have

a certain duration is expressed explicitly through duration
annotations that allow to specify bounds of the activity du-
ration2.

In this way, until explicitly specified, all internal and

message output activities are modelled as instant. Such

a transition is semantically equivalent to adding an extra

clock x to the source state of the transition, and the invariant
of the state is x<=0 (Fig. 2(a)). Hence, time can not pass
in the source state of the instant transition. On the contrary,

input activities do not require such addition, since they are

blocked until corresponding output takes place, and there-

fore time can pass.

BPEL also defines activities that explicitly refer to time.

In particular, the onAlarm activity is used to represent
timeouts and is modelled as an event handler. This activity

has two forms. In the first form (Fig. 2(b)) it is fired when

certain time has passed. In the BPEL code represented in

Fig. 1 this activity is used to model a timeout of 5 days

for the modification of the conference date. In the second

form (Fig. 2(c)), onAlarm is fired if the current absolute
time has the specified value. In order to model the absolute

time referenced in this activity, a special clock is added to

the WSTTS network model, namely global timer. It can be
explicitly set to a certain value in the beginning of the exe-

cution, and is never reset later. Another BPEL activity that

deals with time is the activity wait which blocks the pro-
cess for a certain time period. Its translation to WSTTS is

analogous to that of onAlarm.
As we mentioned above, it is possible to constrain the

duration of a certain activity. In this way, one is allowed

to express simple timed assumptions on the process exe-

cution, like service response time, duration of some inter-

nal operation or sequence of operations, etc. In this case

the activity is explicitly annotated with the duration con-

straints. This annotation is used in our case study, for ex-

ample, to denote that the duration of the “verify activity”

is less than or equal to 5 days (Fig. 1). Such constraints

are conjunctions of the clauses of the form dur(A) ∼ c,

2We stress once more that our goal is to analyze the time properties that
are critical for the business logic, and neglect the smaller “technical” times

due, e.g. the communications.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

DC Formula

instant transition onAlarm onAlarm dur(A) ∼ a dur(A) ∼ a
for="a" until="a" (atomic activity) (structured activity)

(a) (b) (c) (d) (e)

Figure 2. Time-related constructs as WSTTS

where ∼∈ {<, >,≤,≥, =}. When applied to an atomic
activity (e.g. invoke, empty), this annotation is seman-
tically equal to the sequence of two transitions (Fig. 2(d)).

The first one is an instant transition and resets the clock x.
The second transition has the guard that evaluates to true,

if the value of the clock x satisfies the duration constraints.
An analogous constraint is defined in the intermediate state.

When the duration annotation is specified for a structured

activity, the translation is more complex (Fig. 2(e)). First,

all instant subactivities should be converted to non-instant.

That is, time can pass arbitrary with these activities. Sec-

ond, the specification should be constrained to include only

the behaviors, in which this complex activity satisfies the

duration requirement. This is done by adding to the spec-

ification a constraint stating that the time interval from the

beginning of the activity (start(A)) to its end (end(A)) has
the required duration. This constraint is specified in the du-

ration calculus, which we will describe in the next section.

Example 1 A part of the WSTTS representing the BPEL

code in Fig. 1 is illustrated in Fig. 3. Here the activity

“verify reviews”, equipped with the duration annotation, is

modelled as a sequence of two transitions. The first transi-

tion is instant, while the second can be fired within 3 time

units. After this activity, the conference call is instanta-

neously sent to the partners, and a “modifyDate” message

is awaited. If the message is received within 5 time units,

then a customer-defined date is immediately verified. If the

message is not received within 5 time units, the transition

corresponding to the onAlarm activity is fired, and a fi-
nal conference date is calculated. In both cases the process

instantaneously sends a final conference call to the partners.

3.2. Specifying Time Requirements

We nowpresent a language for specifying complex timed

requirements to be verified on the global specification of

the composition. Such requirements may express the time

intervals between events (or a sequences of events), time

bounds on some condition to hold or even complex logical

combinations on them. In order to express such properties

we exploit a subset of duration calculus (DC) [4]. It allows

Figure 3. Excerpt of the WSTTS

us to express properties of finite sequences of behaviors and

to measure the duration of a given behavioral fragment.

More formally, the logic is defined as follows. Let Pvar
be a finite set of propositional variables representing some

observable aspects of the composition, and V AL : Pvar →
{true, false} be the set of valuation that assign truth val-
ues to each of them. Let also P range over propositional
variables,D, D1, D2 range over DC formulae, c range over
natural number constants, and ∼∈ {<,≤, =, >,≥, }. The
syntax of the DC formula is:

D := �P �0 | ��P � | D1
�D2 | D1 ∧ D2 | ¬D | len ∼ c

DC formulas are evaluated over finite behaviors, i.e., over

finite sequences of valuations of propositional variables

V AL(Pvar)∗.
The constructs above have the following intuitive mean-

ing:

• �P �0 holds for the behavior consisting of a single state
satisfying P ;

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

• ��P � requires P to hold at all the states of the behavior
(except the last state);

• D1
�D2 splits the behavior into two subintervals, such

thatD1 holds for the first subinterval, andD2 holds for

the second one;

• D1 ∧ D2 requires both formulas to hold, while ¬D
requires thatD is not satisfied on the behavior;

• len ∼ c relates the duration of the interval with the
constant value c (i.e. greater, equal, etc.).

Additionally, we write �D = true �D �true, if D
holds for some subinterval of the behavior; �D = ¬�¬D
denotes, thatD holds for all subintervals.

Example 2 Let us consider the requirement that the in-
terval from the protocol registration to the conference call

should not exceed 30 days, and that from the call to the con-

ference at least 10 days should pass. The requirement may

be graphically represented as follows:

This requirement may be expressed with the following DC

formula:

�(�registration�0 �true ��conference�0 →
(len ≤ 30) ��call�0 �(len ≥ 10))

The formula says that, for all intervals of the behavior, if

the registration happens at the beginning of the interval and

the conference at the end, then the interval consists of two

intervals with the call in between, such that the duration of

the first is less than 30 days, and the duration of the second

does not exceed 10 days.

4. Analysis of Time-related Properties

We have implemented the presented ideas as a prototype

tool that allows for the qualitative and quantitative timed

analysis of Web service compositions. The following ele-

ments are being passed to the tool as input:

• composition specification M given as a set of BPEL

processes, possibly annotated with the duration con-

structs;

• set of complex timed constraints C expressed as DC
formulas;

• set of target properties P to be verified against the
composition;

• set of properties V to be measured using the mini-
mum/maximum algorithms.

Given these inputs, the tool translates them into the speci-

fication suitable for the formal techniques, in particular for

model checking. The specification reflects the operational

semantics of the GTTS given above.

4.1. Discrete Time Representation

In the implementationwe adopt a discrete model of time,

and use a discrete-time variant of the Duration Calculus,

based on (a subset of) Quantified Discrete-time Duration

Calculus (QDDC, [12]), to express complex time require-

ments (an analysis based on a dense model of time under

certain conditions may be implemented in a similar way).

The tool performs the transformation of the composition

into a finite-state representation. The clock variables are

represented as global integer variable that synchronously

increment their values when the time elapse transition hap-

pens. This event is denoted by a special boolean variable

tick that is true when the event is fired. The results of [1]
ensure the finiteness of the resulting specification. In partic-

ular, it is shown that in the discrete model of time the clock

variables may be bounded without affecting the behavior of

the system.

4.2. Analysis of Timed Requirements

As we already mentioned, the complex timed require-

ments may be used in the analysis of the composition in the

following ways.

First, the complex time properties may be used to con-

strain the system behavior. That is, only the executions that

satisfy such properties are considered. This is achieved by

translating the properties into the corresponding finite-state

automata and building a synchronous (i.e. lock-step) prod-

uct of these automata and a system (as it is done for the

duration annotations of the structured activities, Fig. 2(e)).

This product i used for further analysis of the composition.

Second, the composition specification can be directly

verified against the property. If the property should be sat-

isfied by all the executions of the system (assertion prop-
erty), the tool builds a product of the specification and the

automaton corresponding to the negation of the property.

This product is not empty when the property is violated. If

the property should be satisfied only by some executions of

the system (possibility property) the tool builds a product of
the specification and the automaton of the property. If the

product is not empty, then such executions exist. See [9] for

more details on these kinds of analysis.

Finally, one can apply quantitative analysis to measure
a certain property. This analysis allows one to extract time

bounds in which the property holds, e.g. the minimal time

needed to complete theWaste Management application pro-

cedure, or the maximal time of the technical analysis that

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

min duration(start, final)
R := start ∩ reachable(final)
min := 0
if (R = ∅) return∞
loop

R := immediate(R)
if (R ∩ final �= ∅) return min
R := delayed(R)
min := min + 1

end loop

max duration(start, final)
R := start ∩ reachable(final)∩ ¬final
max := 0

R′ := ∅
while(R �= ∅ ∧ R �⊆ R′) do

R := immediate(R) ∩ ¬final
R′ := R′ ∪ R
R := delayed(R) ∩ ¬final
max := max + 1

end while
if (R = ∅) returnmax
else return∞

Figure 4. Min/Max duration algorithms

still allows to satisfy all the composition requirements. This

new kind of analysis is the focus of the next section.

4.3. Quantitative Analysis

Here we present an algorithm that, given a composition

specification and a certain property (in QDDC), computes

the extremal (i.e. least/greatest) duration of the interval sat-

isfying this property. This algorithm relies on previous re-

sults of [13], where the computation of extremal values for

synchronous systems is addressed, and on the symbolic con-
dition count algorithms of [3].

Intuitively, the algorithm performs as follows. First, the

initial system M and a property p are transformed into a
system M ′(start, final). Minimal (maximal) duration of
interval between a state satisfying formula start and a state
satisfying formula final inM ′ is equivalent to the minimal

(maximal) duration of interval satisfying p inM . We refer
the reader to [13] for the details of this transformation.

Second, the actual extremal value is computed inM ′ us-

ing the algorithms represented in Fig. 4. These algorithms

are simple adaptations of the condition count algorithms

proposed in [3].

In these algorithms three function are exploited, namely

reachable(R), immediate(R), and delayed(R). The first
represents a set of states from which the states in R are

reachable. The second represents a set of states that are

reachable from any state in a setR only through instant tran-
sitions. The last represents a set of states that are reachable

from any state in R through exactly one tick transition. We
remark that in either case we restrict only to the states in

reachable(final).
The minimal duration algorithm performs as follows.

Initially, the set of states R is a set that satisfies start
and from which the state satisfying final is reachable
(reachable(final)). If the set is empty, there is no inter-
val from start to final and the result of computation is
infinity. Then we iteratively move from this set of states to
their successors until the states satisfying final are reached.
When the tick transition is performed, the value of min is
incremented.

The maximal duration algorithm is implemented analo-

gously. It progresses from the initial state trying to stay in

the states not satisfying final. If the is not possible, the
currentmax value is returned. In order to detect an infinite
cycle we calculate also a set of statesR′ that contains all the

states visited so far. If the cycle is detected (R ∈ R′), the

algorithm returns infinity.

4.4. Experimental Results

In order to illustrate the approach represented in the pa-

per, we have conducted a set of experiments on the analysis

of the presented case study in different settings. In this ex-

periments we have used the NuSMV model checker [5] for

verifying the corresponding finite state automata model. We

verified the behavior of the Waste Management Application

composition against various properties of interest, and un-

der different assumptions expressed both as the duration an-

notations and also using QDDC. In particular, we verified

the (annotated) composition against the following proper-

ties, and experimented with the quantitative analysis:

• Deadlock freeness of the specification;

• Assertion that the procedure always terminates within
a given period;

• Possibility to obtain an official conclusion within a
given bound;

• Maximal duration of the procedure;

• Minimal time needed to obtain an official conclusion.

The results of the verification are presented in Table 1. The

table demonstrates the outcome of the analysis, the verifica-

tion time, and the size of the reachable state space (i.e., the

number of states of the GTTS of the composition specifi-

cation). Interestingly enough, the computation time is con-

siderably smaller than the verification of the corresponding

property, which conforms with the results presented in [13].

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Table 1. Experimental results
Property Result Time States

Deadlock true 0.48 sec 1005

Assertion false 5,56 sec 2919

Possibility true 2,28 sec 2919

Max ∞ 0.28 sec 1005

Min 10 0.32 sec 1005

5. Conclusions

In this work we presented a formal approach for model-

ing, verifying and computing of time-related properties on

Web service compositions defined by a set of BPEL pro-

cesses. This approach is based on a formal model, Web

Service Timed Transition System, that allows to take into

account timed behavior of such compositions. We demon-

strated how BPEL time-related constructs can be expressed

in this formalism. Moreover, we presented a way to ex-

press various time-related requirements and assumptions

using both simple modeling constructs or complex DC for-

mulas particularly suitable for expressing such properties.

The presented approach enables verification of Web service

compositions against time properties using model checking

techniques. We also introduced a decision procedure that

can be used to compute the time boundaries for intervals

satisfying these timed requirements.

Preliminary results on the verification of time-related

properties ofWeb service composition usingWSTTSmodel

were discussed in [9]. We extended these results with

the techniques for computing quantitative characteristics re-

lated to time, and the capabilities to model durations of

structured activities.

The problem of the Web service compositions analy-

sis, in particular of BPEL processes, is investigated in the

works of [6, 10, 11, 7, 14]. While providing facilities for

the verification of processes or their compositions, these ap-

proaches do not take time-related properties of composition

behaviors into account. The work that is closer to ours is

presented in [8]. In this work, a formal model of BPEL

processes, μ-BPEL, is presented which allows for mapping
from this formalism to a network of timed automata. How-

ever, [8] does not provide a way to explicitly specify the

transition or state duration bounds, or complex time-related

assumptions and requirements as those we model with DC

formulas. In [2] temporal abstractions are exploited for

the compatibility and replaceability analysis of Web service

protocol. In that model one can specify when certain tran-

sitions must or may happen, similarly to what we achieve

with our duration annotations. However, [2] does not ad-

dress the problem of the verification of these time proper-

ties. Moreover, their temporal abstraction are simple with

respect to the set of properties we can express in our ap-

proach.

There are several direction for further research. In partic-

ular, we are working on the optimizations of the translations

from BPEL to NuSMV code and applications of better anal-

ysis techniques that give a possibility to drastically improve

the verification performance. Another line of research is to

replace NuSMV with a model checker, such as UPPAAL,

that can verify timed properties without requiring the gen-

eration of FSA (even if the results of [15] show that this

does not necessary leads to a better performance in the ver-

ification).

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theor.
Comput. Sci., 1994.

[2] B. Benatallah, F. Casati, J. Ponge, and F. Toumani. On Tem-

poral Abstractions of Web Service Protocols. In Procs of
CAiSE Forum, 2005.

[3] S. Campos, E. Clarke, W. Marrero, and H. Haraishi.

Computing Quantitative Characteristics of Finite-State Real

Time Systems. In Proc. IEEE Real-time systems symposium,
1994.

[4] Z. Chaochen, C.Hoare, and A. Ravn. A Calculus of Dura-

tions. In IPL, 1991.
[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.

NUSMV: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer (STTT),
2(4), 2000.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based

verification of web service compositions. In Proc. of the
18th International Conference on Automated Software En-
gineering (ASE’03), 2003.

[7] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL

Web Services. In Proc. WWW’04, 2004.
[8] P. Geguang, Z. Xiangpeng, W. Shuling, and Q. Zongyan.

Towards the Semantics and Verification of BPEL4WS. In

Proc. WS-FM’04, ENTCS, 2004.
[9] R. Kazhamiakin, P. Pandya, and M. Pistore. Timed Mod-

elling and Analysis in Web Service Compositions. In Proc.
ARES’06, 2006.

[10] S. Nakajima. Model-checking verification for reliable web

service. In Proc. OOPSLA’02 Workshop on OOWS, 2002.
[11] S. Narayanan and S. McIlraith. Simulation, Verification

and Automated Composition of Web Services. In Proc.
WWW’02, 2002.

[12] P. Pandya. Specifying and Deciding Qauntified Discrete-

time Duration Calculus formulae using DCVALID. In Proc.
Real-Time Tools, RTTOOLS’2001, 2001.

[13] P. Pandya. Finding extremal models of discrete duration

calculus formulae using symbolic search. In Proc. AV-
OCS’2004, 2004.

[14] M. Pistore, M. Roveri, and P. Busetta. Requirements-Driven

Verification of Web Services. In Proc. WS-FM’04, ENTCS,
2004.

[15] D. Thomas, P. Pandya, and S. Chakraborty. Scheduling clus-

ters in model checking of real-time systems. Technical Re-

port TR-04-16, CFDVS, IIT Bombay, September 2004.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

