
Semantic Service Bus:
Architecture and Implementation of a Next Generation Middleware

Dimka Karastoyanova
Branimir Wetzstein

Tammo van Lessen
Daniel Wutke

Joerg Nitzsche
Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
Universtitaetsstrasse 38, 70569 Stuttgart, Germany

E-mail: {firstname}.{lastname}@iaas.uni-stuttgart.de

Abstract

In this paper we present a middleware for the Service
Oriented Architecture, called the Semantic Service Bus. It
is an advanced middleware possessing enhanced features,
as compared to the conventional service buses. It is
distinguished by the fact that it uses semantic description
of service capabilities, and requirements towards services
to enable more elaborate service discovery, selection,
routing, composition and data mediation. The
contributions of the paper are the conceptual architecture
of the Semantic Service Bus and a prototypical
implementation supporting different semantic Web service
technologies (OWL-S and WSMO) and conventional Web
services. Since mission critical application scenarios (for
SOA) involve complex orchestrations of services, we have
chosen to utilize semantically annotated service
orchestrations as the applications to employ this
middleware.

1. Introduction

The Service Oriented Architecture (SOA) is an
approach to integrating enterprise applications in a
flexible and loosely coupled manner. SOA is built on the
notion of services, which are realizations of self-contained
business functions and provide a service requester with an
abstract view on the business functions [7]. Services can
conceptually be divided into two distinct parts. Service
interfaces (or service types) describe the functionality the
service provides, while service implementations provide
concrete realizations of these interfaces on concrete ports.
This way multiple service implementations and
deployments are hidden from the client behind the same
abstract service interface. To provide a service requester
with additional information for selecting a service
implementation that is most appropriate for its needs,
service interfaces can be annotated with policies to
capture non-functional properties and quality of services
(QoS), like reliability, security, etc. Furthermore an
important aspect of SOA is service composition
(orchestration). By using the two-level-programming

paradigm [13], services, i.e. business functions, can be
composed to form new applications, which then again can
be exposed as services to facilitate further composition.

On a technological level, the Web Service technology
[7, 2] is the most prominent realization of SOA today.
Web Services define a set of specifications that enable
standard-based service description, discovery, invocation,
and composition through the use of WSDL, UDDI,
SOAP, BPEL and others.

The middleware infrastructure that supports an SOA is
the Enterprise Service Bus (ESB). In general, a service
bus [6] enables standard-based, loosely-coupled
communication among distributed services that are
connected to the bus via abstract endpoints (implemented
as e.g. adapters). The core functionality of an ESB can be
described by the following characteristics.

By treating services as abstract endpoints, a service
bus facilitates service virtualization [14]. This means that
services are described in a unified manner and the
implementations of the same service description are
interchangeable. Service providers publish interface
descriptions of the services they provide via the bus. The
interaction of the service requesters with the services is
governed by the service interface descriptions. The
discovery and selection of an appropriate service
implementation is delegated to the bus which uses the
service description and the requester's requirements (e.g.
specified through policies).

Services interact in a loosely coupled manner through
the service bus, which has two implications on the
functionality the bus has to provide. As all interactions
between services are conducted through the bus, i.e.
services do not have to know the concrete partner they are
interacting with, the bus has to provide functionality for
routing of messages between communication partners [6].
Furthermore, as services typically do not share a common
data format, flexible means for data transformation have
to be provided.

As service composition is an essential aspect of SOA,
providing service orchestration is an important
requirement for an ESB. Typically orchestration is
realized by means of orchestration services, which are on
the one hand service requesters, as they interact with

3471-4244-0832-6/07/$20.00 ©2007 IEEE.

partner services over the ESB, while on the other hand
they provide the service composition as a service to other
service requesters through the ESB. The Business Process
Execution Language for Web Services (BPEL) [3] is the
de-facto standard for describing workflow-like
compositions of Web Services (i.e. Web Service
orchestration). In BPEL composite services are built by
combining activities that represent interaction with Web
Services (invoke, receive, reply, pick) with control flow
activities (flow, sequence, while). Web Service partners
of BPEL processes are specified using a two-level
approach. On an abstract level the service type (WSDL
portType), i.e. the interface supported by the partner
service, is defined. This abstract partner description is
complemented by design-time or deployment-time
information defining a concrete Web Service
implementation (WSDL port).

In traditional ESBs service discovery is limited to
finding implementations of service interfaces. Assuming
usage of Web service technologies, the service interfaces
are described in WSDL, which only defines syntax, but
not the semantics of a service functionality. WSDL
describes a service interface in terms of port types and
operations. WSDL operations can define parameters
which are typically defined in XML Schema. When a
requester hands over a service type described in WSDL to
the service bus, the bus can only find services that
implement exactly the same service interface. If another
service provider implements the same functionality but
with a different signature, the service would not be
considered by the bus as a compliant one. Another
important aspect are mismatches on data types. The data
the service requester and provider expect are often of
different types. For the invocation to take place, the bus
has to transform or mediate between the two data formats.
In traditional ESB technology such a transformation is
specified at design-time and executed at runtime, e.g. as
an XSL-transformation.

Technologies emerging from the field of Semantic
Web Services (SWS) offer new opportunities to enrich the
functionality of an ESB. When using SWS the service
semantics is explicitly defined, and can be exploited by
the bus to find services, potentially offering syntactically
different interfaces, thus increasing the pool of alternative
services. When using SWS technologies automatic run
time data transformations can be done based on the
semantic information available in the semantic
descriptions of web services.

We identify the need for an enhanced middleware to
facilitate the use of semantics in an SOA environment.
We call such a middleware a Semantic Service Bus
(SSB). The contributions of this paper are the architecture
of the SSB, and a prototypical implementation that
supports two SWS technologies (OWL-S and WSMO)
and WSs.

The paper is organized as follows. In the next section
we stress on the advanced features of the SSB
distinguishing it from conventional service bus
infrastructures. In section 3 we present the architecture of
the SSB. To show the feasibility of using the features an
SSB must provide, we use semantically annotated
processes as an application scenario. For this we shortly
discuss approaches for enriching existing service
orchestrations with semantic information (section 4). Our
first experimental implementation of a Semantic Service
Bus is presented in section 5. Finally, we give conclusions
and directions for future work.

2. Semantic Service Bus

The Semantic Service Bus introduces a new level of
abstraction. While the conventional service bus is
restricted to using interface descriptions of services, in
terms of messages they consume and produce, the
Semantic Service Bus requires as input only functional
requirements to services regardless of their interface
description. One approach to describe the functional
requirements to services that has gained broad acceptance
is the use of semantic descriptions [16]. Applying this
approach to the Web Service technology yielded the
Semantic Web Services. Prominent existing examples of
this approach are OWL-S [15] and WSMO [8], briefly
described later in the paper. When using the semantic
descriptions of Web Services, we advertise their
functionality rather than their signature. Hence, we do not
restrict the use of a service that implements a particular
WSDL description, but allow the use of any Web Service
implementing the required functionality regardless of its
interface description.

Similarly to the conventional service bus, the Semantic
Service Bus is the middleware used by applications to
invoke services, too. It has to deal with service discovery,
message routing and message transformation, which in
addition implies using the semantic knowledge about
these services.

The Semantic Service Bus takes as input from
applications (i) the requirements to services represented
semantically in order to perform semantic service
discovery and (ii) the data the service needs to perform its
functionality (and QoS). A set of compliant SWSs is
discovered, and a single service is selected by the bus
based on the criteria specified by the service requesters.
The bus invokes the selected service using its binding
information and sends the response of the invocation back
to the requester. The SSB must support both synchronous
and asynchronous modes of communication between the
service requestors and service providers. Most
importantly, it must enable interaction with stateful
services. The existing Semantic Web Service technologies
however, still address this issue inadequately. Theoretical
foundations for enabling the interaction with stateful

348

services are made available. However the interaction of
service requesters and service providers is restricted to
rigid client-server communication.

It is well known that data models even within a
company are different, i.e. they may be standardized
within a single department, but are usually not
standardized company-wide, let alone between several
companies. This requires mapping between data models.
Using the conventional service bus one can only hard-
code data transformations, e.g. using a BPEL process as
mediator, or an XSL-transformation. The Semantic
Service Bus allows the specification of data mediation
(data transformation) in an abstract manner. This is
achieved by using the concept of mediation, i.e. the data
types are enriched with semantic descriptions thus
enabling the transformation of data types using the
semantic knowledge (including reasoning). Introducing
this new level of abstraction - the virtualization of data
transformation - any service that fulfils the required
transformation functionality can be used, be it a mediator,
XSL-transformation, BPEL process or special purpose
application.

The Semantic Service Bus exhibits improved routing
procedures, too. Semantically enriched routing itineraries
can be defined, in the form of BPEL processes for
instance [10], and executed using semantic discovery and
transformation.

3. Architecture

Like a conventional service bus the Semantic Service
Bus provides means that enable applications and services
(i) to plug in to the bus, (ii) to make use of its
infrastructure services, (iii) configure the bus and (iv)
manage the available SSB components that provide
services.

The semantic service container and the invocation and
management framework, depicted in figure 1, are the
facilities a service or application must use to plug in to the
SSB. Additionally they are used by the services to
communicate with the SSB. The service container and the
invocation and management framework in combination
exhibit analogous functionality as in an ESB [6]. In both
cases they are the physical manifestation of abstract
endpoints. These two components enable the
virtualization of applications with respect to their
implementations, technology used, the transport protocol
they require and their mode of communication
(synchronous or asynchronous).

Semantic Service Bus

SSB management and invocation framework

Semantic
Service

Discovery
Mediation Semantic

Repository
Web

Service
WSMO

Web
Service

WSDL

Web
Service

OWL-S

WSDL WSMO

OWL-S

BPEL Navigator
WSDL

Routing

SS
B

In
fr

as
tr

uc
tu

re

se
rv

ic
es

Figure 1. Overall architecture of the Semantic
Service Bus.

The Semantic Service Bus, like any other middleware,
provides also a set of infrastructure services. These
include service registry, discovery services,
transformation or mediation services, orchestration,
routing, security, logging and others. These are
inseparable parts of a Semantic Service Bus and
implement the advanced features explained in section 2.
For the sake of simplicity only those infrastructure
services relevant to the enhanced features of the bus are
shown in figure 1. Apart from the infrastructure services
other services can be provided on the bus at any time, e.g.
WSDL, WSMO and OWL-S services (Figure 1).

The management facilities of the bus include the
configuration console and the management interface. The
configuration console enables manipulation of the setup
of the bus. Configuring the bus incorporates selecting
components that provide infrastructure services to the bus
and components that implement technology-specific
service containers. The management interface offers
external access to the management capabilities of the
services plugged to the bus (Figure 2).

The applications using this SOA middleware need to
plug in to the bus and supply it with their requirements to
the services they want to invoke. These requirements may
be expressed in terms of WSDL port types, or in a
declarative manner using any Semantic Web Service
technology, e.g. WSMO and OWL-S. In addition other
standards like WS-Policy may be used to state
requirements on the QoS characteristics of services.
Applications that use the bus to expose services (like
service modelling tools) must use the management
interface to deploy them. This is illustrated by the
deployment scenario shown in figure 2. The deployment
of services on the bus starts with the deployment of a
service into the service container (for example a BPEL
engine) using its deployment facilities via the bus's
management interface. Then the management facilities of
the SSB infrastructure services are used to register the
service at the (semantic) service repository. After this
deployment procedure the service is made available via
the bus.

349

Management Interface

management

BPEL Engine

management

SSB
Infrastructure
services

semantic
Repository

Register process

Deploy
process

WSDL WSMO

OWL-S

WSDL WSMO

OWL-S

SS
B

C

on
fig

ur
at

io
n

C
on

so
le

…

Figure 2. Management capabilities of the
Semantic Service Bus.

A prototypical implementation of a simple Semantic
Service Bus is presented in section 5. Before this, in the
next section we give an overview of semantically
enriched processes, since these are the use case scenario
we employ for manifesting the usage of the SSB.

4. Semantically Annotated Processes

Seamlessly orchestrating services is one of the
prominent features of SOA. Being able to orchestrate
services gives huge advantages to companies, because
they can compose existing and new services, company-
grown and external applications likewise. In SOA service
compositions are also exposed as services and can be used
like any other service. On the other hand a service
orchestration needs a middleware to support the discovery
and invocation of the involved service implementations.
Therefore, service compositions are one example of
applications that need to plug in to the bus to be able to
use its capabilities.

Generally, service orchestrations (e.g. BPEL
processes) are executed by a process execution
environment, also called process engine. A BPEL engine
is hence one component on the bus that provides a
composition service to the bus, and on the other hand
needs to utilize the Semantic Service Bus for the
execution of services.

If one uses vanilla Web Services the SSB must support
the Web Service technology. Apart from the port type
and/or operation definition no additional information is
needed to invoke a Web Service using the Semantic
Service Bus. In order to interact with Semantic Web
Services the activities in a BPEL process need to be
semantically annotated to express the requirements to
services. Multiple semantic WS technologies can be used
in combination to model/define the semantic information
associated with a single process definition. This entails
that the SSB must support these SWS technologies.

There are several different approaches to annotate
process activities with semantics; they are orthogonal to
the technology used to describe the semantic information:

1. WS-Policy Framework:
The WS-Policy Framework [5] supports two ways
to assign semantic descriptions to a BPEL activity.
The first one is by directly referencing a policy
from within an activity, the second one - by
attaching policies to existing process activities
using WS-Policy attachments.

2. Extensions to the BPEL language:
BPEL is an extensible language and its extension
mechanisms can be used to define new language
elements. These can be used to point to relevant
semantic information or to inline such information
into the BPEL processes themselves.

3. Use of Deployment Information:
The BPEL specification postulates that the
resolution of concrete endpoints is a deployment-
related issue [3]. For this reason, standardizing the
deployment information is out of the
specification's scope. In order to execute BPEL
processes deployment information must therefore
be provided in the format required by the
particular engine, e.g. using a deployment
descriptor. Requirements to the capabilities of the
services involved in a process can also be a part of
the deployment information, which are then used
as input to the Semantic Service Bus the engine
utilizes.

In the Semantic Service Bus prototype presented in the
next section the semantically annotated processes have
been used as a scenario to showcase the use and the
viability of the Semantic Service Bus. Any other service
requesters (different from services) can also make use of
the SSB.

5. Implementation

As mentioned in the previous section a BPEL engine is
one kind of application that can be plugged in to the
Semantic Service Bus both to use the SSB as a
middleware and to provide infrastructure service
implementations to the SSB.

The SSB infrastructure services may have multiple
implementations. One main reason is that a Semantic
Service Bus must support both Web Services and
Semantic Web Services. In addition, there are different
Semantic Web Service technologies.

The engine we use in this work is the ActiveBPEL
engine [1]. This engine comes with an Axis1 playing the
role of both service container and a management and
invocation framework of a service bus suitable for using
WSs described in WSDL. We have extended the engine

1
 http://ws.apache.org/axis/

350

SSB

Data
Mediation OWL

Knowledge
base

Discovery
Manager

OWL-S
Matchmaker

WS-Policy
Matcher

Web
Service

OWL-SInvocation
Manager

O
W

L-
S

in

fr
as

tr
uc

tu
re

se
rv

ic
es

WSMO
Repository

D
is

co
ve

ry

W
SM

O
in

fr
as

tr
uc

tu
re

se
rv

ic
es

Se
le

ct
io

n

D
at

a
M

ed
ia

to
r

Pr
oc

es
s

M
ed

ia
to

r

C
ho

re
og

ra
ph

y

Web
Service

WSMO

SSB management and invocation framework

WSMO

OWL-S

BPEL Navigator

se
m

an
tic

 s
er

vi
ce

co

nt
ai

ne
r

component that connects to the service container to enable
it to interface the SSB so that it can use the other
infrastructure service implementations as well. We have
experimented with the OWL-S and WSMO technologies
(sections 5.2 and 5.3), as well as Web Services described
in WSDL (section 5.1). Therefore some of the
infrastructure services have been implemented from
scratch, while others have been implemented by reusing
existing Semantic Web Service frameworks (e.g. IRS-III
[9] and WSMX [18]).

The prototype we present supports service discovery
based on WSDL or semantic descriptions of services and
service invocation. In fact the SSB supports in this way
dynamic binding to services. For this the so-called Find
and Bind mechanism [2] is supported. The mechanism
boils down to performing (i) a lookup (find) of service
implementations (i.e. ports) based on the service
description (ii) binding and (iii) invocation of the
discovered service. For each particular semantic Web
service technology and service description language the
discovery, selection and invocation of services the SSB
has to support are implemented differently.

5.1 Support for dynamic binding to WSDL
services

To facilitate discovery of service ports based on
WSDL service interface descriptions, the invocation and
management framework of the service container in which
the ActiveBPEL engine runs has been extended. The
functionality of this extension allows for the engine to
utilize the bus both for discovery and invocation (i.e. the
implementation of the Find and Bind mechanism) during
process runtime. Once the Semantic Service Bus is
provided the WSDL service descriptions, the bus searches
a WS discovery component, in our case UDDI registry
(jUDDI [4]), for compliant services, selects the most
appropriate service port and invokes it using the binding
information about the service [11].

5.2 Support for OWL-S

OWL-S [15] is an SWS approach, which uses the Web
Ontology language (OWL) for modelling Web Services.
An OWL-S Service consists of a Profile,
Process and a Grounding.

Profile defines “what” the service does and is used for
Service discovery. It contains a description of inputs,

outputs, preconditions and effects (IOPEs) of the
service, non-functional properties such as service
categorization (e.g. NAICS, UNSPSC), and
additional user-defined service parameters. The
inputs and outputs are specified by pointing to
concepts from domain ontologies.

Process defines “how” to access the service, i.e. in which
order and under which conditions the operations of
the service are to be invoked.

Grounding defines a mapping of the Process to
WSDL operations. The mapping from OWL-S
operation parameters, which are specified as OWL
types, to WSDL types, which are typically defined
in XML Schema, is done by XSL-transformations.

Through the use of OWL-S the Web Service interface
is given explicit semantics, enabling the service bus to
perform discovery and invocation of semantically
identical services automatically, even if the syntax in the
WSDL descriptions is different. The Profile is used
for discovery while Process and Grounding are
used for data mediation and invocation of the service.
Note that the WSDL binding is used for the concrete
invocation of the service.

Our SSB prototype, as shown in figure 3, supports
OWL-S technology through the use of OWL-S specific
infrastructure services including discovery, invocation,
data mediation and registry [11].

Service providers register their OWL-S services in an
OWL knowledge base, which acts as a service registry
and supports reasoning. When a BPEL engine acting as a
service requester, wants to invoke a service, it passes
input data as defined by the WSDL description plus an
OWL-S description to the bus. OWL-S does not
distinguish between requirements and capabilities of
services, both are expressed as an OWL-S service
description. The bus first performs discovery based on the
OWL-S Profile. It passes the Profile to an OWL-S
matchmaker component, which queries the OWL
knowledge base. The matchmaker compares the IOPEs
from the profiles, using an OWL-DL reasoner for
subsumption based reasoning. Matchmaking is also
performed on non-functional properties such as
categorization and additionally WS-Policy matchmaking
takes place. The discovery service returns a list of
compliant services, from which one service is selected for
invocation.

351

The selected service has the same semantics as the
requested service, yet it could have a different WSDL
interface, especially different data type definitions. Thus,
it is necessary to lift the input data as provided by the
requester to its ontological OWL representation as
defined in the OWL-S description and then lower it to the
XML as required by the service provider. Only in this
way can the selected service be invoked. This lifting and
lowering, also called data mediation, is provided by XSL-
transformations which are specified in the OWL-S
grounding. The WSDL service can finally be invoked as
specified in the corresponding WSDL binding. After
invocation of the service and another round of lifting and
lowering the output data is sent back to the requester.

Our implementation is based on the OWL-S API [17]
that provides an OWL knowledge base and supports
execution of an OWL-S Process and invocation of a
WSDL Web Service using the Grounding. We have
implemented the OWL-S matchmaker, the data mediator
and the WS-Policy matchmaker [11].

OWL-S supports the description of stateful services
through the use of the process model (OWL-S
Process).

The service requester uses the process model to
communicate with the service in a conversation, which
can potentially span several operations.

One shortcoming of the OWL-S process model is that
it doesn't support callback operations, i.e. operations the
service should invoke on the service requester.

Another problem arises when a stateful service is to be
discovered and invoked dynamically by the bus. In this
case the discovery has to be extended to also include
matchmaking of process models of the service requester
and the service provider. This is a difficult task and
actually a process mediation problem; it is part of our
future work.

5.3 Support for WSMO

The Web Service Modelling Ontology (WSMO) is a
competing technology to OWL-S for semantic description
of Web Services. It relies on four major modelling
elements [8]:

Ontologies provide the terminology and formal semantics
used by other WSMO elements in order to describe
relevant aspects of application domains. Therefore
ontologies define concepts, relationships between
concepts and rules to build a valid and unified
domain terminology.

Web Services wrap real world Web Services and enrich
them by describing their functional, behavioural and
non-functional properties semantically. Therefore
WSMO introduces the concepts of

Capabilities and Interfaces. Capabilities
describe the functional aspects of the offered
services in terms of pre- and post-conditions,
assumptions and effects. While pre- and post-
conditions describe the state of the local information
space (i.e. input/output data) before and after the
service invocation, respectively, assumptions and
effects refer to state and its modifications in a global
point of view. Interfaces give information about the
operations of the service in terms of choreography
and orchestration. The choreography defines the
behavioural interface that service consumers need to
comply with in order to communicate correctly.
Herewith WSMO enables dynamic process
mediation on a conceptual level. The orchestration
on the other hand provides details on how the
service works (from the provider's point of view) to
achieve its capabilities.

Goals describe the user's need of a Web Service solving a
specific problem. Therefore, the goal defines the
preconditions and assumptions as well as effects and
post-conditions the desired service should provide.
Using this functional description, a reasoner can
discover WSMO Web Services, which provide the
requested functionality.

Mediators provide concepts to define links between the
other WSMO modelling elements in order to resolve
heterogeneity problems. Mediators are useful to
define links between Goals and Web Services
(using wgMediators) or merge terms from
different domain ontologies (using ooMediators).
To reuse existing goals or to refine abstract goals,
ggMediators can be used while wwMediators
enable the modeller to define relations between Web
Services, e.g. to state that one Web Service rolls
back another one [12].

The explicit distinction between Web Services and
Goals WSMO makes, is one of its main differences to
OWL-S.

Furthermore, WSMO introduces a predefined set of
non-functional properties which can be used to attach
metadata to modelling elements. When necessary, this set
of properties can be extended (e.g. to add QoS
requirements) [12].

On a conceptual level WSMO enables invocation of
stateful semantic Web services. However this is limited to
a rigid client-server interaction, where the WSMO Web
service offers some 'operations' that lead to a goal
fulfillment. But it is not possible to specify that the client
that wants to achieve a goal offers a callback operation
that the called service has to use in order to report the
result back to the client.

Figure 3. Architecture of the Semantic Service Bus prototype.

352

Currently, two WSMO execution environments exist.
The Web Service Model eXecution environment
(WSMX) is regarded as the reference implementation of
WSMO.

It specifies four entry points [18] to enable clients to
discover and/or invoke WSMO-enabled Semantic Web
Services fulfilling a specific Goal. The other
implementation, the lisp-based Internet Reasoning Service
(IRS-III) [9], uses an extended WSMO to perform
capability-based Web Service invocation by means of
Goals. Both are available frameworks for WSMO, in
different development stages.

In the context of this work, we have implemented a
management and invocation framework extension at the
BPEL engine's service container that delegates the
invocation of services required by semantically annotated
BPEL invocation activities to both WSMO
implementations using the entry point
achieveGoal(WSMLDocument):Context. Both
frameworks (WSMX and IRS-III) are called
synchronously, with WSMO goals submitted to their
entry point APIs, which take care about discovering and
invoking an appropriate service and sending the response
back to the requester. The WSMX discovery is done by
comparing the requested capabilities of the goal with the
capabilities of the semantic Web services available in the
repository, whereas IRS-III performs discovery by means
of WG-mediators that indicate that a goal can be fulfilled
using a certain Web service.

In general, a goal is not restricted to synchronous
invocation; it may contain a complex choreography
description. If this is the case, WSMX tries to discover a
service with a choreography description that represents
the counterpart to the goal's choreography; IRS-III does
not support such functionality. Then there may be a
longer communication between the SSB and the
discovered (stateful) service. When the result is computed
it is sent back to the requester.

Conceptually WSMX even supports asynchronous
invocation of stateful semantic Web services including
client interaction via the entry point
invokeWebService(WSMLDocument,
Context):Context. In this case the longer
communication would not only take place between
WSMX and the discovered and selected service.
Messages could also be sent from the service (via
WSMX) to the client as intermediate results and the client
may send intermediate messages to the service (via
WSMX). However this is not yet implemented.

6. Conclusions

In this paper we have presented the concept of
Semantic Service Bus and its conceptual architecture. A
major characteristic of the Semantic Service Bus is the

virtualization of services rendering them independent of
not only implementation specifics, but also of any service
interface description language (syntax) and naming
conventions. The SSB uses semantic descriptions of
services to specify service capabilities as well as
functional, non-functional and QoS requirements to
services. The semantics of services is used to enable
enhanced features like semantic service discovery,
semantically enhanced itineraries for routing, and
mediation. These features additionally distinguish the
Semantic Service Bus from conventional SOA
middleware.

Due to the existence of several competing Semantic
Web Service technologies (annotating Web Services with
semantics) the SSB has to provide support for multiple
semantic description languages. In a Web Service
environment, the SSB must support WSDL service
descriptions, too. This also entails support for multiple
kinds of discovery components (e.g. UDDI, OWL
knowledge bases, etc.). An SSB must provide entry points
for applications that need to use the services it provides. It
must also provide a management facility to support
configuration and management of the component
comprising the bus.

We presented a prototypical implementation of a
Semantic Service Bus that supports the OWL-S and
WSMO technologies. The prototype is also capable of
discovering and invoking WSDL Web Services.

So far it is not possible for a client to communicate
with the SSB asynchronously when the WSMO and
OWL-S infrastructure services are used. This is mainly
due to the fact that the existing framework
implementations support only synchronous interaction
with the middleware. This hampers the interaction of
applications with stateful services, where the explicit
control of the applications over the communication is
required. In WSMX, to the best of our knowledge,
asynchronous interaction is possible only between the bus
and a stateful service; the interaction between the service
requester and bus is kept synchronous. Both synchronous
and asynchronous communication with WSDL Web
Services via the SSB is possible. Enabling asynchronous
communication between the SSB and service requesters,
as well as improving the infrastructure service
implementations for OWL-S and WSMO, are going to be
considered in our future research work. We envision the
semantically annotated BPEL processes to serve as
process mediators (on behalf of the SSB) and thus enable
stateful communication between service requestors and
providers via the SSB. Of special interest for us is the
creation of routing itineraries for the SSB based on
service compositions defined in BPEL. Defining such
routing procedures enriched with semantic information
for Web Services and Grid Services is also part of our
future work.

353

7. Acknowledgment

This work has been partly funded by the European
Union's 6th Framework Programme, within Information
Society Technologies (IST) priority under the SUPER
project (http://www.ip-super.org) and the TripCom
project (http://tripcom.org).

References

[1] ActiveBPEL.org. ActiveBPEL.
http://www.activebpel.org/, 2006.

[2] G. Alonso et al. Web Services. Springer, 2003.
[3] T. Andrews et al. Business Process Execution Language

for Web Services, Version 1.1. Specification, May 2003.
[4] Apache Software Foundation. jUDDI, Version 0.9.

http://ws.apache.org/juddi/, 2005.
[5] D. Box et al. Web Services Policy Framework (WS-

Policy). May, 2003.
[6] D. A. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[7] F. Curbera et al. Web Services Platform Architecture:

Soap, WSDL, WS-Policy, WS-Addressing, WS-Bpel, WS-
Reliable Messaging and More. Prentice Hall PTR, 2005.

[8] J. de Bruijn et al. Web Service Modeling Ontology
(WSMO). WSMO Final Draft,
http://www.wsmo.org/TR/d2/v1.2/, April
2005.

[9] J. Domingue et al. IRS-III: A Platform and Infrastructure
for Creating WSMO-based Semantic Web Services. In
WIW 2004, WSMO Implementation Workshop 2004,
2004.

[10] F. Juchart. Development of a Routing Procedure for
SOAP Messages Based on BPEL. Diploma Thesis.
http://www. informatik.uni-
stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=DIP-2460,
2006.

[11] D. Karastoyanova, F. Leymann, J. Nitzsche, B.
Wetzstein, and D. Wutke. Parameterized BPEL
Processes: Concepts and Implementation. In
Proceedings of BPM, 2006.

[12] R. Lara et al. A Conceptual Comparison of WSMO and
OWL-S. Proceedings of ECOWS 2004, 2004.

[13] F. Leymann. Web Services: Distributed Applications
without Limits. Business, Technology and Web, Leipzig,
2003.

[14] F. Leymann. The (Service) Bus: Services Penetrate
Everyday Life. In ICSOC, volume 3826 of LNCS.
Springer-Verlag Berlin Heidelberg, December 2005.

[15] D. Martin et al. OWL-S: Semantic Markup for Web
Services. W3C Member Submission, W3C, 2004.

[16] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web
Services. IEEE Intelligent Systems, 2003.

[17] MINDSWAP Group. OWL-S API.
http://www.mindswap.org/2004/owl-
s/api/

[18] M. Zaremba. WSMX Execution Semantics.
WSMXWorking Draft D13.2 v0.3, 2005.

354

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

