
Extending BPEL for Run Time Adaptability

Dimka Karastoyanova
3,1

, Alejandro Houspanossian
2
, Mariano Cilia

1,2
,

 Frank Leymann
3
, Alejandro Buchmann

1

1Technical University Darmstadt, Darmstadt, Germany
{cilia | buchmann}@informatik.tu-darmstadt.de

2UNICEN, Faculty of Sciences, Campus Universitario Tandil, Argentina
ahouspan@exa.unicen.edu.ar

3University of Stuttgart, Stuttgart, Germany
{leymann | karastoyanova}@informatik.uni-stuttgart.de

Abstract

The existing Web Service Flow (WS-flow)

technologies enable both static and dynamic

binding of participating Web services (WSs) on the
process model level. Adaptability on per-instance

basis is not sufficiently supported and therefore

must be addressed to improve process flexibility

upon changes in the environment. Ad-hoc process

instance changes can be enabled by swapping
participating WS instances, by modifying port

Types of the partners to be invoked, and by

changing process logic. In this work we address the

problem of dynamic binding of WSs to WS-flow

instances at run time, i.e. the ability to exchange a

WS instance participating in a WS-flow instance
with an alternative one. The problem is additionally

complicated by the fact that the execution of a

process depends on its deployment. We describe the

“find and bind” mechanism, and we show its

representation as a BPEL extension. We discuss the

benefits that could be gained and the disadvantages
it brings in. The mechanism extends and improves

the existing process technologies. It facilitates a

precisely controlled policy-based selection of WSs

at run time and also provides for process instance

repair, while maintaining simplicity. We also

discuss a prototypical implementation of the
presented functionality.

1. Introduction

Web Service Flows (WS-flows) are composite

Web Services implemented using a process-based

approach. Similarly to the traditional workflows

WS-flows definitions specify declaratively

collections of tasks executed by the participants in a

process. A process definition also defines the

execution order of tasks (control flow), the data

exchanged among its tasks and its participants (data

flow), exception handling, and business rules.

Unlike the traditional workflows however, the WS-

flows involve only a single type of participants –

Web Services (WSs).

WSs are a technology aiming at the

standardization of protocols and formats for the

interaction among applications, in a language and

platform independent manner, and even over the

Web [38], [18]. WSs have interface descriptions in

WSDL [37], which define the service functionality

in terms of messages consumed and produced. WSs

interact with each other in terms of messages and

are loosely coupled [18]. This is a characteristic

allowing the architecture to remain flexible to

change [39]. In keeping with the SOA principles,

WSs are discoverable [24], [5], [30], and can be

composed in complex WSs. The technology has

been designed with the purpose of application-to-

application communication [18].

While WSs enable flexibility of organizations

by defining standard protocols and formats,

businesses often still use them in relatively simple

scenarios. Boosting the technology acceptance and

deployment depends partly on the ability to

compose WSs in complex ones. Therefore the WS

community, both from academia and industry, puts

a lot of effort in specifying WS-flows. BPEL [9] is

the de facto standard in this area but it does not

support adaptability of WS-flows at run time. One

approach towards enhancing process adaptability is

the main topic of the paper, namely run time

adaptations with respect to port binding in a per

process instance manner.

WS-flows benefit from the features inherent to

WSs [3], [17]. Having only WS participants makes

WS-flow definitions independent from

organizational structures and infrastructure

specifics, i.e. regardless of formats and mechanism

used to access the respective WS functionality. WS-

flows provide a very flexible programming model

relying on loose coupling to WS ports. Yet

processes flexibility can be further enhanced: First,

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

the ports (or WS instances) corresponding to the

port types the process activities interact with are

specified upon deployment in a static or declarative

manner [19]; second, no run-time modifications can

be done on the types of WSs that perform on behalf

of the process or on the process structure.

Therefore, in most of the cases in order to tailor a

WS-flow to the constantly evolving environment

one has to terminate the corresponding process

instance, modify its model as necessary and restart

it, even when the respective modification is needed

only in a single process instance. Terminating and

restarting long-running business processes is

undesirable. The problem is aggravated by the fact

that processes may take part in asynchronous

communication with the participating WSs.

Exception handling mechanisms are explicitly

represented in BPEL [9] but they do not handle

situations requiring dynamic swapping of WS

instances (ports) at run time on process instance

level. BPEL supports exchanging ports by allowing

assignments of endpoint references from messages,

but the assignment must be foreseen at the process

model level. Replacing ports at run time

independently of the process model and the

predefined service selection policies is still not

enabled. For this reason it is also impossible to

repair a process (and its instances) in case the

runtime environment is unable to find (and

therefore enable interaction with) a service

compliant with a portType prescribed by the

process model. Related to this is the need for the

ability to change selection policies even after

process deployment; this is yet to be achieved for

WS-flows, too.

In this paper we introduce an extension element to

the BPEL language (version 1.1 [9]) that stands for

a mechanism we call “find and bind”. In general,

this mechanism is meant to represent look up,

selection and binding of services compliant with a

port type defined in an activity in a WS-flow

definition. This mechanism, even not at all new, has

not been specified or represented by a language

construct in BPEL. In the field of WS-flows it is

only WSFL [20] that has a construct going for a

similar approach. The “find and bind” mechanism

is supported to some extent by most BPEL engines,

but it is highly dependent on the engine

implementation specifics and is tailored to reflect

the engine-specific deployment of processes. Here

we propose an approach toward making the

mechanism explicit but in an optimal manner that,

in addition, reuses and improves the existing

practices. The proposed approach is not intended to

substitute the existing process deployment

procedures; it reuses them but also extends them to

provide for deployment-independent process repair

(see section 4). It is also a first attempt to generalize

failure handling on instance level upon WS ports

failure, as well as to enable selection policies

modifications at run time. The mapping of the

mechanism to a BPEL construct amplifies the

adaptability of BPEL processes to changes in the

environment on both domain-specific (laws,

contracts, etc. changes lead to changes in the

selection policies) and infrastructural levels

(infrastructure failures, failing compliant WS

instances).

The mechanism itself and its corresponding

language construct are presented in section 3. The

same section discusses the benefits and implications

of using this mechanism and the language

construct. Section 4 deals with the implementation

of the mechanism in the context of the ReFFlow

project [27]. The re-binding mechanism is mapped

to a BPEL extension construct for adaptability. We

use BPEL because of the acceptance rate of that

language. The “find and bind” functionality is

implemented as an extension to a BPEL engine, in

this case the open-source ActiveBPEL engine [2].

Conclusions and future work are presented in

section 5.

2. Adaptability and WS-flows – problem

domain, state-of-the-art and motivation

WSs are used to provide organizations with

flexibility. WSs render a heterogeneous

environment homogeneous by hiding

implementation specifics behind standard, stable

WS interfaces. However, business organizations

can be given greater flexibility and agility in

supporting their business processes by letting them

change not only the implementations of their simple

WSs [39] but also by defining mechanisms they can

use to adapt their complex/composed WSs, i.e. their

business processes. Since WSs are the only type of

performing entities in WS-flows, neither

organizational models, nor infrastructure

implementation specifics need to be considered in

the WS-flow definitions. As described in [17] this

simplifies to some extent the way WS-flows adapt

to changes in the environment. Still, adaptability of

WS-flows is not yet adequately supported.

Two major factors limit adaptability of WS-

flows:

First, the existing WS-flow definition languages

(e.g. BPEL [9], WSFL [20], XLANG [31]) assign

potential participants, i.e. concrete ports, during

process deployment to the process models in terms

of port types. The portTypes are resolved into ports

either upon deployment or during process

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

execution. A much more controllable and hence

flexible approach is to enable the dynamic run-time

look-up, selection and binding to WS instances on

process instance basis. Instrumental here is the

explicit and precise control over the selection of

ports in terms of user defined criteria, all this at run

time for each process instance. So far, this is only

partly facilitated on the process level only (see

details later in the section).

Second, changeability of WS-flows schema, in

particular modifications of control and data flow, is

not at all supported so far.

Research in the field of adaptable workflows has

resulted in various classifications, mechanisms and

approaches related to process adaptability [1], [7],

[11], [12], [28]. [11] describes the layers of change

together with taxonomy of approaches to workflow

adaptation. Van der Aalst et al. [1] classifies

possible modifications in the dimensions of a

workflow on both schema and instance level in

reaction to environment changes. Adaptability has

never been considered as a part of the process meta-

model, not that there has ever been a common,

generally accepted meta-model for workflows [3],

[6]. Instead, workflow products vendors have

developed their own models and languages, that

usually did not interoperate [6], [17]; adaptability

has been enclosed in engine specific primitives.

WS-flows adaptability approaches are classified

in [17]. Since WS-flow definitions are independent

of organizational and infrastructural changes they

need not adjust to changes in organizational models

and/or implementation of participants’ services;

hence the reduced number of change-relevant layers

in the classification (as compared to [11], [1]). Still

WS-flows need to react to changes on the meta-

model level, to changing conditions pertaining to a

specific application domain, and to changes calling

for control flow (and data flow) modifications [17],

[15], [28], on both the process schema level and on

instance level.

Meta-model and domain specific modifications

in both workflow and WS-flow fields have been

inadequately addressed; they are however outside

of the scope of this paper. And while there is work

done in enabling structural process schema changes

in workflow products (time-based approaches -

versioning, variants) that can be leveraged for

modifying WS-flow models, the problem of ad-hoc

changes in running process instances has not been

dealt with.

Process instance modifications in an ad-hoc

manner are related to the term dynamic binding. In

principle, there are two types of entities that can be

dynamically bound to a WS-flow: these are the

types of participants (port types) and the actual

participants (ports/WS instances compliant to a

given port type) [17]. A possible preliminary

approach to tackling the former case is presented in

[15] and [17]. The state-of-the-art related to the

latter case and the problems faced by the existing

solutions, both language specifications and

implementations, are discussed next.

The binding of WS-flows to ports at run time

has been addressed in WSFL [20]. The language

specifies a construct, called locator. The locator is

nested in the serviceProvider element, which

specifies the provider name and type. The locator

determines whether a specific service is used for the

execution of a task or a more dynamic approach is

employed. For the latter case the locator enables

two possibilities: a query to a UDDI registry or a

mobility option. The uddi type locator also specifies

the point in time of querying a UDDI registry [24]

for compliant ports – startup (upon process

instantiation), first hit (the first time an operation of

the service provider is needed) or deployment

(during the deployment of a process model) – and

the criteria for selecting a service. In the mobility

type binding the information needed for binding to

a service provider is obtained as a result of a

previous data exchange. Although still in use

WSFL is officially substituted by BPEL.

BPEL [9] is the de facto standard for WS-flows.

It supports a very flexible programming model (see

[22] for an overview). A process definition models

tasks (activities), control flow, and exception

handling. Additionally, the process is exposed as a

set of WSs and specifies all portTypes it

implements. The specification does not deal with

associating ports to port types. Typically, this

association is a matter of deployment [21]. A

process definition associates participants to a

process on an abstract level only by means of

partner link types. However, since process

deployment is not standardized because of its

dependence on the execution environment, the

BPEL specification assumes that partner link types

must be resolved upon deployment. An alternative

to assigning participants to a process at deployment

time is the other possibility BPEL includes – the so-

called mobility notion (similar to the one in WSFL).

In this case a process specifies that a partner in the

interaction should send an endpoint reference

during [36] the process execution. This endpoint

reference (EPR) is to be used to interact with

another participant. Again, this should be

represented in the process model.

The BPEL specification allows all the

information needed for dynamic binding of WS

instances to be kept separate from the process

definition. For this reason and because deployment

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

simply is not standardized the available BPEL

engines employ different approaches.

The current practices [13], [14], [2], [19], [21],

[26], [38] show that during deployment a port type

gets assigned either a fixed port or a query. A query

is used at runtime to determine a matching port

according to predefined selection policies.

All BPEL implementations support static
deployment [13], [2], [14], [26]. They all support

the option of assigning ports to portTypes explicitly

during deployment. The issue here is how to avoid

terminating such process instances at run time,

should the service bound to an activity fail.

Some BPEL engines support dynamic binding

and allow assigning ports to portTypes of a process

model at run time [2], [14], [26]; all of them use the

approach based on deployment descriptors. Usually

a query to a discovery component is performed

(directly or delegated to the Service Bus [8]) and as

a result a port (WS instance) compliant with the

given portType and the predefined selection criteria

is bound to the process. Deployment is assisted

either by creating process deployment descriptors

(e.g. WebSphere Business Integration Server

Foundation Process Choreographer [14], Active

BPEL [2]) or by special purpose tools or graphical

interfaces that gather the required information (e.g.

BPWS4j [13]).

Two potential problem issues must be

considered here. First, it is possible that for some

reason the execution environment signals a failure
to invoke the WS instance resolved as a result of the

query and inability to find any other WS instance

compliant with the portType and the selection

criteria. Process repair upon such a failure is

generally not treated by the existing BPEL

implementations and would lead to terminating the

process. For such a case there is a need for a

method to avoid terminating the process instance

and assign a new portType-compliant port

according to slightly different (and possibly

relaxed) selection criteria. Second, whenever the

selection criteria for a running WS-flow instance

change, which is a plausible case, the information

given during deployment with respect to the service

selection policy become inadequate and would have

to be changed. At present there is no

straightforward way to bind a process instance to a

participant, compliant to modified selection policy

– hence the process instance must be terminated

and then redeployed with the new policy data. Even

if one changes the process’s deployment descriptor,

especially the selection policy there, this would not

influence only the particular WS-flow instance, but

rather all instances of the process model. This

means that the set of ports used by an instance of a

process model is fixed, in general. This again

requires the ability to change ports during run time

on per process instance basis.

As mentioned above, BPEL allows a process

instance to receive a message from a partner that

includes an endpoint reference to a WS. This

enables the process instance to interact with a WS

that has been unknown prior to the event of

receiving that message. However, there is no

prescription of what is to be done when the partner

that is supposed to provide an endpoint reference

fails. Whenever the WS sending the endpoint

reference, to which an activity must subsequently

be bound, is lost (failed, etc.) the process must be

repaired manually by an administrator. This is

actually another situation we would like to avoid.

All the above considerations call for a

mechanism that allows for dynamic binding of ports

to process instances at run time independent of the

policies provided upon deployment and without
changing the process (model) itself. Otherwise the

process instances would have to be terminated for

repair. This mechanism should reuse the extant

specification and practices, and extend and improve

them towards ensuring finer failure handling and

thus greater adaptability. Additionally, such a

mechanism should give the users the freedom to

modify the selection criteria according to which the

ports are selected even at run time.

In summary, even though the BPEL

specification provides a very flexible basis for the

development of WS-flows with dynamic features

there is still ground for improvement. Therefore, in

the next section we introduce the “find and bind”

mechanism. Our motivation for defining and

implementing this mechanism for WS-flows is the

flexibility that can be gained when tackling the

afore-mentioned issues and thus avoiding undesired

process instance termination. The essence of the

mechanism tailored to the WS-flows environment,

the distinct problems it addresses, its representation

in terms of a language construct, and the way it is

implemented are the main contributions of this

paper.

In the next section we briefly introduce the steps

of the “find and bind” mechanism. We comment on

the implications of using the mechanism and show

its explicit representation as a language construct.

We discuss the implementation in section 4.

3. Find and Bind – the mechanism and a

language construct

This section describes the “find and bind”

mechanism. The use of the mechanism is proposed

in [17], [3] for providing the users with the

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

flexibility to choose explicitly at run time the WS

instances participating in a process instance.

The idea is not a new one: dynamic look up of

components and dynamic binding has already been

applied in the middleware technologies [3], and has

been described in WSFL [20] for WS-flows. But

corresponding support in BPEL is missing. All

ports participating in a WS-flow are resolved upon

deployment or at run time based on predefined

selection policies assigned to the process model.

WSs instances locations are either hard-coded in

the process WSDL description or in a deployment

descriptor, or determined as a result of a query to a

registry (see also section 2). The run-time search

and selection of WS instances in a deployment-

independent manner for running process instances

is not yet a part of any of the languages for WS-

flows, nor is it supported by any of the existing

BPEL engines. In other words, current

specifications do not address the issue of ad-hoc

process changes on per-instance basis adequately

enough. In order to enable selection of ports at run

time according to selection criteria different from

the ones specified by the deployment descriptor we

introduce an additional element to the BPEL

language.

3.1. Steps to perform – find, select and bind

In general, the “find and bind” mechanism

comprises three main steps:

1. Find a list of all available WSs compliant with

the portType specified in an activity of a

process;

2. Select a port from that list according to user-

defined selection criteria (QoS, semantics);

3. Bind the activity of the process instance to the

selected port. This port is the one that is going

to perform a task on behalf of the process

instance under consideration.

The general form of the mechanism is presented

in the next figure.

Figure 1. “Find and bind” mechanism

As pointed out in [17], [15] there are reasons to

make the mechanism explicit in a unified WS-flow

meta-model and expose it to the WS-flow users

(administrators, developers) in terms of a language

construct. We choose to represent it in terms of the

<find_bind> construct in a common process

definition language. Because of the current trend

towards using BPEL [9] for WS-flow definitions it

is only reasonable to extend the BPEL language

with the <find_bind> construct. The process

developers and users do not have to care about how

the “find and bind” mechanism is performed and

therefore this must be reflected in the model

elements and the corresponding language construct;

they only should care and know about the selection

criteria and specify them within the

<find_bind> construct. This construct is

designed to express declaratively the requirements

towards a WS port in terms of selection policies.

Users (administrators) are thus given the ability to

specify default values of selection criteria that are

to be used at run time as a substitute of those given

during process deployment or as their extension and

refinement. This is especially useful in the case of

process instance repair.

In BPEL the activities standing for interaction

with Web services are the <invoke>,

<receive>, and <reply> activities, hence they

are the ones to be extended with the

<find_bind> extension element. The next code

listing shows an example of a <find_bind>
element for an <invoke> activity; note that this

additional element is included into the set of

standard elements of the activity.

The example in Listing 1 shows that the “find

and bind” mechanism is mapped to a separate

extension element of an interaction activity. The

element includes a “selection_policy”

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

attribute. During the process build time one

specifies default values for the selection policy (in

order to control the selection of compliant services

in the case of a failure).

<process name="ConvertCurrencyBP">
<!-- details … -->
<invoke
 name="ConversionRequest"
 partnerLink="converter"
 portType="CurrencyConvService"
 operation="usd2eur"
 inputVariable="C_and_Rate"
 outputVariable="result">
 <find_bind
 selection_policy =
 "selection_policy_ID"/>
</invoke>
<!—details … -->
</process>

Listing 1. Example of the <find_bind>
extension element

The value of the selection_policy
attribute can either directly specify the selection

policy in terms of a list of criteria or it can be a

name of a selection policy. The name uniquely

identifies a selection policy and can be used to

reference policies stored in a separate infrastructure

component. Therefore we distinguish between in-

line policies and referenced policies.

Using the “find and bind” functionality during

process instance execution every time a WS has to

be invoked is not the most optimal solution even

though it might bring greater flexibility due to the

fact that the set of ports compliant with the policy

changes all the time even during the execution of a

single process instance. Moreover, there are much

more optimal solutions with respect to performance

which handle most of the cases for process

configurability (see section 2), namely all points of

variability are specified separately upon process

deployment. As we mentioned above, during

deployment of BPEL processes activities get

endpoint references of participants or selection

policies associated.

Nevertheless, the following cases are not being

covered by the deployment approach; we discuss

next how they could be addressed using the

<find_bind> extension construct.

3.1.1. Process instance repair. In the case of a

failing port and inability of the runtime

environment to find any other port compliant with

both the port type and the selection criteria defined

upon deployment the process instance must be

interrupted and repaired. Usually the repair on

process level is not an automated procedure and is

done manually by administrators. If the undertaken

repair action involves modification of a deployment

descriptor (the deployment information in general)

it will inevitably influence all instances of the

repaired process. If, on the other hand, the

<find_bind> element had been included in the

activity that needed to be repaired, with default

selection policies, which are alternative to the

criteria specified in the deployment descriptor, the

engine would be able to perform another query and

select another compliant port. Thus terminating the

process instance that has experienced such a system

failure is avoided, and no other instance is

influenced by the repair. The additional benefit here

is that the repair is automated. In our view, this is a

way to automatically bypass the predefined

selection criteria (and in a way to overwrite

endpoint references) for a process instance only and

whenever needed. In essence this approach enables

deployment-independent service selection at run

time.

An additional point we would like to make here

is that the port used by the process as a result of the

repair could also fail. In this case “find and bind”

must be performed again. It should be repeatedly

executed until the interaction succeeds (i.e. the

activity is executed) or as long as there are ports in

the list of compliant ones. After that a manual

repair is required. Manual repair would also be

required if for some reason the execution of the

“find and bind” functionality fails – e.g. the

discovery component is not reachable, there are no

other ports implementing the originally specified

port type, etc.

3.1.2. Modifying selection policies. There is

another problem calling for the use and explicit

representation of the “find and bind” mechanism

not covered by the BPEL specification and any of

the extant implementations. The solution improves

process adaptability to an even greater extent. Since

selection criteria are specified upon deployment it

is not yet possible to adjust a process instance in

accordance to changing user requirement towards

the selection of services; any changes in the policies

affect all instances. Policies for choosing WS

instances are also an artifact of change. By

representing selection policies explicitly in the

<find_bind> construct and with the necessary

tools available one could also change the default

selection policies. Thus users would be given an

extra ability to guide the selection of ports at run

time depending on their needs and according to the

changing rules of their business. This is possible by

using just monitoring tools that support viewing of

process instances and allow for changing the

selection policy at run time.

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

We propose making the mechanism explicit

only for the purpose of enhancing and improving

the language expressiveness and extending the

existing practices. We by no means propose

substituting the existing approaches; our intent is to

improve the existing state-of-the-art but in the same

time draw on the existing approaches and

experience. The explicit language element allows

for deployment-independent service selection at run

time on a per instance basis and is a first approach

towards standardized handling of exceptions of that

kind.

We also envision the application of this

extended mechanism for dynamic selection and

binding of WS instances in advanced WS-flow

engines. In the context of the ReFFlow

methodology, which considers the development of

an advanced features BPEL engine [15], [27], no

references to ports and even no portTypes need to

be specified in the process definition nor are they

assigned to the process prior to run time. In that

case the functionality of the <find_bind>
construct (i.e. the mechanism it stands for) must be

supported by the engine and performed at run time

for each activity that invokes a WS for which the

portType and operation values remain unknown

until just before their execution.

3.2. Implications, advantages and

disadvantages

Using the <find_bind> construct to make

WS-flows more flexible has implications as

concerns tool support, performance cost, handling

faults, description of WSs semantic and quality and

so on.

It is of benefit that flexibility is gained while

simplicity is preserved. The <find_bind>
element contains no implementation-specific

features – no reference to an implementation

language, platform or discovery component to be

used for the look up (compare to WSFL locator,

where only the UDDI registry was considered an

option). These features remain hidden because of

the declarative nature of the definition language,

preserved in the <find_bind> element as well. It

is the process engine that has to tackle the actual

search for compliant ports and has to resolve the

selection criteria. Typically, the process engine will

delegate this to another infrastructure element, and

eventually bind the process to the selected instance.

The so-called Enterprise Service Bus [8] could

implement such an infrastructure component.

As we stated earlier, the user gains additionally

the benefit of being able to guide the selection of

the participating WSs and thus adapt their processes

by modifying the criteria for the selection even at

run time. In the context of autonomic computing

the modification of selection policies could be

made automatic as well. However, while users are

allowed to prescribe default selection policies, they

depend on the availability of appropriate tools for

modifying the selection criteria at run time. Such

tools should allow users/administrators to actively

control the selection of WS instances. Having in

mind the current trend toward using BPEL for WS-

flows these tools should support editing of BPEL

models and/or files. These tools could partly

enforce the correctness of modifications by

permitting only a predefined set of valid changes.

An additional tooling feature would be to support

process deployment.

The “find” step of the mechanism requires calls

to a discovery component to get the list of WS

instances conforming to the portType specified in

an invoking activity. One such discovery

component is the UDDI registry, but in general, any

other discovery component or approach supported

in a service bus environment will do [21], [3], [5],

[30]. The support infrastructure must be able to

interact with the discovery component and perform

the necessary mapping to its internal format though.

Dynamic binding to WS instances faces an

additional difficulty when the interaction between a

process and a WS instance is asynchronous.

Detecting a failure of a WS instance in the case of

asynchronous communication means that the

previous actions must be compensated for and

(status) data resent to the newly selected WS

instance. Handling failures and compensating for

work done in an asynchronous interaction mode

between processes and participants is an issue of

critical importance and a part of our future research.

After a set of compliant WSs is found a single

service instance must be selected. The selection

criteria are either the default ones prescribed by the

workflow developer within the <find_bind>
element or new ones updated by the users while the

process instance is running. The infrastructure

component that is responsible for the selection gets

as input the identifier of the selection policy as

stated inside <find_bind> or a list of criteria,

and their values, and the list of services compliant

with a portType. Its task is to find those services

from the set whose policy descriptions match the

selection policy. While the <find_bind>
element defines which selection policy is to be

used, it does not reveal any details about the

infrastructure entity that performs the actual

selection. Therefore the selection functionality can

be assigned either to the engine, or implemented by

a separate stand-alone component that can be

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

(re)used by various WS-flows engines; it might also

be available as a WS. Obviously, an additional task

of the selection component is finding out what the

policies of the WSs in the list are. The output the

component must produce is the choice it has made,

in particular the endpoint reference of the WS

instance it has picked out. Further details on the

selection component are outside the scope of our

current discussion. However, it is important to note

that the development of the selection module

depends on the availability of standards for

semantic description of WSs and for quality of

service (QoS) models for WSs. Even though there

are standards for semantic description of Web

resources (RDF [35], OWL [34]) and WSs (DAML

[10] and OWL-S [23]) we are not aware of software

products available that could be used to directly

support the selection step of the “find and bind”

mechanism. There is no agreed upon QoS model

for WSs yet, but once it becomes available it can be

used within the “find and bind” mechanism

immediately. In any case, our point here is that the

infrastructure must incorporate a module to handle

policy match-making and WS selection.

Apart from the cases of binding repair at run

time the “find and bind” functionality finds

additional use together with the <evaluate>
extension element, introduced in [17] and [27]. The

<evaluate> element is used to ensure that

processes defined without any reference to

portTypes in activities will be deployable and

executable. It is also meant to support modification

of statically provided portTypes in BPEL processes

at run time [17]. Because in both of the above cases

the actual portTypes to be used during the WS-flow

execution are unknown prior to the execution of the

corresponding activities themselves the dynamic

search, selection and binding to a compliant WS

port is an obvious prerequisite.

The “find and bind” mechanism is mapped on

an element that is a part of the standard elements

section within the <invoke>, <receive> and

<reply> activities, rather than on a separate

activity type. This choice is substantiated by several

facts. Most process modeling tools are graph-based.

Introducing a new activity type would mean a

incorporating the representation of that activity type

in all modeling tools that import and export BPEL

files. This definitely hampers portability of BPEL

files across multiple modeling and editing tools.

Another issue here is performance. The navigator

module of a workflow management system would

have to navigate through an additional activity

should the “find and bind” mechanism have been

mapped on an activity type. This would have led to

performance penalties in addition to those already

imposed by the calls to a discovery component, in

particular if it is a UDDI registry (because of its

characteristics).

4. Functionality implementation

In this part of the paper we present how the

“find and bind” mechanism has been implemented

in the context of the ReFFlow project [27].

There are several BPEL-compliant engines,

some of which are open source ones, e.g. Twister

[32] and ActiveBPEL [2]. While both Twister and

ActiveBPEL provide support for all major BPEL

features, we have chosen to extend the ActiveBPEL

engine with the “find and bind” functionality

because of the available documentation, its

development status, and its large number of

auxiliary features.

The <find_bind> construct does not

incorporate any implementation specific features

and therefore using and enhancing any other BPEL

compliant engine would have also been possible. It

is important to extend the engine without modifying

its original code. We use the aspect-oriented

programming (AOP) approach for this purpose.

This approach allows for modular and adaptable

extensions, which can be weaved in the execution

flow any time they are needed, while the original

source code from ActiveBPEL.org [2] is preserved;

besides, this allows us to use any new releases of

the engine and still be able to extend them

accordingly.

The major components of the Active BPEL

architecture are in charge of process representation

(at deployment and run time) and process

execution, event and alarm handling, and WS

invocation management. The engine runs on

various application servers and relies on AXIS [4]

for dealing with SOAP messages. To facilitate the

discussion further, in the next sub-section we

briefly introduce how processes are represented and

executed in ActiveBPEL.

4.1. Engine characteristics

Before we present the implementation of the

extended functionality, first we pay attention to

those characteristics of the Active BPEL engine

relevant to it. We also discuss briefly what auxiliary

modifications had to be done to support this

functionality. Figure 2 depicts how the ActiveBPEL

engine interprets and instantiates BPEL processes.

Three steps are performed:

(A) parsing the XML file and creating a DOM

representation,

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

(B) generating internal representation of the

process definition,

(C) creating business process instances.

Figure 2. Process representation in the
ActiveBPEL engine

Having the above procedure in mind additional

functionality must be appended to support parsing

the <find_bind> element correctly and

generating the internal process definition with the

corresponding “find and bind” functionality. Since

the extension element has a DOM representation

unknown to the available ActiveBPEL engine the

reader module that interprets the DOM

representation of the <invoke>, <receive> and

<reply> activities has been modified to account

for it in the internal process definition. This is

implemented in terms of aspects executed only

when a <find_bind> has been encountered in a

definition. The actual data extraction is trivial. The

default selection policy information must also be

extracted and stored in a separate data structure.

In ActiveBPEL there is an invoke handler that

executes an AXIS call [4] on behalf of activities

interacting with WSs from within a process

instance. The information needed to perform the

invocation (partnerLink, portType, operation, port

location, etc.) is provided by the attribute values of

the invoking activity. If an Axis fault is detected by

the handler, it notifies the activity of the fault. The

activity notifies its process of the fault and the

process, in turn, notifies the engine. Typically,

when a WS invocation fails, the engine stops the

process and reports the error to the client of the

process. To avoid this and allow for the process to

complete when a WS has failed, the current engine

functionality needs to be extended to perform

additional search for compliant WSs and bind to

one of them. Therefore the main extension work is

done on the invoke handler. Its functionality is

extended in such a way that it first performs the

“find and bind” mechanism (i.e. it finds a compliant

port and its location) and then invokes the service

by performing an AXIS call to the dynamically

selected service instance.

In brief, upon detection of a WS failure at run

time the “find and bind” will be executed. A fault in

a WS invocation can be tackled in terms of the

“find and bind” mechanism if and only if an

invocation activity contains a <find_bind>
element as specified above. Otherwise the default

fault handling applies.�

4.2. Find & Bind implemented

A detailed description on the implementation of

the “find and bind” steps is given next. As it was

mentioned above, the find and bind functionality is

decomposed as follows (see also Figure 1):

• Find: Given a port Type name a list of published

compliant WS instances is returned.

• Select: According to the given selection criteria

a single WS instance is selected from the list of

services returned by the “find” step.

• Bind: The endpoint reference of the original WS

instance is replaced by the new one and a call to the

WS is executed.

4.2.1. Find. During this phase we aim at finding a

list of services that implement a particular port

Type. The discovery component we employ so far

is a standard UDDI [24] registry. It is queried using

UDDI4j [33] – a Java implementation of the UDDI

API. A mapping between the WSDL and UDDI

data models is needed (as specified in [25]) because

the UDDI Inquiry API does not work in terms of

WSDL elements (such as the portType name) but

rather in terms of the UDDI entities.

First, a UDDI4j proxy against a UDDI registry

is created. The SAP [29] UDDI registry is used

here. The class UDDIProxy provides find_XX

methods, whose execution implies the execution of

a query against a remote UDDI registry [33].

UDDIProxy proxy = new UDDIProxy();
proxy.setInquiryURL("https://uddi.sap.
com/UDDI/api/inquiry/");

Second, we have to get the tModel key of the

portType specified by the invoking activity:

• Look for the tModel that has the appropriate

portType name and is categorized as “portType”

according to the WSDL ENTITY TYPE category

system [25]. The categorization is expressed using a

UDDI CategoryBag, populated appropriately with

UDDI references.

• Retrieve the tModel’s categorization key.

CategoryBag categorization =
new CategoryBag();

categorization.add(new KeyedReference
("WSDL Type", "portType", WSDL_ENTITY_
TYPE_category_system_tModelkey));
TModelList tModelList =
proxy.find_tModel(portTypeName,
categorization, null, null, max_rows);
TModelKey ptTModelKey =
tModelList.getTModelInfos().get(0).get
TModelkey();

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

• If the portType has a target namespace it must

be referenced as part of the categorization, i.e. the

category bag must be populated with an additional

key referencing the namespace that defines the

portType [25].

The third task is to look for the Services that

implement the portType:

• Find all services with the portType key

determined in the previous step. The list of services

that match this criterion can be retrieved using the

find_service function.

TModelBag tmb= new TModelBag();
tmb.add(ptTModelKey);
ServiceList serviceList =
proxy.find_service(null, null ,null,
tmb, null, max_rows);

Fourth, retrieve the complete information about

the services in the list.

• Create an auxiliary data structure

“serviceKeys” containing all service keys from the

list.

• Get details for each service, which is actually

the data needed for the selection step:

businessServices =
(proxy.get_serviceDetail(servicesKeys)
).getBusinessServiceVector();

The first two steps could be accomplished in

one single step. The find_service_XX function of

the UDDI API provides the chance of executing an

embedded find_tModel call. In this way, we would

have directly executed step 2, with step 1 as

embedded query. This would have reduced the

number of calls to the UDDI registry. But UDDI4j

(v2.0.2) does not support embedded queries as part

of the find_service_XX function.

4.2.2. Select. During the selection step a WS

instance is chosen out of a set of WS instances

compliant with a portType. The selection is guided

by the (default) selection policy. Policies are

derived from the data provided as part of the

<find_bind> element. A selection policy can be

specified in terms of a policy identifier or a set of

criteria. The policy can describe semantic

characteristics of a WS and/or QoS features. The

semantic and QoS descriptions of WSs are a hot

research topic together with matchmaking of

policies for WSs. However, the available languages

and techniques are either not completely specified

or not agreed upon, and there are no supporting

tools that one could use directly as a part of this

engine extension. However, the <find_bind>
element is designed and implemented to

accommodate future advances in these research

areas.

Currently the selection module is implemented

to select a single WS instance based on a simple

policy that just picks randomly a service from the

list returned by the “find” module. In our future

work we intend to extend the selection module to

define and apply more complex policies based on

QoS and/or semantic descriptions of the WSs. This

as we said before is dependent on the

standardization initiatives related to WSs semantic

descriptions and QoS models for WSs.

The selector module instantiates a policy object

using the policy information provided by the

<find_bind> element. It performs the WS

instance selection using the policy and returns the

binding information for the selected WS:

ISelectionPolicy policy =
policyManager.instantiatePolicy(select
ionPolicyInfo);
BindingTemplate bindingInfo =
policy.selectWS(services);
return (bindingInfo);

4.2.3. Bind. The binding mechanism is engine

dependent. Essentially, the “bind” step implies

replacing the endpoint reference (in our prototype,

this is basically a URL) of the service that has

failed with a new one so that the call to the

alternative service instance is made possible.

The bind functionality in the extension gets as input

the binding information for the selected WS

instance.

The URL is extracted in the following way:

URL newURL = new
URL(bindingInfo.getAccessPoint().
getText());

The returned URL is assigned to the AXIS call

object the engine employs for the invocation:

call.setTargetEndpointAddress(newURL);

4.3. Experiments

The test set-up for the implementation utilizes a

simple WS-flow that implements a currency

converter. It invokes two different WSs: one for

getting the cross-currency rate, and another for

calculating the conversion given the amount and

rate. In the definition both invoking activities

included a <find_bind> element. We deployed

the process on the enhanced engine with all

specified participating WSs available. The process

executed without involving the extended

functionality because even though the

<find_bind> construct was present in the

definition no WS failed; hence no re-binding was

necessary. In the next experiment we deployed the

process and made the WSs unavailable; thus we

created a condition that would trigger the process

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

repair with “find and bind”. Here, an AXIS fault

was detected, which triggered the “find and bind”

functionality. During the find phase a UDDI

registry was queried, alternative WSs URLs were

selected and bound to the invoke activities. The

process instance was able to complete its execution

without reporting a fault that would require its

termination.

5. Conclusions

The existing practices enable dynamic binding

of ports to processes by specifying criteria for port

selection during process deployment. However,

since deployment is execution environment specific

it cannot be standardized in a cross-platform

manner. Moreover, selection policies given during

process deployment are valid for all instances of the

process model and can be modified only when

processes are redeployed. Because of these

limitations, a mechanism that supports deployment-

independent ports selection at run time on process

instance level is needed.

In this paper we described the “find and bind”

mechanism as an approach to enabling dynamic

binding of WSs to WS-flow instances at run time. It

is meant to enhance and improve the existing

techniques for dynamic binding of ports to WS-

flows. It draws on their optimized performance and

practical significance and improves them further. It

enables process instance repair without interrupting

the process instance upon port failures. Presenting

the selection policies explicitly in the process

definition is a premise for adjustment of processes

to changing user requirements towards the WSs

participating in a WS-flow.

Again, it is of utmost importance to give the

users the control over the selection of WS instances

during process execution on per instance basis

using precise selection criteria. At the same time

the implementation specifics of the execution

environment remain transparent, by employing the

declarative nature of the WS-flow languages.

The mechanism has been implemented as a part

of the ReFFlow infrastructure [27]. It has been

represented as an extension of the BPEL language.

In this paper we also presented the implementation

of the mechanism. Additionally, the implications of

using the mechanism itself and its language

representation, both positive and negative, were

extensively discussed.

The binding of WS-flow instances to WSs in an

ad-hoc manner is only one of the approaches

towards achieving WS-flow flexibility. In the

ReFFlow project another meta-model extension

construct is being developed. It is the

<evaluate> extension element [17] and it

enables modification of port types at run time; as a

future work reference it is also meant to facilitate

changes in process control flow. This construct

makes extensive use of the concept of templates

[16] to boost reusability and to help toward greater

flexibility and faster process adaptation.

Our future research activities include also work

on accommodating more complex selection policies

and the development of an infrastructure

component able to handle WS instance selection

based on such sophisticated criteria.

The dynamic binding of WSs is not a problem

pertinent to only WS-flows but rather to the WS

technology as a whole. It is one approach to

enabling loose coupling and its numerous

advantages in a SOA [8], [18]. Future trends in this

respect include the creation of a sophisticated

infrastructure to support advanced dynamic features

of service-oriented environment – this is the so-

called Service Bus.

6. References

[1] van der Aalst, W.M.P., Jablonski, S.: Dealing with

workflow change: identification of issues and solutions.

International Journal of Computer Systems Science and

Engineering, Vol. 15, No. 5, September 2000. CRL

Publishing Ltd.

[2] ActiveBPEL Engine. http://www.activebpel.org/

[3] Alonso, G., Casati, F., Kuno, H., Machiraju, V.:

Web Services. Concepts, Architectures and Applications,

Springer-Verlag. Berlin Heidelberg New York, 2003.

[4] Apache Axis: http://ws.apache.org/axis/

[5] Ballinger et al.: Web Service Inspection Language

(WS-Inspection, WSIL), November 2001.

http://msdn.microsoft.com/library/default.asp?url=/librar

y/en-us/dnglobspec/html/ws-inspection.asp

[6] Baeyens, T.: The State of Workflow.

TheServerSide.com, May 2004.

http://www.theserverside.com/articles/content/Workflow/

article.html

[7] Casati, F., et al.: Adaptive and Dynamic Service

Composition in eFlow. Proceedings of CAiSE 2000,

LNCS 1789, Springer Verlag, 2000.

[8] Chappell, D.: Enterprise Service Bus. June 2004,

O’Reilly

[9] Curbera, F., Goland, Y., Klein, J., Leymann, F.,

Roller, D., Thatte, S., Weerawarana, S.: Business Process

Execution Language for Web Services (BPEL4WS) 1.1.

May 2003.

http://www.ibm.com/developerworks/library/ws-bpel

[10] DAML.org: DAML Services.

http://www.daml.org/services/owl-s/

[11] Han, Y., Sheth, A., Bussler, Chr.: A Taxonomy of

Adaptive Workflow Management. In Proceedings of the

“Towards Adaptive Workflow Systems” Workshop at the

1998 ACM Conference on Computer-Supported

Cooperative Work (CSCW98), Seattle, 1998.

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

[12] Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K.,

Teschke, M.: A Comprehensive Approach to Flexibility

in Workflow Management Systems. In Proceedings of

WACC’99, 1999.

[13] IBM AlphaWorks, “IBM Business Process

Execution Language for Web Services JavaTM Run

Time (BPWS4j)”, IBM, 2002,

http://www.alphaworks.ibm.com/tech/bpws4j

[14] IBM developerWorks: WebSphere Business

Integration Server Foundation Process Choreographer.

http://www-

106.ibm.com/developerworks/websphere/zones/was/wpc.

html

[15] Karastoyanova, D., Buchmann, A.: ReFFlow: A

Model and Generic Approach to Flexibility of Web

Service Compositions. In Proceedings of iiWAS 2004,

September 2004.

[16] Karastoyanova, D., Buchmann, A.: Automating the

development of Web Service compositions using

templates. In Proceedings of “Geschäftsprozessorientierte

Architekturen” Workshop, at Informatik2004, Ulm 2004.

[17] Karastoyanova, D., Buchmann, A.: Extending Web

Service Flow Models to Provide for Adaptability. In

Proceedings of OOPSLA '04 Workshop on "Best

Practices and Methodologies in Service-oriented

Architectures: Paving the Way to Web-services Success",

Vancouver, Canada, 2004.

[18] Kaye, D.: Loosely Coupled: The Missing Piece of

Web Services. RDS Press 2003

[19] Kloppmann, M., König, D., Leymann, F., Pfau, G.,

Roller, D.: Business process choreography in

WebSphere: Combining the power of BPEL and J2EE.

IBM Systems Journal 43(2) (2004).

[20] Leymann, F.: Web Services Flow Language WSFL.

IBM Corporation, 2001.

http://www.ibm.com/software/solutions/webservices/reso

urces.html.

[21] Leymann, F.: The Influence of Web Services on

Software: Potentials and Tasks. Proc. 34th Annual

Meeting of the German Computer Society (Ulm,

Germany, September 20 – 24, 2004), Springer, 2004.

[22] Leymann, F., Roller, D.: Modeling Business

Processes with BPEL4WS. Information Systems and e-

Business Management (ISeB), Springer, 2005.

[23] Martin, D. et al.: OWL-S 1.1. November 2004.

http://www.daml.org/services/owl-s/1.1/

[24] OASIS UDDI Specifications TC: UDDI v. 3

Specification. October 2003. http://www.oasis-

open.org/committees/uddi-spec/doc/tcspecs.htm

[25] OASIS Technical Note “Using WSDL in UDDI

Registries v2.0.2”

[26] Oracle Corporation: Oracle BPEL Process Manager

2.0. 2004.

www.oracle.com/technology/products/ias/bpel/index.htm

l

[27] ReFFlow Project. www.dvs1.informatik.tu-

darmstadt.de/research/refflow/index.html

[28] Reichert, M., Dadam, P.: ADEPTflex - Supporting

Dynamic Changes of Workflows Without Losing

Control. Journal of Intelligent Information Systems 10(2)

(1998).

[29] SAP registry.

https://uddi.sap.com/UDDI/api/inquiry/

[30] Skonnard, A.: XML Files: Publishing and

Discovering Web Services with DISCO and UDDI.

MSDN Magazine: The Microsoft Journal for Developers.

February 2002.

http://msdn.microsoft.com/msdnmag/issues/02/02/xml/

[31] Thatte, S.: XLANG: Web Services for Business

Process Design. Microsoft Corporation, 2001.

http://www.gotdotnet.com/team/xml_wsspecs/xlang-

c/default.htm

[32] Twister, 2004 www.smartcomps.org/twister/

[33] UDDI for Java: http://www.uddi4j.org

[34] W3C: OWL Web Ontology Language. Reference.

W3C Recommendation, February 2004.

http://www.w3.org/TR/owl-ref/

[35] W3C: Resource Description Framework (RDF).

February 2004. http://www.w3.org/RDF/

[36] W3C: Web Service Addressing (WS-Addressing)

Member Submission. August 2004.

http://www.w3.org/Submission/ws-addressing/

[37] W3C: Web Services Description Language (WSDL)

Version 2.0 Part 1: Core Language, W3C Working Draft,

2003. http://www.w3.org/TR/wsdl20

[38] Weerawarana, S., Curbera, F., Leymann, F., Storey,

T., Ferguson, D.: Web Services Platform Architecture.

Prentice Hall 2005.

[39] Westbridge Technology. Critical Infrastructure for

Service-Oriented Architectures (SOA). 2004

Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (EDOC’05)
0-7695-2441-9/05 $20.00 © 2005 IEEE

