
Towards Architecture Model based Deployment for Dynamic Grid Services

Gang Huang, Meng Wang, Liya Ma, Ling Lan, Tiancheng Liu, Hong Mei

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.

E-mail: {huanggang, wangmeng, maly, lanling, liutch} @ sei.pku.edu.cn; meih@pku.edu.cn

Abstract

The deployment of grid services should make the

services, including those to be deployed and those already

deployed, operate with desired functionalities and

qualities. The critical challenge in the deployment is that

many technical and non-technical factors have to be taken

into account, such as performance, reliability, utilization,

operating cost, incomes, and so on. Since the factors

change continuously, some deployed services may have to

be re-deployed for guaranteeing their functionalities and

qualities. This position paper presents an approach to the

deployment and re-deployment of grid services based on

software architecture models. In this approach, all

services in a grid consist in a software architecture, which

represents the services, their relationships and other

factors in a global, understandable and easy-to-use way.

To demonstrate the approach, a visual tool for deploying

services onto a set of popular grid infrastructures,

including J2EE application servers and BPEL engines,

with the help of software architectures is developed.

1. Introduction

As computing power, network bandwidth and storage

capacity have increased dramatically over the past decade,

Internet cannot enable the users to access the resources in

a flexible, efficient and reliable way with current

application models, such as WWW, FTP, etc. As a result,

Grid computing has emerged, which enables the

virtualization of distributed computing and data resources

to create a single system image and grants users and

applications seamless access to vast IT capabilities [10].

Distinguished by traditional distributed computing,

Grid focuses on the frequent and continuous changeability

of the users, user requirements, resources and resource

providers. In order to enable flexible, secure, coordinated

resource sharing among dynamic collections of

individuals, institutions and resources, Grid defines the

concept of Virtual Organization (VO). A VO is a

collection of resource providers and consumers with a set

of clearly and carefully defined sharing rules, such as what

is shared, who is allowed to share, the conditions under

which sharing occurs, etc [4].

More technically, grid computing is based on an open

set of standards and protocols, such as Open Grid Services

Architecture (OGSA) and Web Services, which enable

resources accessible as services across heterogeneous,

geographically dispersed environments [6]. In that sense,

the users can solve their problems through requesting

proper services, while the resource providers can share

their resources as services. In order to deal with user

requests in desired qualities and utilize the resources

efficiently, the VO has to properly install all services onto

resource providers and carefully define their collaborating

relationships in terms of sharing rules. Such work that

makes the services ready to be used is called deployment1.

The deployment is a very important activity for a VO

because it is responsible for introducing new services to

meet new user requirements, removing useless services,

changing already deployed services to keep up with

changing environments and so on. From the perspective of

the information system lifecycle, the service deployment

mediates between the service development and service

operation. Due to the extremely open and dynamic natures

of Grid, the service developer can only make some

assumptions instead of precisely predict the operating

environments. Similarly, the operating environment

cannot support any service because of some limitations.

Moreover, the VO may have some special sharing rules in

terms of its purpose, scope, size, duration, structure,

community and sociology.

To make the above assumptions, limitations and

sharing rules consistent is the key to assure the deployed

services of desired functionality with desired qualities. For

a service deployer, he/she has to investigate the static and

dynamic details of operating environments, understand the

functionality and desired quality of the services to be

deployed, consider the sharing rules of the VO, etc. For

examples, shared resources may range from programs,

1 Note that, “Grid Deployment” refers the activity to build up a

Grid, while “Deployment in Grid” refers the activity to install a

service in an existing Grid. This paper focuses on “Deployment

in Grid”.

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

files, and data to computers, sensors, and networks; the

collaborating relationships among services may range

from client-server, n-tiers to peer-to-peer; the services

may be controlled at difference sophisticated and precise

levels, including fine-grained and multi-stakeholder access

controls, delegation, and local or global policies; a service

may support single user or multi-user in the performance-

sensitive or cost-sensitive way. Taking so many factors

into account simultaneously makes the deployment very

challenging. Furthermore, since many factors may change

continuously and even some factors may be available only

when the service runs for a while, the service already

deployed has to be deployed again (called re-deploy) to

cope with the ever-changing factors.

From the above discussion, we argue that the key of the

service deployment is how to represent the knowledge

derived from the service development, the information

collected from the operating environments and the sharing

rules of the VO in a uniform, understandable and easy-to-

use way. This paper presents an approach to the

deployment and re-deployment of grid services based on

software architecture models. In this approach, all services

in a grid consist in a software architecture, which

represents the services, their relationships and other

factors in a uniform, understandable and easy-to-use way.

To demonstrate this approach, we develop a prototype of

the visual tool for deploying services onto a set of popular

grid-enabled infrastructures, including J2EE (Java 2

Platform Enterprise Edition) application server [23],

BPEL (Business Process Execution Language) engine [2]

and Globus [9], with the help of software architectures.

Finally, a detailed case study of deploying services with

the consideration of reliability is discussed to illustrate the

complex and difficulty of the service deployment and the

applicability of the tool.

The rest of the paper is organized as follows: section 2

explains the idea of introducing software architecture into

service deployment; section 3 presents the framework of

architecture based service deployment; section 4 illustrates

the visual supporting tool and section 5 introduces some

related work; the last section concludes this paper and

identifies the future work.

2. Approach Overview

Since its first literately identification and discussion [19],

software architecture becomes an important subfield of

software engineering, receiving increased attention from

both academic and industrial community. It describes the

gross structure of a software system with a collection of

components, connectors and constraints [21]. In general,

software architecture acts as a bridge between

requirements and implementation and provides a blueprint

for system construction and composition. It helps to

understand large systems, support reuse at both

component and architecture level, indicate the major

components to be developed and their relationships and

constraints, expose changeability of the system, verify and

validate the target system at a high level and so on [7].

Due to the success of software architecture in the

development, some researchers propose to maintain and

evolve software systems with the help of software

architecture [28]. Particularly, we propose a framework to

make software architecture an entity at runtime, called

Runtime Software Architecture (RSA) [12]. RSA can

immediately capture changes of the runtime system so as

to keep itself up-to-date, and ensure that changes made on

RSA will immediately lead to corresponding changes of

the runtime system. In other words, the runtime system

can be maintained and evolved online via RSA. This

framework has already been implemented in PKUAS, a

reflective J2EE application server [16].

Recall the challenges of grid service deployment, it is a

natural and feasible approach to introducing software

architectures into the deployment. As shown in Fig. 1,

both software architectures equipped with plentiful

knowledge produced in the development and software

architectures representing runtime information of

operating environments are applied into the deployment.

As a result, software architecture plays a centric role in the

whole software lifecycle. When a deployed service does

not work well, the functionalities or qualities of the

software architecture will be damaged or decreased. Such

 Fig. 1 Software architectures in the development, deployment and maintenance

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

case can be discovered and repaired with the help of

architecture based software maintenance. Then, once a

service is deployed, it will keep available until being un-

deployed.

The core idea of the architecture based deployment is

shown in Fig. 2. All services deployed in a VO form a

huge software architecture. The service to be deployed has

a small software architecture. The service deployment is to

ensure that the small software architecture merges into the

huge one. Obviously, the service to be deployed has

implicit interactions with existing services because, for

examples, it will share resources and even cause resource

competition with existing services and the sharing rules of

the VO may force the service to be or not to be deployed

in the give nodes. In terms of the philosophy of meeting

new customer requirements with existing IT capabilities,

the service to be deployed may implemented by reusing

some existing services. That means the service to be

deployed may have explicit interactions with existing

services. These implicit and explicit interactions have to

be considered thoroughly and carefully in the deployment.

Otherwise, the service to be deployed may not work well

and the functionalities and qualities of the existing

services may be damaged or decreased.

All activities in this approach are done with software

architectures, such as understanding the service to be

deployed, selecting the sharing rules, evaluating the

capabilities of service providers, monitoring the working

status of the services, and deploying, un-deploying or re-

deploying the services.

3. The Framework

There are some key issues in the architecture model based

service deployment approach, as shown in Fig. 3, such as

the representation, including a formal description

language and a set of visual notations, of SA in the

deployment, the transformation from the models in the

development into architecture models, the mechanisms for

deploying, un-deploying, re-deploying and monitoring the

Fig. 2 Software Architecture Model based Service Deployment in a Virtual Organization

Fig. 3. Technical Framework for Software Architecture Model based Service Deployment

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

services, the methods for defining and managing sharing

rules and evaluating the capabilities of service providers,

and so on.

3.1 Architecture Centric Software Engineering

As mentioned previously, the introduction of software

architecture into the deployment results in an architecture

centric software engineering model. Here, we will give

more details about the process with the illustration of

ABC (Architecture Based Component Composition). ABC

is a software reuse methodology that supports to build a

software system with pre-fabricated components under the

guide of software architecture [17], as shown in Fig. 4.

Fig. 4 . ABC process model.

In the requirement analysis, there is no actual software

architecture but only the requirement specifications of the

system to be developed, which are structured in the way

similar to software architecture. The requirements

specification consists of a set of component specifications,

connector specifications and constraint specifications and

will be used as the basis for software architecting. In the

architecture design, requirements specifications are

refined and some overall design decisions are made. After

architecture design, the components, connectors and

constraints in the reusable assets repository will be

selected, qualified and adapted to implement the target

system. However, there are still some elements unable to

be implemented by reusable assets. These elements have

to be implemented by hand in object-oriented languages or

other ones.

Component-based systems are usually implemented and

executed with the help of some common middleware, such

as J2EE/EJB [24][23]. Before the implementation of the

system being executed, it must be deployed into the

middleware platform. In the deployment phase, software

architecture should be complemented with some

information so that middleware can install and execute the

system correctly. Typically, the information includes

declaration of required resources, security realm and roles,

component names for runtime binding, and so on.

In some sense, the development of a system in ABC can

be considered as a series of automated refinement and

transformation of architecture models. Software

architecture in maintenance and evolution has the most

accurate and complete details of the final system. Then, it

helps the deployer to get more information that cannot be

obtained before runtime.

3.2 Architecture Description Language and Its

Transformation for Deployment

The deployment view consists of the SA of the application

and server capabilities. Developer has to input the needed

information so that application can be installed and

executed correctly. In fact, most of the information can be

obtained from the architecture models in the design and

composition phases and some can be automatically

generated.

Architecture Description Language (ADL) is proposed

to provide formal notations for development and analysis

of software architectures [21]. ADL is the key to obtain

the design and composition information. As shown in Tab.

1, the architecture model description using ABC/ADL [17]

helps to generate almost all information needed in the

J2EE deployment descriptor [24].

Tab. 1 The mappings between ABC/ADL elements and

J2EE deployment descriptor elements

ABC/ADL Elements J2EE Deployment Descriptor

Elements

Name of

ComponentDef

<ejb-name> and <jndi-name> in

<module>

Name of the provide

player of

ComponentDef

<home> and <remote> or

<local-home> and <local> in

<session> or <entity>

Name of the request

player of

ComponentDef

<home> and <remote> in <ejb-

ref>; <local-home> and <local>

in <ejb-local-ref>

Attributes of

ComponentDef

<env-entry>, <resource-ref>,

<cmp-field> and <primkey-

field>

Properties of

ComponentDef and

AspectDef

<ejb-class>, <session-type>,

<persistence-type>, <prim-key-

class>, <transaction-type>,

<reentrant>, <security-role-ref>,

<security-role>, <method-

permission>

Furthermore, we employ ADL as the formal tool to

describe software architectures in the deployment so as to

perform some automated consistency and completeness

checking. In order to describe the characteristics of service

operating environments, we extend ABC/ADL to model

communication functions as complex connectors and other

common services as aspects.

For example, BPEL supports complex interactions

among multiple services in sequential or parallel orders.

Such complex interactions are scattered into a set of ADL

fragments describing simple interactions between two

components in traditional ADLs. Furthermore, the

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

enforcement of the complex interaction is supposed to be

implemented by the codes scattered into the interacting

components. But now, such complex interactions can be

implemented as BPEL processes which are isolated from

the interacting components and executed by an

independent BPEL engine. In ABC/ADL, such complex

interactions are modeled as processes of a complex

connector in the architecting phase. In the composition

phase, the BPEL processes can be automatically generated

after the involved components are implemented by

services. In the deployment, the BPEL processes can be

deployed independent of other components.

3.3 Software Architecture Based Maintenance and

Evolution

Compared to software architectures in the development,

software architectures introduced into the maintenance

and evolution are available at runtime and provide more

concrete views of the runtime system with much more

information. We call such software architecture RSA

(runtime software architecture) [12]. As shown in Fig. 5,

RSA can be supported by reflective middleware, which is

demonstrated on PKUAS, a reflective J2EE application

server [16]. PKUAS is a J2EE-compliant application

server which is the platform including J2SE, common

services and one or both of Web Container and EJB

Container. It provides all functionalities required by J2EE

v1.3 [24] and EJB v2.0 [23]. PKUAS also implements a

prototype of SOAP stack and BPEL engine.

The states and behaviors of middleware platform and

applications can be observed and adapted from the

perspectives of the platform RSA and application RSA

respectively. The platform RSA represents the

implementation of middleware platform as components

and connectors. Middleware applications are invisible or

represented as the attributes of some components. For

example, J2EE application server consists of containers

and services and the J2EE application consists of EJBs or

Servlets. In the platform RSA, the containers and services

are represented as components; their interactions or

dependencies are represented as connectors; and the EJBs

or Servlets are represented as the attributes of the

containers. On the other hand, the application RSA

represents middleware application as components and

connectors. Middleware platform are typically represented

as constraints or attributes of components and connectors.

For example, J2EE security and transaction services are

represented as the security and transaction constraints on

the EJBs or Servlets.

4. Supporting Tool

CADTool is an assembly and deployment tool, which is

based on software architecture, for J2EE applications

deployed on PKUAS. It facilitates developers to visually

pack as well as assemble components. More importantly,

based on the software architecture, CADTool extracts

most needed information in the deployment from the

architecture models in the development.

Fig. 6 shows the case of deploying JPS with CADTool.

The “deploy” panel shows the software architecture of

Java Pet Store (JPS). JPS is one of the sample applications

for J2EE Blueprints, demonstrating how to use the

capabilities of the J2EE platform to develop flexible,

scalable, cross-platform e-business applications. CADTool

can facilitate the deployment in the following

functionalities:

Visualization of architecture models in the

Fig. 5. Architecture-based Reflection in PKUAS

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

development: CADTool reuses the graphical

elements of ABCTool, which supports

architecture modeling with ABC/ADL in a visual

way [17]. If the deployable package contains the

architecture description in ABC/ADL, CADTool

can display the syntax and semantics information

produced in the development. If the deployable

package also contains the layout description of the

architecture, CADTool can display the

architecture in the same layout as that in the

development, which helps to understand the

intention of the designers. If the deployable

package does not contain the two descriptions,

CADTool can automatically construct the

architecture from the individual deployable

components. However, the last case is not desired

because the architecture lacks enough information

derived from the development.

Visualization of servers and their capabilities:

Based on reflective mechanisms of PKUAS,

CADTool can automatically collect and display

the servers’ information, such as CPU utilization,

memory utilization, throughout, etc. These

information is useful to determine which

components should be deployed into which

servers. They also help to investigate whether the

deployment works well. For example, the

CatalogEJB consumes much CPU time. If the

component is deployed into the Server1, the CPU

utilization of the Server1 may exceed 90% and the

Server1 becomes unstable and easy to crash. Then,

it’d better un-deploy the CatalogEJB in the

Server1 and re-deploy it into the cluster.

Drag-and-drop deployment of components: With

the above two visual elements, a component can

be easily deployed into a server just through

dragging the component and dropping it on the

target server or vice versa. In traditional

deployment tools, the deployer has to connect to a

given server, load the components to be deployed

into the server, and repeat the work again for

another server. In Fig. 6, the VO has four servers,

two of them are single servers and the other two

form a cluster. The ShoppingClientFacadeEJB,

AsyncSenderJAR, UniqueidGeneratorEB and

CustomerEJB are deployed into the Server1.

Fig. 6. Deploying JPS with CADTool

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

Automatic calculation of deployment factors:

There are many successful case studies on the

quantitative and qualitative evaluations of the

given architecture models. However, some factors

may be wrongly predicted in the design phase and

should be re-evaluated in the deployment.

Specially, some factors may be only available

after the services running for a period, such as the

response time and throughput. That means the

deployment may not meet the requirements related

to these factors. Then the services have to be re-

deployed with the actual factors. Currently,

CADTool can automatically calculate the response

time, throughput and reliability of a given use case.

5. Related Work

In practice, the operating environment of Grid consists of

the traditional operating systems, like UNIX, Linux and

Windows, and a set of Grid-enabled middleware [6], such

as Web Services, J2EE (Java 2 Platform Enterprise

Edition), .NET, CORBA (Common Object Request

Broker Architecture), Globus and Service Domain. To the

best of our knowledge, almost all products of Gird-

enabled middleware provide private deployment solutions.

None of them helps the deployer to understand and

analyze the functionality and desired qualities of the

service to be deployed. None of them provide the runtime

states of all resources to evaluate the best resource

providers to install the services. Few of them provide the

topology of the resource providers in the VO and their

capability details. For examples, to deploy a service into

Globus, the most famous Grid-enabled middleware, the

deployer has to write a deployment descriptor and use

ANT, a popular script interpreter, to generate the

executable package and deploy the package into Globus

runtime [9].

The traditional deployment tool in J2EE supports to

deploy an application into any local or remote application

servers [24]. But when one application server is being

operated, no other servers can be operated in the same

deployment tool. Though many J2EE application server

providers have claimed that their products support Grid

computing, their deployment solutions cannot deal with

the above challenges efficiently. For instance, Oracle 10g

has claimed as the first middleware for Grid [11]. The

deployment tool of Oracle 10g application server eases the

work to deploy an application into multiple servers. But in

fact, it is primarily based on cluster technology. In a

cluster, only the client requests are un-predictable and

changeable, while in a Grid, few can be predicted and

everything is changeable.

Dearle et al. propose a framework for constraint-based

deployment and automatic management of distributed

applications [4]. In this framework, a purely declarative

and descriptive architectural description language, named

Deladas, is used to describe a deployment goal. To satisfy

the goal, an automatic deployment and management

engine (ADME) tries to generate a configuration, which

describes which components are deployed in which hosts.

After the initial deployment, the ADME will monitor the

deployed application to check whether the deployment

satisfies the original goal and re-deploy the application if

necessary. This approach has the similar philosophy to

our approach on the role of software architecture in the

deployment. However, this approach ignores the plentiful

knowledge derived from the development and the runtime

states of hosts. Without such knowledge, it is very

difficult to generate the proper configuration in a manual

or automated way.

Rakic et al. propose the DeSi environment to support

flexible and tailorable specification, manipulation,

visualization, and (re)estimation of deployment

architectures for large-scale, highly distributed systems

[20]. DeSi studies deeply on how to take the availability

into account in the deployment, including defining a

formal foundation and investigating six algorithms to

automatically generate the deployment plan. However, in

DeSi, the formal specification of the deployed application

has to be written by hand and some values in the

specification are difficult to retrieve without the support of

runtime environments. On the other hand, the formal

specification can be automatically generated in CADTool

with the plentiful knowledge derived from the

development and runtime states of hosts. In our opinion,

the work of DeSi can improve the reliability calculation of

CADTool, which is under development. Moreover, DeSi

only takes the availability into account while CADTool

tries to facilitate the tradeoff between multiple qualities.

6. Conclusion and Future Work

In this paper, an architecture model based approach to grid

service deployment is proposed. With the help of software

architectures, it’s easy to deploy services under the

guidance of their structures and achieve the desired

qualities and best resource utilization according to the

statistics of the runtime environment. Some key

techniques are discussed in the more technical way when

services are implemented by J2EE applications. We

demonstrate this approach in PKUAS, a reflective J2EE

application server. A graphical assembly and deployment

tool, called CADTool, is also built to assist the

deployment.

This paper just investigates the importance and

challenge of the service deployment. The deployment tool

only visualizes the factors to be considered in an

automated way. The most critical work, that is,

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

investigating the factors and determining the trade-offs, is

performed by human. In that sense, the major contribution

of this paper is to demonstrate the complexity of the

service deployment. Then, the future work will focus on

how to decrease the complexity through some automations,

such as more factors can be automatically calculated, the

trade-off among the factors can be automatically done,

and even the architecture of the deployed services can be

automatically re-constructed to achieve the best trade-offs.

Acknowledgement

This effort is sponsored by the National Key Basic

Research and Development Program (973) under Grant

No. 2002CB31200003; the National Natural Science

Foundation of China under Grant No. 60233010,

60125206; the National High-Tech Research and

Development Plan of China (863) under Grant No.

2001AA113060; the Major Project of Science and

Technology Research of Ministry Of Education P.R.C.

under Grant No. 0214; and the IBM-University Joint

Study Program.

References

[1] .NET Framework Home, http://msdn.microsoft.com/

netframework/.

[2] Andrews, T., F. Curbera, etc, Business Process

Execution Language, V1.1,May 2003

[3] Connor, J. Building e-business resiliency through

autonomic computing. October 2002.

[4] Dearle, A, Kirby, GNC, McCarthy, A. In: Proc.

International Conference on Autonomic Computing

(ICAC-04), New York, USA, Kephart, JO, Parashar,

M (eds), pp 300-301. IEEE Computer Society. 2004.

[5] Foster, I., C. Kesselman and S. Tuecke, The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International Journal of High

Performance Computing Applications, 2001, 15 (3),

pp. 200-222.

[6] Foster, I., C. Kesselman, J. M. Nick and S. Tuecke.

The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration.

June 2002.

[7] Garlan, D., Software Architecture: A Roadmap, The

Future of Software Engineering 2000, Proceedings of

22nd International Conference on Software

Engineering, ACM Press, 2000, 91-101.

[8] Homepage of Catalysis, http://www. catalysis.org/.

[9] Homepage of Globus, http://www.globus.org.

[10] Homepage of IBM Grid, http://www.ibm.com/grid.

[11] Homepage of Oracle 10g. http://www.oracle.com/

appserver.

[12] Huang, G., H. Mei, Q.X. Wang. Towards Software

Architecture at Runtime. ACM SIGSOFT Software

Engineering Notes, Vol. 28, No. 2, March 2003.

[13] IBM. Autonomic Computing: IBM’s Perspective on

the State of Information Technology,

http://www.ibm.com/ research/autonomic, 2001.

[14] Jacobson, I., J. Rumbaugh, and G. Booch. The

Unified Software Development Process. Object

Technology Series. Addison-Wesley, 1999.

[15] Kephart, J.O. and Chess, D.M. The Vision of

Autonomic Computing. IEEE Computer, January

2003, pp. 41-50.

[16] Mei, H. and G. Huang. PKUAS: An Architecture-

based Reflective Component Operating Platform,

invited paper, 10th IEEE International Workshop on

Future Trends of Distributed Computing Systems,

26-28 May 2004, Suzhou, China.

[17] Mei, H., J.C. Chang, F.Q. Yang. Software

Component Composition based on ADL and

Middleware, Science in China(F), 44(2), 136-151,

2001.

[18] OMG, The Common Object Request Broker:

Architecture and Specification, Version 3.0, June

2002.

[19] Perry D. and A. Wolf, Foundations for the Study of

Software Architecture, ACM SIGSOFT Software

Engineering Notes, 1992, 17(4): 40-52.

[20] Rakic, M.M., S. Malek, N. Beckman and N.

Medvidovic, A Tailorable Environment for

Assessing the Quality of Deployment Architectures

in Highly Distributed Settings, 2nd International

Working Conference on Component Deployment,

Edinburgh, UK, 2004.

[21] Shaw, M. and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice

Hall, 1996.

[22] Soley, R. and the OMG Staff Strategy Group, Model

Driven Architecture: OMG White Paper, Draft 3.2,

http://www.omg.org/mda, Nov 27th, 2000.

[23] SUN Microsystems, Enterprise JavaBeans

Specification, Version 2.0, Final Release, 2001.

[24] SUN Microsystems, Java 2 Platform Enterprise

Edition Management Specification, v1.0, 2002.

[25] SUN Microsystems, Java 2 Platform Enterprise

Edition Specification, Version 1.3, 2001.

[26] SUN Microsystems, Java Management Extensions

Instrumentation and Agent Specification, v1.1, 2002.

[27] UML Resource Page. http://www.omg.org/uml/.

[28] Van Deursen, A. 2002. Software Architecture

Recovery and Modeling: [WCRE 2001 discussion

forum report]. ACM SIGAPP Applied Computing

Review, 10(1): 4-7.

Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business (CEC-East’04)
0-7695-2206-8/04 $ 20.00 IEEE

