
SHReQ: A Framework for Coordinating
Application Level QoS

Dan Hirsch and Emilio Tuosto

Dipartimento di Informatica, Università di Pisa,
Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy

{dhirsch,etuosto}@di.unipi.it

Abstract. We present SHReQ, a formal framework for specifying systemsthat
handles abstract high-level QoS aspects which are becomingmore and more
important forservice oriented computing. SHReQ combinesSynchronised Hy-
peredge Replacement(SHR) with constraint-semirings. SHR is a (hyper)graph
rewriting mechanism for modelling mobility and reconfiguration of systems. The
novelty of the approach relies on the fact that constraint-semirings provide both
the mathematics for multi-criteria QoS and the synchronisation policies underly-
ing the SHR mechanism.

1 Introduction

Modern distributed inter-networking systems are very complex and constituted by a
varied flora of architectures and communicating infrastructures. Such systems are het-
erogeneous, geographically distributed and highly dynamic since the communication
topology can vary and the components can, at any moment, connect to or detach from
the system. These features are reflected also on applications, which can be thought of
as built by connecting (remote)services.

In a very broad sense,Service Oriented Computing(SOC) has been proposed as an
evolutionary paradigm to build wide area distributed systems and applications. Services
can be dynamically composed to provide new services, and their interactions are gov-
erned in accordance with programmable coordination policies. Web services and GRID
services may be regarded as SOC and they are receiving particular attention both from
academia and industry. Applications are intended as being services that search and bind
to other services. In this respect, they offer a standard layer for representing data and
for abstracting from the communication protocols of Internet. An ambitious goal is the
automatization of the search-bind cycle so that applications can dynamically chose the
“best” service available during the computation. Since theprogrammer does not com-
pletely control the services that her application invokes,it would be reasonable to allow
her to use declarative mechanisms for expressing the “minimal” requirements on the
execution environment.

Recently,awareness of Quality of Service (QoS)is emerging as a new exigency
in both design and implementation of SOC applications. For final users, the perceived
QoS of applications is not only a matter of low-level performance but also depends on
application dependent requirements. For instance, the price of a given service, or the

2 Dan Hirsch and Emilio Tuosto

payment mode, or else the availability of a resource (e.g., afile) in a given format are
typical examples of QoS aspects that one should be able to control and/or program. De-
ploying distributed applications that allow programming and controlling such features
is becoming more and more important and challenging. The ability of formally specify-
ing and programming QoS aspects may represent a significantadded-valueof the SOC
paradigm. Moreover, QoS information can be used to drive thedesign and development
of application program interfaces and languages for QoS-aware middleware as well as
to drive the search-bind cycle of SOC.

SOC can be naturally modelled by means of graph-based techniques, where edges
represent components and nodes model the communication infrastructure. Edges shar-
ing a node correspond to components that may interact. Systems are modelled as graphs
and computations correspond to graph-rewriting. Among other proposals,hypergraphs
andsynchronised hyperedge replacement(SHR, for short) have been proposed for mod-
elling distributed systems [3, 5] as a natural declarative framework. In [9, 13], SHR has
been extended with mobility for modelling both architectural and programming aspects
of mobile distributed applications. SHR with mobility follows a self-organising ap-
proach given by the combination of hyperedge rewriting systems for local component
specification and constraint solving for coordination. Various facets of SHR have been
studied with respect to issues related to distributed systems [9, 13, 10, 4, 6]. For each
edgeL of the system, the programmer declares its behaviour by specifying a set of pro-
ductions which imposes requirements to the attachment nodes of L in order to replace
L with a new hypergraph. Synchronising requirements (according to a given synchro-
nisation policy) is the coordination mechanism allowing the evolution of systems. All
SHR frameworks proposed so far do not consider quantitativeaspects related to com-
putations. In [4], SHR has been used as model for a middlewareexpressing quantitative
aspects of applications without affecting the original synchronisation mechanism.

The main contribution of this work is SHReQ, a SHR framework for handling ab-
stract high-level QoS aspects expressed asconstraint-semirings[1] (c-semirings, for
short). The distinguishing ingredients of SHReQ lay on embedding c-semirings in the
SHR synchronisation mechanism which guides dynamic coordination/reconfiguration
of systems. Namely, interactions among components (e.g., geographically distributed
services) are ruled by synchronising them on events that arec-semirings values. In [4],
c-semirings have been proposed as a mathematical abstraction for application-level QoS
since their algebraic properties can naturally describe QoS values and the usual opera-
tions on them. For instance, multi-criteria QoS can easily be dealt with cartesian product
of c-semirings, which are c-semirings as well. In [12] SHR with mobility has been gen-
eralised by parameterising the rewriting mechanism with respect to asynchronisation
algebra with mobility. Since it is possible to turn c-semirings into synchronisation alge-
bras, SHReQ builds on SHR where c-semirings yields the synchronisation mechanism
as well as the mathematical machinery for handling QoS values.

Structure of the paper:Section 2 specifies the running example of the paper. Sec-
tion 3 reports the formal definition of hypergraphs. Section4 introduces SHReQ pro-
ductions over weighted hypergraphs and formalises the running example accordingly.
Section 5 defines the rewriting mechanism of SHReQ. Section 6describes how the

SHReQ: A Framework for Coordinating Application Level QoS 3

rewriting mechanism applies to the running example. Section 7 concludes the paper
with comments on related work, final remarks and future work.

2 A Case Study: Remote Medical Care System

This section presents our running example based on the case study of a telemedicine
project carried out by Parco Scientifico e Tecnologico d’Abruzzo and University of
L’Aquila detailed in [11]. The Teleservices and Remote Medical Care System (TRMCS)
aims at enforcing a current trend in healthcare that is to transfer patients from hospital
care to home care as quickly as feasible. TRMCS is intended toprovide and guarantee
assistance to at-home or mobile users. These patients do notneed continuous assistance
but may need prioritized assistance when urgencies happen,in which case they call a
help center.

• •

S

bbEEEE xxxx

•

R1

22

R2

ll

• •

U1

22

U3

ll

U2

OO

Fig. 1.A system instance

For clarity, the operations of the different compo-
nents have been simplified. The system follows a hier-
archical style with one serverS, a variable number of
routers connected toS and a variable number of users
connected to the router (any user is connected to one
router only). Figure 1 shows a system instance with two
routers and three users (the graphical notation will be
clearified later). WhenRi detects an alarm from one of
the connected users, it forwards the alarm requests up-
ward toS. ServerS receives alarms fromRi and it dis-
patches the assistance to the requesting user.

3 Syntax of Graphs

Given a set of labelsL ranged over byL and a set of nodesN , ahyperedge L(x1, ...,xn)
connects nodesx1, . . . ,xn ∈ N , whereL hasrank n(writtenL : n). We say thatx1, ...,xn

are theattachment nodesof L(x1, ...,xn). Hypergraphsare built from ranked hyperedges
in L and nodes inN .

Definition 3.1 (Hypergraphs).A hypergraphis a term of the following grammar

G ::= nil
∣

∣ L(x)
∣

∣ G | G
∣

∣ ν y.G,

where L: |x| is a hyperedge (|x| is the length of vector x) and y∈ N .

Hereafter, we call hypergraphs (hyperedges) simply graphs(edges) and writeL(x) with
the implicit assumption thatL : |x|. Grammar in Definition 3.1 permits generating the
empty graph (denoted bynil), graphs with a single edge, graphs built by the parallel
composition of graphs and graphs where some nodes are hidden. As usual, inν y.G, the
occurrences ofy in G are bound andy is saidrestrictedin G. We use fn(G) to denote
the set of the nodes ofG not occurring in the scope of aν operator.

4 Dan Hirsch and Emilio Tuosto

Example 3.1.Figure 2(a) represents the hyperedgeL(a,b,c) where wires connecting
nodesa, b andc to L are called tentacles. The arrowed tentacle individuates the first
attachment node. Moving clockwise determines the other tentacles. Figure 2(b) depicts
graphG = ν z.(L(y,x,z) | M(x,z)), where filled and empty circles represent free and
restricted nodes, respectively.

•
b

L

zztttttt

JJJJJJ

•a • c

(a) A hyperedge

•
x

L

zztttttt

KK
KK

KK
K M

eeKKKKKK

•y ◦ z

(b) A hypergraph

Fig. 2. Hypergraphs

Structural congruence over graphs terms allows to avoid cumbersome parenthesis.

Definition 3.2 (Structural Congruence).Thestructural congruenceis the smallest bi-
nary relation≡ over graph terms that obeys the following axioms:

(G1 | G2) | G3 ≡ G1 | (G2 | G3) G1 | G2 ≡ G2 | G1 G | nil ≡ G

ν x.ν y.G≡ ν y.ν x.G y /∈ fn(G) =⇒ ν y.G≡ G∧ν x.G≡ ν y.G{y/x}

ν x.(G1 | G2) ≡ (ν x.G1) | G2, if x /∈ fn(G2)

The first row defines associativity, commutativity and identity (nil) for operation|. Ax-
ioms in the second row state thatν is a binder, i.e., the nodes of a graph can beα-
renamed, restricted in any order (hence, we shortenν x1.ν x2 . . .ν xn with ν x1, . . . ,xn)
and that restriction does not play any role on non-free nodesof a graph. The last axiom
tunes the interplay between hiding and the parallel composition operator.

4 Graphs and productions for SHReQ

This section introduces SHReQ, a calculus based on SHR wherec-semiring values
are embedded in the rewriting mechanism. SHReQ takes advantage of the ideas in [4,
12], indeed, it exploits hypergraphs and SHR with mobility for modelling systems (as
in [9, 13]) and c-semirings as synchronisation algebras. Hence, the rewriting mecha-
nism of SHReQ is parameterised with respect to a given c-semiring. Basically, values
of c-semirings are synchronisation actions so that synchronising corresponds to operate
on c-semiring values. Moreover, a hypergraph modelling a system is decorated with
c-semiring values on its nodes in order to record quantitative information on the com-
putation of the system. A formal connection can be traced between synchronisation

SHReQ: A Framework for Coordinating Application Level QoS 5

algebras in the sense of [12] and c-semirings, however, pagelimits compel us to prove
this connection in a future work.

4.1 Weighted graphs

In this context c-semirings express the requirements that acomponent imposes to its
neighbour components and the quantitative information on computations that the envi-
ronment must guarantee. They have two distinguished features that result very useful in
our context. First, the cartesian product of c-semirings isstill a c-semiring, hence we can
uniformly deal with different types of quantities. Second,the operations of c-semirings
provide a partial order on the values and a mechanism of choice. These features make
c-semirings suitable for reasoning on multi-criteria QoS issues [4].

Definition 4.1 (C-semiring [1]). An algebraic structure〈S,+, ·,0,1〉 is a constraint
semiringif S is a set (0,1∈ S), and+ and · are binary operations on S satisfying the
following properties:

– + is commutative, associative, idempotent,0 is its unit element and1 is its absorb-
ing element (i.e., a+1= 1, for any a∈ S);

– · is commutative, associative, distributes over+, 1 is its unit element, and0 is its
absorbing element (i.e., a·0 = 0, for any a∈ S).

C-semirings are equipped with two binary operations (an additive and a multiplicative
operation). The additive operation of a c-semiring inducesa partial order onSdefined
asa≤S b ⇐⇒ ∃c : a+c= b. The minimal element is thus0 and the maximal1.

The following examples give an intuition of some c-semiringstructures.

Example 4.1.An example of c-semiring ispriority c-semiring P= 〈N,max,min,0,∞〉
defined onN, the set of natural numbers with infinity. The additive operation of P is
max(which induces the obvious order) and the multiplicative operation ismin.

Example 4.2.Given a set of actionsA, the set ofco-actionsis A = {a | a∈ A} and we
let W = A∪A∪{1W,0W,⊥}. Thebroadcast c-semiring on Wis 〈W,+W, ·W,0W,1W〉
specified as:

∀a∈ Act.a ·a= a∧a ·a= a (1)

∀a,b∈ Act∪Act∪{⊥} : b 6∈ {a,a} =⇒ a ·b=⊥ (2)

the corresponding commutative rules plus the ones for0 and1. (3)

The operation+W is obtained by extending the c-semiring axioms for the additive op-
eration witha+W a = a, for all a∈W anda+b=⊥, ∀a,b∈ Act∪Act∪{⊥}.b 6= a.

Hereafter, we assume a fixed c-semiring〈S,+, ·,0,1〉.

Definition 4.2 (Weighted graphs).A weighted graphis a pairΓ ` G of a graph G and
a weighting functionΓ mapping a finite set of nodes to S such thatfn(G) ⊆ dom(Γ).

A weighted graph is a graph having values inS associated to its free nodes. We write
x1 : s1, . . . ,xn : sn ` G for the weighted graph whose weighting function mapsxi to si ,
for any i ∈ {1, . . . ,n}, with the implicit assumptions that nodesxi are all distinct and
fn(G) ⊆ {x1, . . . ,xn}. If x 6∈ dom(Γ), functionΓ,x : s is the updating ofΓ onx.

In the following, we sometimes use vectors and denote thei-th component of ax by

xi , moreover,{|x|}
def
=

S

i∈{1,...,|x|} {xi}.

6 Dan Hirsch and Emilio Tuosto

4.2 Productions for weighted graphs

The classical SHR approach is a declarative framework wherethe behaviour of an edge
is specified via a set ofproductionsdescribing the graph to be replaced in place of the
edge,provided thatsome requirements are satisfied by the surrounding environment. A

production takes the formp : L(x)
Λ
−→ G whereL(x) is a hyperedge,G a hypergraph and

Λ specifies therequirements. Roughly,p states that, in a given graph, an edge labelled
L can be replaced byG provided that the environment satisfies requirementsΛ.

Productions of SHReQ have a slightly different definition and interpretation.

Definition 4.3 (Productions).LetR = S×N ∗ be the set ofrequirements. A produc-

tion is a 4-tupleχ .L(x)
Λ
−→ G where

– x is a tuple of pairwise distinguished nodes and L an edge label of arity |x|;
– χ : {|x|} → S is theapplicability function;
– Λ : {|x|} → R is thecommunication functionassigning requirements to nodes such

that for i∈ {1, . . . , |x|}, Λ(xi) = (s,y) and s∈ Sync=⇒ y= 〈〉. Thecommunicated
nodes ofΛ, denoted byn(Λ), are those nodes that appear in a requirement in the
range ofΛ. The set ofnew nodes ofΛ is new(Λ) = n(Λ)\dom(Λ).

– G is a graph such thatfn(G) ⊆ {|x|}∪n(Λ).

A SHReQ production, or simply production,χ.L(x)
Λ
−→Gstates that, in order to replace

L with G in a graphH, the graphH must satisfy the conditions expressed by the applica-
bility function χ on the attachment nodes ofL. Onceχ is satisfied inH, L “contributes”
to the rewriting by offeringΛ in the synchronisation with the other edges connected to
its attachment nodes. As will be more clear later,χ expressed theminimalrequirement
that the execution environment must satisfy in order to apply the production.

We remark that, inχ . L(x)
Λ
−→ G, c-semiring values play different roles inχ and

Λ: in the former, they are interpreted as the minimal requirements that the environment
must satisfy for applying the production; inΛ they are the “contribute” thatL yields to
the synchronisation with the surrounding edges.

4.3 C-semirings and productions for TRMCS

The TRMCS case study can be modelled by defining productions on the c-semiring
given by the cartesian product ofP andB, i.e., the priority and broadcast c-semirings
(Example 4.1 and 4.2). The former represents priorities among users where 1 corre-
sponds to the highest priority and, for simplicity, all users have different priorities (i.e.,
n 6= m =⇒ Un 6= Um, this simply means that users are distinguished by their priority).
The multiplication ofP (i.e. min) chooses the user with the highest priority. The c-
semiringB defined onAct= {rem,amb} models the communication policy of TRMCS,
namely broadcast synchronisation. In our example, we have the actionsrem andamb
(and the corresponding coactions) for alarms requesting remote or ambulance assis-
tance, respectively.

Finally, the cartesian product ofB andP yields the c-semiring, sayBP, of weak
broadcast together with selection of the highest priority.When clear from the context,
1 (resp.0) denotes1BP (resp.0BP), also1 = (1W,∞) and0 = (0W,0).

SHReQ: A Framework for Coordinating Application Level QoS 7

The productions for TRMCS rely onBP and are those collected in Figure 3. For
each production, the textual and the graphical representation are given; in the latter case,
drawings are simplified by not representing the applicability functions. Actually, most
of them are production schemas corresponding to a set of similar productions. For ex-
ample,Sending alarmis a production schema wherea ranges over actions{amb, rem}
andn ranges over the priorities of users or elseRestarting must be instantiated for all
prioritiesm andn such that 0< n < m, hence it representsm−1 productions for user
Um. Moreover, we consider the followingidle productions for users and routers:

Sending alarm Receiving ambulance assistance
• (a,n)〈〉x •x

Un

OO

−→ Uwa
n

OO • (amb,n)〈z〉x •x

Uwa
n

OO

−→ Uua
n

��
•z

x:0.Un(x)
(x,(a,n),〈〉)
−−−−−→Uwa

n (x) x:(amb,n).Uwa
n (x)

(x,(amb,n),〈z〉)
−−−−−−−→Uua

n (z)

Restarting (0 < n < m) Receiving remote assistance
• 1〈〉x •x

Uwa
m

OO

−→ Um

OO • (rem,n)〈z〉x •x

Uwa
n

OO

−→ Uur
n

OO

•z

x:(0W,n).Uwa
m (x)

(x,1,〈〉)
−−−→Um(x) x:(rem,n).Uwa

n (x)
(x,(rem,n),〈z〉)
−−−−−−−→Uur

n (x,z)

Checking alarm Forwarding alarm
• (a,∞),〈z〉x •x

R

OO

−→ Rra

OO

• (a,∞)〈〉y •y

• (a,∞)〈z〉x •x

Rra

OO

−→ R

OO

• (a,∞)〈z〉y •y

x,y:0.R(x,y)

(x,(a,∞),〈z〉)

(y,(a,∞),〈〉)
−−−−−→ Rra(x,y) x:0,y:(a,0).Rra(x,y)

(x,(a,∞),〈z〉)

(y,(a,∞),〈z〉)
−−−−−−→ R(x,y)

Sending ambulance assistance Sending remote assistance

•
(amb,∞)〈〉

x •
(rem,∞)〈〉
y •x •y

S

__>>> ���
−→ S

__>>> ���

• (rem,∞)〈x〉w •w

•
(amb,∞)〈〉

x •
(rem,∞)〈〉
y •x •y

S

__>>> ���
−→ S

__>>> ���

• (amb,∞)〈y〉w •w

x,y,w:0.S(x,y,w)

(x,(amb,∞),〈〉)

(y,(rem,∞),〈〉)

(w,(rem,∞),〈x〉)
−−−−−−−−→ S(x,y,w) x,y,w:0.S(x,y,w)

(x,(amb,∞),〈〉)

(y,(rem,∞),〈〉)

(w,(amb,∞),〈y〉)
−−−−−−−−→ S(x,y,w)

wherea∈ {amb, rem}

Fig. 3. TRMCS Productions

8 Dan Hirsch and Emilio Tuosto

x : 0.Un(x)
(x,1,〈〉)
−−−→Un(x) x : 0,y : 0.R(x,y)

(x,1,〈〉),(y,1,〈〉)
−−−−−−−→ R(x,y)

expressing that both users and routers can remain idle during a transition without in-
fluencing the synchronisation of the other components. Hereafter, instead of writing
x : s,y : s as done in the idle production forR, we writex,y : swhenever possible.

Intuitively, productions in Figure 3 model a scenario whererouter R checks for
alarms and selects the userUn with highest priority among those that have sent an alarm
(ambulance or remote request are separately attended). Then, onceUn has been chosen,
R communicates toS the alarm and the ”address” ofUn where the requested assistance
must be sent. Detailed comments on the productions follow.

Sending alarm: Un sends an alarm (for ambulance or remote assistance) together with
its priority to the router attached to nodex and changes to statewaiting for assis-
tance(wa).

Receiving ambulance assistance:if Un is the highest prioritywauser thenUn discon-
nects fromx and connects toS on nodez. Notice that the applicability function
requires(amb,n) on attachment nodex. Finally, Un changes tounder ambulance
assistance(ua) state.

Restarting: all the otherwausers without the highest priority, return to the initial state.
Therestarting schema applies when(0,n) is the weight of the attachment node of
Um (for 0 < n < m) so that userUm silently returns to the initial state.

Receiving remote assistance:Un moves from statewa to under remote assistance(ur)
by synchronising again withR on x (analogously toreceiving ambulance assis-
tance). Remote assistance is modelled by makingUn andSsharingz, i.e. the node
whereSconnects to provide assistance toUn.

Checking alarm: this production schema states that a routerR checks for alarms from
its users and changes to stateresponding to alarm(ra). Indeed,R synchronises
with the users connected to nodey with the action(a,∞) (recall that∞ is the1
of P). This synchronisation yields a value(a,n) recording the type of alarm to be
attended (remor amb) and the highest priority user sending the alarm.

Forwarding alarm: this production schema gets nodez from userUn that must be
attended and forwards it toS(from nodey to nodex). ThenSwill share nodezwith
the Un. Requirements on nodes indicate the type of alarm to attend and ignores
priorities given that onlyUn can provide nodez (the others return to the initial
state). Indeed, notice that∞ is the neutral element for the product ofP.

Sending remote assistance:S checks on nodew for remote alarms forwarded by a
routerR and connects the corresponding user to nodey. This is achieved by fusing
nodesy andz (provided byR usingforwarding alarm). According to c-semiring
B, serverS attends one router at a time (only one router can synchronisewith S).
Actions on nodesx andy are used to synchronise withuausers.

Sending ambulance assistance:this is similar to the previous production but in this
case the user is connected to nodex for ambulance assistance.

Due to space limitations we do not include productions for a user after the assistance is
finished, but they can be specified as done above.

SHReQ: A Framework for Coordinating Application Level QoS 9

5 Synchronised Rewriting for SHReQ

SHReQ rewriting mechanism relies on c-semirings where addition structure is defined.
More precisely, we require that

– there are two setsSyncandFin such thatSync⊆ Fin ⊆ Sand1∈ Sync;
– there is a setNoSync⊆ S\Fin such that∀s∈ S: ∀t ∈ NoSync: s· t ∈ NoSyncand

0∈ NoSync.

The intuition is thatFin contains those values ofS representing events of complete
synchronisations. This is a technical expedient from synchronisation algebras with mo-
bility [12] for dealing with restricted nodes. Basically, values inFin are those events
appearing on restricted nodes that represent a “finished” synchronisation, i.e., an inter-
nal synchronisation that does not require any further interaction with the environment.
A typical example might be synchronisation actions of process calculi. Among the ac-
tions in Fin we can select a subset of “pure” synchronisation actions, namely com-
plete synchronisations that do not expose nodes. SetNoSync, on the contrary, contains
the values that represent “impossible” synchronisations.As more clear later, values in
NoSyncavoid synchronisations.

Hereafter, we letΩ be a finite multiset1 overN × R and, before giving SHReQ
semantics, we establish some notational conventions:

– dom(Ω) = {x∈ N | ∃s∈ S,y∈ N ∗ : (x,s,y) ∈ Ω};
– n(Ω) =

[

(x,v,y)∈Ω
{|y|}, new(Ω) = n(Ω)\dom(Ω);

– Ω@x = [(x,s,u) | (x,s,u) ∈ Ω];
– WΩ : dom(Ω) → S, WΩ : x 7→ ∏

(x,s,y)∈Ω@x

s

– givenσ : N → N , Ωσ = [(σ(x),s,uσ) | (x,s,u) ∈ Ω].

SHReQ semantics exploits a most general unifier accounting for node fusions. We
write mgu(Ω) for denoting the function that yields an idempotent substitution defined
if, and only if, for all (x,s,u),(x,s′,v) ∈ Ω@x\ [(x,t,〈〉) | t ∈ Sync]

|u| = |v| (4)

∀i ∈ {1, . . . , |u|} : ui ∈ new(Ω)∨vi ∈ new(Ω) (5)

∀x∈ dom(Ω) : card(Ω@x) > 1 =⇒ WΩ(x) 6∈ NoSync (6)

Condition (4) requires that the lengths of communicated vectors are equal. Condition (5)
states that the unification cannot fuse two “old” nodes (the more general notion of [6,

1 We write multisets by listing the (occurrences of their) elements in square brackets, e.g.[a,a,b]
is the multiset with two occurrences ofa and one ofb where the order is not important, i.e.,
[a,a,b] = [a,b,a] = [b,a,a]. Multiset membership and difference are expressed by overloading
∈ and\, respectively; the context will always clarify if we are referring to sets or multisets.
Multiset union is denoted by]; sometimes we also writeA]B where eitherA or B are sets to
denote the multiset[a | a∈ A]] [b | b∈ B].

10 Dan Hirsch and Emilio Tuosto

13] can be easily re-casted in our framework). Finally, condition (6) avoids synchro-
nisations (and hence rewritings) when a value inNoSyncis the result of the compo-
sition. In the following, it is implicitly assumed that mgu(Ω) is defined when writing
ρ = mgu(Ω) and thatρ is obtained by computing the most general unifier of the equa-
tions{ui = vi | ∃s,t ∈ S: (x,s,u),(x,t,v) ∈ Ω∧1≤ i ≤ |u|}.

The semantics of SHReQ is a labelled transition system specified with inference
rules given on top ofquasi-productions.

Definition 5.1 (Quasi-productions).The setQ P of quasi-productions onP is defined
as the smallest set containingP such that

χ .L(x)
Ω
−→ G∈ Q P ∧ y∈ N \new(Ω) =⇒ χ′ .L(x{y/x})

Ω{y/x}
−−−→ G{y/x} ∈ Q P ,

where x∈ {|x|} andχ′ : {|x|} \ {x}∪{y}→ S defined as

χ′(z) =

{

χ(z), if z∈ {|x|} \ {x,y}
χ(x)+s, if z = y∧ (y∈ {|x|} =⇒ s= χ(y))∨ (y 6∈ {|x|} =⇒ s= 0).

Intuitively, quasi-productions are obtained by substituting nodes in productions and re-
laxing the condition that attachment nodes of the left-hand-side should be all different.
Wheny is substituted forx, χ′ assigns toy eitherχ(x)+χ(y) or χ(x) depending whether
y∈ {|x|}; nodesznot involved in the substitution maintain their constraintχ(z).

Proposition 5.1. If χ .L(x)
Ω
−→ G∈ Q P thendom(Ω) = {|x|}.

Definition 5.2 (Induced communication and weighting functions).Let mgu(Ω) be
defined, thenΩ : dom(Ω)→ R is thecommunication function induced byΩ defined as

Ω(x) =

{

(WΩ(x),yρ), if (x,s,y) ∈ Ω∧WΩ(x) 6∈ Sync
(WΩ(x),〈〉), if (x,s,y) ∈ Ω∧WΩ(x) ∈ Sync

Let Γ be a weighting function such thatdom(Ω) ⊆ dom(Γ), theweighting function

induced byΓ andΩ is
Z Γ

Ω
: dom(Γ)→S, defined as

Z Γ

Ω
: x 7→







1, x∈ new(Ω)
Γ(x), card(Ω@x) = 1
WΩ(x), otherwise

For eachx ∈ dom(Ω), Ω computes the requirements resulting from the synchronisa-
tion of requirements inΩ@x. More precisely, it multiplies (according to the c-semiring
product) the values and applies the substitution mgu(Ω) on the communicated nodes
(if the resulting values are not inSync). The weighting function computes the new
weights of graphs after the synchronisations induced byΩ. New nodes are assigned
with 1, nodesx upon which no synchronisation took place (i.e.,card(Ω@x) = 1) main-
tain the old weight while those where synchronisations happen (i.e.,card(Ω@x) > 1)
are weighted according to the induced communication function.

We can now define the LTS of weighted graphs.

Definition 5.3 (Graph transitions). A SHR with QoS (SHReQ) rewriting systemcon-
sists of a pair(Q P ,Γ ` G), whereQ P is a set of quasi-productions onP andΓ ` G is
the initial weighted graph. The set oftransitions of(Q P ,Γ ` G) is the smallest set ob-
tained by applying the inference rules in Table 1 where, in the rules (REN) and (COM),
Z = new(Ω)\new(Ω).

SHReQ: A Framework for Coordinating Application Level QoS 11

(REN)

χ.L(x)
Ω
−→ G∈ Q P ρ = mgu(Ω)

^

x∈dom(χ)

χ(x) ≤ Γ(x)

Γ ` L(x)
Ω
−→

Z Γ

Ω
` (ν Z)(Gρ)

(COM)

^

x∈dom(Γ1)∩dom(Γ2)

Γ1(x) = Γ2(x)

Γ1 ` G1
Λ1−→ Γ′

1 ` G′
1 Γ2 ` G2

Λ2−→ Γ′
2 ` G′

2 ρ = mgu(Λ1]Λ2)

Γ1∪Γ2 ` G1 | G2
Λ1]Λ2
−−−→

Z Γ1∪Γ2

Λ1]Λ2

` (ν Z)(G′
1 | G′

2)ρ

(RES)
Γ,x : s` G

Λ
−→ Γ′,x : t ` G′ x 6∈ n(Λ) sΛ(x) ∈ Fin

Γ ` (ν x)G
Λ/x
−→ Γ′ ` (ν x)G′

(OPEN)
Γ,x : s` G

Λ
−→ Γ′,x : t ` G′

sΛ(x) ∈ NoSync∪Fin x∈ n(Λ)

Γ ` (ν x)G
Λ/x
−→ Γ′,x : t ` G′

Table 1.Hypergraph rewriting rules.

Rule (REN) applies quasi-productions to weighted graphs provided that Ω admits a
mgu and that the weights on the graphs satisfy conditionsχ, namely,χ(x) ≤ Γ(x), for
all x∈ dom(χ). Notice that the communication function and weights in the conclusions
are obtained as in Definition 5.2. Similarly, rule (COM) yields the transition obtained by
synchronising the transitions of two subgraphs, provided that the (proofs of the) sub-
graphs assume the same weights on the common nodes. According to rule (RES) a node
x can be restricted whenx is not communicated and the requirements onx are inFin.
Namely, in order to derive a transition fromΓ ` (ν x)G, we must find a transition from a
graph wherex is free and the synchronisation onx has been completed. We remark that
(RES) is a rule schema that must be instantiated for anys,t ∈ S. Rule (OPEN) handles
the communication of restricted nodes. When a restricted nodex appears in n(Λ), it can
be opened provided that a transition can be found from the graph Γ,x : s` G (wherex
is a free node), such that either the requirement onx is a complete synchronisation or it
is in NoSync. Rules (REN) and (COM) restrictx again when it is fused with other nodes.
The latter condition allows an edge connected tox to checks whether other edges share
x. Indeed, such a transition is possible only if one can compute mgu(Λ), which admits
weights inNoSynconly if the cardinality ofΛ@x is 1, namely there is only one edge
connected tox. Even if this feature is not used in this paper, we remark thatthis is a
very expressive compared to other SHR approaches.

12 Dan Hirsch and Emilio Tuosto

6 SHReQ for TRMCS

This section gives a flavour of the SHReQ semantics (Table 1) by synchronising produc-
tions in Figure 3 over the graph of Figure 1. This simple example shows how SHReQ
yields a general framework for dealing with system evolution and reconfiguration af-
fected by multiple ”dimensions” of quality.

First, we define setsSyncBP, FinBP andNoSyncBP as follows:

– SyncBP = {1};
– FinBP = {1}∪{(a,n)|a∈W,n > 0};
– NoSyncBP = {0}∪{(a,0)|a∈W}∪{(0W,n)|n∈ N}.

The only value ofSyncBP is 1 so that all coactions continue to synchronise after the
application of rule (1). Obviously,FinBP contains all coactions given that they are the
result of any complete synchronisation (alln > 0 are valid priorities). SetNoSyncBP
contains all pairs with at least one0 in their components.

In Figure 4 we give a graphical representation of two derivations whereS responds
toU1 requesting for ambulance assistance. Instead of reportingthe productions for each

•x • y •x • y •x • y

S

(amb,∞)

RR

(rem,∞)

(amb,∞)〈x〉

S

(amb,∞)

SS

(rem,∞)

(amb,∞)〈x〉

S

QQ

•w •w •w

R1

(amb,∞)〈z〉

::

(amb,∞)

R2

ee

⇒ Rra
1

(amb,∞)〈z〉

88

(amb,∞)〈z〉

R2

ff

⇒ R1

;;

R2

cc

•r • s •r (amb,1) • s •r (amb,1) • s

U1

(amb,1)

::

U3

(amb,3)

dd

U2

OO

Uwa
1

(amb,1)〈z〉

88

Uwa
3

ff

U2

OO

Uua
1

HH

U3

OO

U2

OO

Fig. 4. A derivation for attending an ambulance alarm fromU1.

rewriting step, edge tentacles are decorated with requirements. For the sake of clarity,
we index routers to refer them in a simple way, we avoid empty lists of nodes, we rep-
resent requirements(1,〈〉) with undecorated tentacles and we report only the relevant
weights with respect to the considered synchronisation.

In the first derivation,U1 andU3 are requesting ambulance assistance toR1 by syn-
chronizing (on noder) Checking alarm production forR1 andSending alarm for U1

andU3. The result of the synchronisation gives(amb,1) as the new weight ofr andU1

as the highest priority user (second graph).

SHReQ: A Framework for Coordinating Application Level QoS 13

The other components do not affect this rewriting step,R2 andU2 apply idle pro-
ductions andSapplies one of its productions (which in this step produce noeffect).

The second derivation produces a reconfiguration whereU1 connects toS by syn-
chronising productionReceiving ambulance assistanceforU1, Forwarding alarm for
R1 andSending ambulance assistancefor S(the other components apply idle produc-
tions). This is shown in the third graph of Figure 4. Moreover, the synchronisation fuses
nodesz andx.

We remark that all the applicability functions of these productions are satisfied by
node weights in the graphs and that productions only ensure that routers choose the
highest priority user. For instance, assume that alsoU2 requests assistance. It could be
the case that the synchronisation amongR1, R2 andSchoosesR2 instead ofR1, namely
U2 (instead ofU1) will connect toS. Of course, this could be resolved with produc-
tions ruling synchronisation among routers and the server in the style of those among
routers and users, however, we prefer not to complicate the example with cumbersome
sophistication.

Figure 5 shows part of the proof for the first rewriting step inFigure 4 corresponding
to the synchronisation on noder amongR1, U1 andU3. The result of this sychronisa-
tion produces a broadcast synchronisation and the selection of the user with the highest
priority. The first three (REN) rules are the instantiation of the three quasi-productions
(we assume that the initial weight for the graph nodes is1). Then, the first (COM) rule
(named (COM1)) synchronisesU1 andR1, where clearlymin(1,∞) = 1. Note that in the
rule conclusion the weight forr contains the new value resulting from the synchroni-
sation (i.e.,(amb,1)). The final (COM) rule synchronises the result of (COM1) with U3,
wheremin(1,3) = 1. We point out that in this example, all mgu are empty and in the
(REN) rules the applicability conditions trivially hold by0≤ 1.

7 Final Remarks

We presented SHReQ, a formal framework for specifying systems that handle abstract
high-level QoS aspects which are becoming more and more important for SOC archi-
tectures. SHReQ combines SHR with c-semirings so that the former models mobility
and reconfiguration of systems on top of the latter which provide both the mathematics
for multi-criteria QoS and the underlying synchronisationpolicies.

As far as we know, SHReQ is the first to exploit an abstract definition of QoS values
as a coordination mechanism. Indeed, in general QoS are either related to low-level
aspects of systems or they are simply a notation for describing some non-functional
properties of systems.

The work of [8] might be probably considered the closest to our proposal (from a
graph transformation standpoint). This approach gives a conceptual model where struc-
tural aspects are described in a UML-like meta-model and graph transformation is used
for dynamic evolution of systems. Among others, the meta-model provides aQoS pack-
age that influences the graph transformation rules which are required to respect the
QoS package. Despite the similarities, our approach differs from [8] in the fact that in
SHReQ the QoS valuesare the rewriting mechanism, not only an additional attribute.

14 Dan Hirsch and Emilio Tuosto

r :0.U1(r)
(r,(amb,1),〈〉)
−−−−−−→Uwa

1 (r)
(REN1)

r :1`U1(r)
(r,(amb,1),〈〉)
−−−−−−→ r :1`Uwa

1 (r)

w, r :0.R1(w, r)

(w,(amb,∞),〈z〉)

(r,(amb,∞),〈〉)
−−−−−−−→ Rra

1 (w, r)
(REN2)

w, r :1` R1(w, r)

(w,(amb,∞),〈z〉)

(r,(amb,∞),〈〉)
−−−−−−−→ w, r,z:1` Rra

1 (w, r)

r :0.U3(r)
(r,(amb,3),〈〉)
−−−−−−→Uwa

3 (r)
(REN3)

r :1`U3(r)
(r,(amb,3),〈〉)
−−−−−−→ r :1`Uwa

3 (r)

(REN1) (REN2)
(COM1)

w, r :1`U1(r) | R1(w, r)

(w,(amb,∞),〈z〉)

(r,(amb,1),〈〉)
−−−−−−→ w,z:1, r :(amb,1) `Uwa

1 (r) | Rra
1 (w, r)

(COM1) (REN3)
(COM2)

w, r :1`U1(r) | R1(w, r) |U3(r)

(w,(amb,∞),〈z〉)

(r,(amb,1),〈〉)
−−−−−−→ w,z:1, r :(amb,1) `Uwa

1 (r) | Rra
1 (w, r) |Uwa

3 (r)

Fig. 5.Partial proof for derivation in Figure 4.

In the area of software architecture, specific QoS aspects (e.g., dependability, per-
formance) have been considered. For instance, in [2, 7] run-time monitoring of systems
has been considered at the architectural level for handlingdynamic self-adaptation that
depends on (on-line) performance analysis. These approaches, aside from considering
a single QoS aspect instead of application-level multi-criteria and parametric QoS, also
apply traditional solutions (e.g., QoS managers) that conceptually differ from SHReQ
which distributes the coordination of QoS issues over production specifications.

Modern SOCs usually specify different QoS parameters that depend on applications
and should dynamically be integrated and handled. In this context, SHReQ can be gen-
eralised to a framework where edges sharing nodes are not supposed to synchronise
over the same fixed c-semiring but (defining suitable composition operations among
different c-semirings) one could uniformly combine heterogeneous QoS dimensions.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization.JACM, 44(2):201–236, March 1997.

2. M. Castaldi, A. Di Marco, and P. Inverardi. Data driven reconfiguration for performance
improvements: a model-based approach. InProceedings of RAMSS, May 2004.

SHReQ: A Framework for Coordinating Application Level QoS 15

3. I. Castellani and U. Montanari. Graph Grammars for Distributed Systems. In H. Ehrig,
M. Nagl, and G. Rozenberg, editors,Proc. 2nd Int. Workshop on Graph-Grammars and Their
Application to Computer Science, volume 153 ofLNCS, pages 20–38. Springer-Verlag, 1983.

4. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E.Tuosto. A formal basis for
reasoning on programmable QoS. In N. Dershowitz, editor,International Symposium on
Verification – Theory and Practice – Honoring Zohar Manna’s 64th Birthday, volume 2772
of LNCS, pages 436 – 479. Springer, 2003.

5. P. Degano and U. Montanari. A model of distributed systemsbased on graph rewriting.
JACM, 34:411–449, 1987.

6. G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics ofambients via graph synchro-
nization with mobility. InICTCS, volume 2202 ofLNCS. Springer, 2001.

7. D. Garlan, B. Schmerl, and J. Chang. Using gauges for architecture-based monitoring and
adaptation. InWorking Conference on Complex and Dynamic Systems Architecture, 2001.

8. P. Guo and R. Heckel. Conceptual modeling of styles for mobile systems: A layered ap-
proach based on graph transformation. InProc.of IFIP TC8 Working Conference on Mobile
Information Systems(MOBIS)), pages 65–78. Springer Verlag, 2004.

9. D. Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis,
Departamento de Computación, UBA, 2003. http://www.di.unipi.it/˜dhirsch.

10. D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of Software Architecture Styles
with Name Mobility. In A. Porto and G.-C. Roman, editors,Coordination 2000, volume
1906 ofLNCS, pages 148–163. Springer Verlag, 2000.

11. P. Inverardi and H. Muccini. The Teleservices and RemoteMedical Care System (TRMCS).
In 10th IWSSD, San Diego, California, November 2000.

12. I. Lanese and U. Montanari. Synchronization algebras with mobility for graph transforma-
tions. InProc. Foundations of Global Ubiquitous Computing, ENTCS, 2004. To appear.

13. E. Tuosto.Non-Functional Aspects of Wide Area Network Programming. PhD thesis, Dipar-
timento di Informatica, Università di Pisa, May 2003. TD-8/03.

