
Model-Driven Semantic Web Service Composition

Roy Grønmo
SINTEF Information and Communication Technology

P.O.Box 124 Blindern, N-0314 Oslo, Norway

Roy.Gronmo@sintef.no

Michael C. Jaeger
TU Berlin, SEK FR6-10, Franklinstrasse 28/29,

D-10587 Berlin, Germany

mcj@cs.tu-berlin.de

Abstract

As the number of available Web services increases there
is a growing demand to realise complex business processes
by combining and reusing available Web services. The
reuse and combination of services results in a composition
of Web services that may also involve services provided in
the Internet. With semantically described Web services, an
automated matchmaking of capabilities can help identify
suitable services. To address the need for semantically de-
fined Web services, OWL-S and WSML have been proposed
as competing semantic Web service languages. We show
how the proposed semantic Web service languages can
be utilized within a model-driven methodology for build-
ing composite Web services. In addition we combine the
semantic-based discovery with the support for processing
QoS requirements to apply a ranking or a selection of the
candidates. The methodology describes a process which
guides the developer through four phases, starting with the
initial modelling, and ending with a new composite service
that can be deployed and published to be consumed by other
users.

1 Introduction

A growing number of Web services are implemented and

made available internally in an enterprise or externally for

other users to consume. These Web services can be reused

and composed in order to realise larger and more complex

business processes. We define Web services to be services

made available by using Internet protocols such as HTTP

and XML-based data formats for their description and in-

vocation. Web service registries allows for Web services to

be published and discovered. A Web service composition is

a description of how Web services can interoperate in order

to perform a more complex task.

The Web service proposals for description (WSDL), in-

vocation (SOAP) and composition (BPEL4WS) that are

most commonly used, lack proper semantic descriptions.

This makes it hard to search for appropriate services be-

cause a large number of syntactically described services

need to be manually investigated to see if they can perform

the desired task. In many cases it will also be necessary

with additional manual communication between the service

requester and the service provider to determine if the pro-

vided service can be used by the requester.

Semantically described Web services make it possible

to improve the precision of the search for existing ser-

vices and to automate parts of the service composition pro-

cess. Two recent proposals have gained a lot of atten-

tion: the american-based OWL-S [4] and the european-

based Web Services Modelling Language (WSML1) [26].

These emerging specifications overlap in some parts and are

complementary in other parts.

The leading organization for object-oriented program-

ming, the Object Management Group (OMG), has defined

the Unified Modelling Language (UML), a standard graph-

ical language for expressing software models. OMG also

promotes a Model-Driven Architecture (MDA) approach

for analysis, design and implementation of software sys-

tems. In a model-driven development process, models are

used to describe business concerns, user requirements, in-

formation structures, components and component interac-

tions. These models govern the system development be-

cause they can be transformed into executable code.

The work described in this paper adopts the MDA strat-

egy to develop compositions of Web services. We propose

a methodology that can be used when modelling semantic

Web service compositions. An important question to be ad-

dressed in this paper is: How can the new semantic Web
service proposals be utilized within a model-driven Web ser-
vice composition methodology? We have identified the fol-

lowing requirements for such a methodology. It shall:

• enable the developer to work with higher-level

graphical models instead of lower-level and more

verbose lexical counterparts (Models as the primary
artefact).

• aim to automate large parts of the process by identify-

ing model-driven transformations and automatic steps

1Note that WSML is often referred to as WSMO as it is defined by the

WSMO working group and the WSML has only recently been published.

1

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

that can be implemented by tools (Automation).

• utilize the possibilities given by the semantic Web

service languages to support a more powerful match-

making of requirements and capabilities (Semantic
support).

• utilize Quality-of-Service (QoS) described Web

services to process additional criteria for ranking or

selection of services. (QoS support).

The paper is structured as follows: Section 2 introduces

the methodology with its basic principles and how it re-

lates to the Reference Model for Open Distributed Process-

ing (RM-ODP) and the Web services architecture by the

W3C; Sections 3 and 4 elaborate the four phases of the

methodology; Section 5 describes the automation and it-

erative aspects of the methodology. Section 6 discusses

if our methodology satisfies the above-mentioned require-

ments; Section 7 covers related work; and finally Section 8

concludes the paper.

2 A Methodology for Discovering and Select-
ing Services

A fundamental principle of specifying a composite ser-

vice is to decomposition the main task into a set of iden-

tified tasks of less complexity. The composition developer

must discover appropriate Web services that may perform

the identified tasks. Our methodology considers how se-

mantic and QoS descriptions of both the requested and pro-

vided services may be used for identifying the suitable can-

didates for each of the identified tasks. Before we describe

the process of discovery and selection in our methodology,

we provide a brief discussion of its basic phases. We con-

sider the Web Service Architecture of the W3C [25] as well

as the trading specification as a part of the RM-ODP by the

ISO [10] for establishing a defined set of activities that form

a trading process:

1. A service provider creates a description about his

advertised service. Then he submits the service to a

registry or discovery service.

2. A service requester queries the discovery service for

a service by submitting a requirement description.

The discovery service compares the requirements

with the available services and returns the locations

of the matched services. For this phase we focus

only on determining services that comply functional

requirements.

3. In the next phase, the requester selects services from

a set of candidates upon selection criteria. In our

methodology, we regard the QoS of each candidate

as selection criteria. However, other non-functional

requirements, such as organisational limitations

between service provider or requester could also

serve as criteria. The QoS requirements can be

used to rank or exclude services. For example,

a constraint could define that services are chosen

based on their execution time. The final result is

an ordered subset of the discovered services from

phase two. In the successful case, the subset contains

at least one appropriate service for each identified task.

4. The requester processes the set of matching service

candidates that also comply with his selection criteria.

In our case, the requester can now setup his service

composition. Then, the service requester turns into

a service provider who advertises and provides the

composed service.

In our methodology, we have adopted this basic principle

of Web service discovery and selection. This approach en-

hances the already available discovery methods in the Web

services domain.

2.1 Service Registries

To facilitate the discovery, the main proposal in the Web

services domain provides a centralised repository specifica-

tion called the Universal Description Discovery and Inte-

gration (UDDI) [24]. Although the UDDI specification has

reached its third revision, service discovery is still not com-

monly used by the Web service developers. Currently, there

are no satisfactory products or development methodologies

that fully utilize discovery of services over the Internet for

Web service composition. Thus we see a motivation for

clarifying and improving the discovery of Web services.

Some promising proposals [16] [3] target the fully au-

tomatic discovery, configuration and execution of service

compositions. Although this is theoretically possible with

computer-based reasoning over the semantics of service el-

ements, we do not expect this to be the mainstream reality

in the first few years. Our methodology shall therefore still

be useful for services that have only limited semantic de-

scriptions or that provide only a syntactic description about

its interface. On the other hand, we propose a service com-

position methodology which is futuristic in the sense that

its full potential cannot be met at the time of writing. The

largest benefit will first be achieved when there are a very

large number of services available which are sufficiently de-

scribed with semantics and QoS. Furthermore, we propose

a registry infrastructure to better support our methodology.

We distinguish between three conceptual types of reg-

istries: an ontology registry, a QoS registry and a gen-

eral service registry. The ontology registry contains ontol-

ogy concepts and the QoS registry provides the informa-

tion about the available QoS characteristics. The main reg-

istry, the service registry, contains all the published services

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

with at least syntactic information and metadata such as the

UDDI proposal. In addition, the services may be seman-

tically annotated and also provide QoS information. Two

important invariants are maintained: the ontology concepts

associated with published services are synchronized so that

they are always available in the Ontology registry, and the

QoS characteristics associated with published services are

synchronized so that the QoS registry always contains up-

to-date information.

The idea of providing semantic and QoS information in a

Web service registry is already introduced by other authors.

Some proposals [15] extend the UDDI specification with

the support for semantic descriptions. For a UDDI repos-

itory, proposals exist[18] that process the QoS as an addi-

tional criteria for service discovery.

3 Phases 1 and 2: Modelling and Discovery

The service developer performs the modelling of the new

composite service as shown in Figure 1. The service devel-

oper will search the ontology registry to find appropriate on-

tology concepts to use as semantic types for the tasks. The

result of the search is expected to be a lexical document

which can be OWL, WSML etc. We recommend to build

transformation tools that automatically imports the lexical

representation into a graphical model. The service devel-

oper will search the QoS registry to identify QoS concepts

that can be used to specify the QoS requirements. Although,

there is no de-facto standard yet for representing QoS char-

acteristics, we recommend to build transformation tools that

automatically imports the QoS characteristics into a graph-

ical model. The representation of the QoS characteristics in

the UML can follow OMG’s UML profile for QoS [14]. For

the lexical representation of QoS, we propose to consider

existing proposals (e.g WSOL [22]). If a specific applica-

tion case requires further coverage, we must either extend

the current proposed languages or design a new language.

Figure 1 shows how UML 2.0 can be used to design the

abstract composition model. UML activity models are used

to capture the control and data flow of the composition, and

class models are used to model the ontology concepts and

the QoS characteristics. The abstract composition model is

abstract in the sense that no concrete Web services are cho-

sen. The composition is modelled with tasks, represented

by UML activities, for which suitable Web services that can

perform the tasks are identified later. In this simple exam-

ple, there are two tasks to be executed in a sequence. The

first task is to search for a book by providing an author and

a title. The identified book is then used to buy a book in

the second task. The second task also requires credit card

information as input and returns a receipt. UML 2.0 activity

models support modelling of the boundary of the compos-

ite task itself. This surrounding boundary has its own input

and output parameters which comprises the new operation

signature together with the name of the composite task.

One candidate for capturing the domain ontologies in

UML is by following the UML profile defined by Djuric

[5]. The ontology concepts are grouped by packages, where

a package represents a domain ontology. A tagged value not

shown in the figure provides a URI link to the domain on-

tology. Each ontology concept is an OntClass stereotyped

class. This UML profile can represent an OWL ontology

fully in UML, meaning that the ontology concepts can be

precisely defined with attributes and relationships. The on-

tology concepts are used for specifying the parameter types

by performing an annotation to the data objects with seman-

tically defined types. In cases where no suitable domain

concepts are found for a data object, the modeller has two

alternatives. The first alternative is to associate a data ob-

ject with a syntactic type such as the XML Schema built-in

types (string, integer etc.). In the example this is done for

the title parameter of the composite service and the Search
for book task. The other alternative is to define a new on-

tology concept which can be entirely new, or a subtype of

an already existing domain concept. If a concept is defined

which does not relate to an existing classification system

or taxonomy, the developer cannot expect to find published

services that match this concept. Still, a new subtype allows

for some reasoning that can be utilized in a matchmaking

process [12].

Each task in the example of Figure 1 is assigned a cate-

gory by a note with the stereotype Category. Such a note

has four predefined variables and identifies the classifica-

tion system and the chosen category within this system. In

our example, both tasks share the same category. QoS re-

quirements may be captured in a note stereotyped as QoS-
Requirements. In our example the QoS requirements note

is not attached to any specific task, meaning that the require-

ments apply to the aggregated values for the whole Web

service composition. The QoS requirement in our exam-

ples states that the total monthly subscription price of all

the used services should be at most 10 Euros. We have de-

scribed how to express QoS requirements in UML models

in more detail in our preceding paper [6]. The semantic

annotation and the QoS requirement of the abstract model

are used in the subsequent phases to search for candidate

services and finally select the concrete services that realize

each task in the abstract composition. The outcome of the

first phase is an abstract composition model that contains

all the needed information for performing service discovery

and selection.

The second phase handles discovery of suitable Web ser-

vices. The discovery process is based on matchmaking of

semantic descriptions. We assume that a Web service reg-

istry is available with the following information provided

for each Web service: a) a service interface description, and

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

<<QoS-Requirements>>

{context Price:

 monthlySubscription <= 10}

Imported OWL

«Ontology»

PrintedMaterial

+ Author

+ Book

«Ontology»

BankAndFinance

+ CreditCard

+ CreditCardType

+ Receipt

«Ontology»

Time

+ Date

«OntClass»

BankAndFinance::

CreditCard

- type: CreditCardType

- expireDate: Date

- cardHolder: string

- cardNumber: string

Search for and buy Book

author :Author

title :xsd:string

creditCard :CreditCard

receipt :Receipt

«Task»

Buy Book

receipt :Receipt

creditCard :CreditCard

book :Book

«Task»

Search for book book :Book

ti lte :xsd:string

author :Author

EndStart

<<Category>>

Taxonomy = NAICS, TaxonomyURI = www.naics.com

Value = Book Stores, Code = 451211

Imported QoS Characteristics

«QoSCharacteristic»

Price

- «QoSDimension» monthlySubscription: Real

- «QoSDimension» perCall: Real

«QoSCharacteristic»

EncryptionLev el

- «QoSDimension» level: enum{1,2,3,4}

{unit=Euro, direction=decreasing}

{unit=Euro, direction=decreasing}

{direction=increasing}

QoS Characteristics

Ontology Registry

QoS Characteristics

Registry

S
ea

rc
h

S
ea

rc
h

Design abstract

composition model

Export Transform

PrintedMaterial.owl

BankAndFinance.owl

Time.owl

Serv ice Dev eloper

E
x

p
o

rt

Transform

Figure 1. Abstract Composition Model with Tasks (phase one)

b) a semantic description that can be used for the matchmak-

ing process. The abstract composition model (Figure 1) pro-

duced in the first phase is automatically transformed into a

lexical document that can be parsed by a search and match-

making algorithm.

The generated documents represent semantic descrip-

tions of requested tasks for which we need to identify can-

didate services. We propose a matchmaking that deals

only with semantic matching of inputs, outputs and cate-

gories [12]. However, even if a matching algorithm iden-

tifies clear matches for all three aspects we cannot guar-

antee the perfect match. For this aspect, further reasoning

would be necessary that also take preconditions, postcon-

ditions and effects into account. Since this topic requires a

lot of research, tools and adoption of such techniques by the

user community, we do not expect that all services can be

discovered fully automaticly in the near future. The match-

making of inputs, outputs and categories will improve the

precision of the search, but it will not remove the need for

manual investigation of the discovered Web services to de-

termine if they are suitable or not.

We anticipate that the found candidates provide a seman-

tic description of their capabilities. The leading propos-

als for such semantic descriptions are OWL-S and WSML.

However, the low-level and verbose OWL-S and WSML

files are time-consuming and demanding to comprehend for

developers. To ease the manual investigation process, we

propose to reverse engineer OWL-S and WSML into high-

level UML models. Another benefit of importing the se-

mantic description into UML is that the imported services

can be used directly as UML elements when finalizing the

composition model. Based on investigation of the services

in the graphical model, the user selects the appropriate ser-

vices and ideally at least one chosen service is assigned to

each task. This list of candidate services per task is the out-

come of this phase.

4 Phases 3 and 4: Selection and Deployment

In this phase, we narrow down the set of Web ser-

vices and rank the services based on the QoS requirements.

Adopting the strategy in our preceding paper [6], the QoS

requirements contain two parts: the first part covers abso-

lute QoS constraints on the composition, the second part

covers optimisation criteria that we use to rank the services.

In preceding work, it is explained how to aggregate the QoS

based on individual services [11] and how to apply selection

algorithms that optimize the QoS of the compositions based

on QoS categories as selection criteria [6]. The QoS-based

sort and selection will return an assignment of a ranked list

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

«WebService»

New Composite Service

author :Author

title :xsd:string

receipt :Receipt

signInInfo :SignInData
creditCard :CreditCard

«DataTransformation»

TransformBook

End

Start

<<QoSOffered>>

{contect Price: monthlySubscription = 5}

«WebService»

ExpressCongoBuy

bookISBN :

ISBN

creditCardExpirationDate :

xsd:gYearMonth

creditCardNumber :

xsd:decimal

creditCardType :

CreditCardType

signInInfo :

SignInData

output1 :OrderShippedAcknowledgement output2 :FailureNotification

{WSDL = http..., ...,operation = ExpressCongoBuy}

«WebService»

Imaginary Book Lookup Service

author :Author
title :xsd:string

book :Book

«DataTransformation»

TransformCreditCard

«DataTransformation»

TransformOutput

<<QoSOffered>> {contect Price:

monthlySubscription = 1}

<<QoSOffered>> {contect Price:

monthlySubscription = 4}

<<Category>> Taxonomy = NAICS, TaxonomyURI = www.naics.com, Value = Book Stores, Code = 451211

{WSDL = http..., ...,

operation = BookSearch}

Imported from

OWL-S

and QoS

offered doc.

Transform
Interface

description

(WSDL)

Transform Semantic

description

Transform QoS

offered

Transform
Executable

specification

(BPEL4WS)

Service

registry

Internet

server

Deploy

Publish

Figure 2. Concrete Composition Model with Chosen Web Services (phase three and four)

of candidate services for each task.

We assume that at least one realizing service is found for

each task. Figure 2 shows a concrete composition model

with one service for the two abstract tasks in the exam-

ple taken over from Figure 1. We presume the existence

of tools that perform automated reverse engineering from

the semantic description and QoS offered documents into

the graphical model. With these transformations, we can

directly insert the imported Web services in place of their

corresponding tasks in the composition model. Our goal is

to fully automate this step. The example shows how we can

import and reuse the semantically described Web service

ExpressCongoBuy 2 into the composition model.

Each Web service is identified by a set of tagged val-

ues that uniquely identifies an operation inside a WSDL

file. This is sufficient to be able to invoke the service op-

eration as shown by Skogan et al. [19]. The expected or

promised QoS offerings of each concrete service can be ex-

pressed with a QoS-offered stereotyped note attached to

the activity. The category description of each service can

be attached to the activity with a note stereotyped Cate-
gory. The category description in our example is attached

to both the atomic services and the composition itself since

2The Congo example used can be found at the OWL-S home page:

http://www.daml.org/services/owl-s/1.1/examples.html.

the same definition applies to all three.

The data objects and their types can be represented in the

exact same manner as in the abstract model. We may ex-

pect that the outputs of one Web service does not perfectly

match the required input of the next service. In such cases

there is a need to introduce intermediate data transformation

steps between the services. This step requires adjustments

by the developer although there can be tools that assist the

process. The details of the three needed data transforma-

tions in the example are not shown in the figure. In our

example they only deal with copying the relevant parts of

the transformation input to the relevant parts of the trans-

formation output. The new composite service needs to be

handled as a Web service itself and thus we need to assign

explicit input/output parameters, category and QoS offer-

ings to this composite activity. Compared to the abstract

model, one input (signInInfo) was added to the composite

service since this information is required by the discovered

ExpressCongoBuy service. The outcome of phase three

is a finalized concrete composition model.

In the fourth and last phase, the concrete composition

model is used to generate different descriptions about the

composed service: a) a WSDL document describing the

syntactic interface and its technical bindings, b) a descrip-

tion about the offered and aggregated QoS, c) a semantic

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

description of the composed service, and d) an execution

specification to execute the composition by an execution en-

gine. The three generated items (a − c) are submitted to a

Web service registry. Then, third parties can discover and

use the composed service.

5 Additional Aspects of the Methodology

Our methodology identifies eleven model transformation

steps that can be automated (Table 1). For each transforma-

tion we specify to which phase it belongs, the source and

target in the transformation, and if there exist any proof-of-

concept transformations or tools described in the literature.

We have referenced only one proof-of-concept approach for

each needed transformation even though there exists several

proposals for a few of the transformations. The included

proof-of-concept reference is not evaluated to be better or

worse than the existing alternative proposals. We have men-

tioned UML in this context, however other graphical lan-

guages could be used as well. It is outside the scope of this

paper to recommend a graphical language that best supports

our methodology. There are five of the desired transforma-

tions for which we have not yet discovered any prototype

tools. The same conclusion holds if we look beyond UML

as the graphical language. The candidate lexical languages

are either de-facto industry standards or promising propos-

als. We consider WSDL and BPEL4WS as the only de-

facto industry standards, while the other lexical languages

in the table are emerging languages and proposals that have

the potential to be used within our methodology. The Uni-

fied Service Query Language (USQL [23]) can be used to

express semantically annotated tasks for which one can per-

form searches for matching services.

Like almost all design and creation processes in the en-

gineering and computer sciences, the design of the compo-

sition is an iterative and heuristic process that presumes to

go back and forth to the different tasks of our methodology.

Different scenarios which result in an iterative and heuristic

methodology, are presented in the subsequent paragraphs.

No Matched Services. The discovery process and

matching does not result in suitable service candidates. In

this case the developer has two alternatives: either to im-

plement the required service(s) himself, or to modify the

composition design in order to find services that were pre-

viously excluded. In terms of our methodology, this means

returning to the first phase to modify the composition.

Too Restrictive QoS. This may prevent the successful

selection of services. Either because the matched candi-

dates cannot satisfy the QoS requirements or because none

of them provide information about the desired QoS cate-

gory. In the first case, loosening up the QoS requirements is

necessary. In the second case, the developer might consider

to drop the previously defined constraint. In both cases, the

developer needs to return to the first phase to modify the

QoS requirements.

Too Many Candidates. As opposed to the previous two

scenarios, a too large selection of suitable services might be

found. In this case, the developer may define stricter QoS

requirements and thereby optimise the service composition.

Methodology as Inspiration. During the matchmak-

ing and reengineering process, the composition developer

might discover that his abstract composition does not reflect

an optimal design. Most likely, the developer will discover

this when assessing the set of suitable service candidates.

Then the process starts with the first phase again.

These issues show that the developer will continuously

need to optimise the composition in order to approach

the optimal setup by several points of possible iterations.

Another reason to iterate is due to the continous change

of available services. Some services become unavailable,

while others are new or have changed QoS offerings since

the last iteration.

6 Discussion

This section discusses if our methodology satisfies the

requirements given in the Introduction section. The four re-

quirements are discussed in the four subsequent paragraphs.

Models as the primary artefact. Our methodology sat-

isfies the Models as the primary artefact-requirement since

it enables the service developer to work only at the model

level. All the existing specifications and relevant documents

can be imported into models by reverse engineering tools.

The manually updated abstract models can be used to gen-

erate all the lexical specifications needed to search and se-

lect services. In addition there are tools that shall enable

the semi-automatically produced concrete models to auto-

matically generate specifications needed to deploy and to

publish information about the new service.

Automation. Our methodology has automated large

parts of the steps needed in the process of developing com-

posite services by identifying elleven model transforma-

tions. This implies that our methodology to a large extent

satisfies the automation requirement.

Semantic support. The methodology proposes to se-

mantically annotate (input/output types, category, precon-

dition, postcondition, effect etc.) the atomic and composite

Web services instead of lexical documents. This allows the

service developer to completely define the new semantically

annotated Web services graphically and then generate the

lexical documents according to the semantic Web service

languages. All the above-mentioned support are common

for both OWL-S and WSML. WSML consists of Goals and

Mediators in addition. The concept of Goals is supported in

the methodology since it is a candidate for the lexical doc-

ument being generated from the abstract model. Mediators

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Table 1. Overview of automated transformations
Phase Transformation Source Target Proof-of-concept
1 Import domain ontologies OWL, WSML Ontology UML OWL-to-UML [5]

1 Import QoS characteristics WS-QoS [20] UML -

2 Export semantically annotated tasks UML WSML Goals, USQL [23] -

2 Import semantic Web service OWL-S, WSML WebService UML OWL-S-to-UML [7]

3 Export QoS requirements UML WS-QoS -

3 Import QoS offered WS-QoS, WSOL [22] UML -

3 Import Web service interface WSDL UML WSDL-to-UML [8]

4 Export Web service interface UML WSDL UML-to-WSDL [8]

4 Export semantic Web service UML OWL-S, WSML WebService UML-to-OWL-S [21]

4 Export QoS offered UML WS-QoS, WSOL -

4 Export executable specification UML BPEL4WS UML-to-BPEL4WS [19]

are supported by the data transformations in our methodol-

ogy, while the other kinds of Mediators are not supported.

We conclude that our methodology satisfies the semantic
support requirement to a large extent.

QoS support. The methodology utilizes QoS require-

ments in order to do a QoS-based sort and selection in phase

3. The automated component performing this task should

also be capable of computing the aggregated QoS value for

the new composite service, which in phase 4 is used to gen-

erate the QoS offerings document for the new service. We

have chosen to perform the semantic discovery in phase 2

independently of the QoS selection in phase 3. As a result,

the QoS selection considers a selected and narrowed set of

service candidates and thus it will perform much quicker.

By adopting the OMG’s QoS profile we have a standard

for representing the relevant QoS information in UML. This

OMG profile could also be adjusted to be used as extensions

to other graphical languages. The QoS support requirement

is satisfied, but it is also the part of the methodology which

is furthest from being realized by proof-of-concept tools.

7 Related Work

We have illustrated how the UML can be used as a graph-

ical language in our methodology. Within model-driven ser-

vice composition there are a few other promising proposals

including Petri Net Models [9] and the Business Process

Modelling Notation (BPMN) [1]. It is outside the scope of

this paper to evaluate the suitability of the graphical lan-

guages for our methodology. However, for their applica-

tion these languages would have have needed extensions to

express the semantics and QoS. The OMG profile for mod-

elling QoS [14] is a good starting point for UML as we have

shown in our examples.

There are several proposals for a semantic Web service

language including OWL-S [4], WSML[26] and WSDL-S

[17]. Some of these have specialized graphical languages

and tools to support the development in the respective lan-

guages such as the OWL-S Editor [2] and the WSMO stu-

dio [13]. Since there are multiple candidates for semantic

Web service languages and these have not reached a final-

ized state, we recommend to use an independent graphical

language. This would allow the graphical language to be an

integration platform for Web services described using mul-

tiple semantic Web service languages.

The Web Service Offerings Language (WSOL) [22] and

WS-QoS [20] represents an XML language for expressing

QoS associated with Web services. They are both designed

to be complementary with WSDL and they can both express

QoS characteristics and offerings. WS-QoS can in addition

express QoS requirements. As a graphical counterpart, the

OMG profile for modelling QoS that can express all three

QoS aspects that we need in our methodology (characteris-

tics, requirements and offerings) [14]. We have pointed out

the need to use a graphical language with defined transfor-

mations to the lexical QoS languages.

Several proposals exist to perform transformations be-

tween graphical languages and the semantic Web service

languages including OWL-to-UML [5], UML-to-OWL-

S [21] and OWL-S-to-UML [7]. There are however few

transformations defined between other graphical languages

and the semantic Web service languages.

8 Conclusions

This paper presents a model-driven methodology for de-

signing composite Web services. The methodology consid-

ers a syntactic and semantic description about the interfaces

of service candidates. It also processes QoS requirements

from the developer and offerings from the service providers.

In addition, we have identified which parts we can auto-

mate and which require an interactive handling by the de-

veloper. Many of the proposed steps for automation are

model-driven transformations that transform between mod-

els and lexical descriptions about the Web services, both

forward and reverse engineering. As the resulting bene-

fit, the methodology provides a better documentation of the

composition in the form of graphical models. The ability

to generate semantically described and executable compo-

sitions from a graphical model represents a valuable gain to

the service developers, who otherwise have to write a lot of

low-level XML code.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Our approach is independent of the lexical languages for

representing semantics and QoS of services. We assume

that service developers will anticipate the flexibility to cover

different semantic description languages and QoS represen-

tations. The methodology covers all the steps from the core

idea of building a composite service until its final deploy-

ment and publication. Furthermore, we have identified how

we can use models as the primary artefact by defining the

characteristics of the required models and corresponding

model transformations.

The methodology covers a lot of aspects which we can

not investigate fully in a single paper. There are several is-

sues that need more work to prove that our methodology is

valid. There is a need to test the emerging lexical propos-

als for semantically annotated tasks (WSML Goals, USQL,

etc.) to see whether they provide the anticipated level of

expressive power to perform an efficient search and match-

making of service offerings. Finally, we need to investi-

gate further the suitable graphical service composition lan-

guages and accompanying tool-supported transformations

to and from the lexical Web service documents.

Acknowledgments. The work of Roy Grønmo is par-

tially funded by the European IST-FP6-004559 project

SODIUM (Service Oriented Development In a Unified

framework).

References

[1] BPMI.org. Business Process Modeling Notation (BPMN)
Version 1.0, May 2004.

[2] Daniel Elenius et al. The OWL-S Editor - A Development
Tool for Semantic Web Services. In Proceedings of the 2nd
European Semantic Web Conference (ESWC’05), Heraklion,
Crete, Greece, May 2005.

[3] Daniela Berardi et al. Automatic Composition of Web Ser-
vices in Colombo. In Proceedings of the 13th Italian Sym-
posium on Advanced Database Systems (SEBD’05), Brixen-
Bressanone, Alto-Adige, June 2005.

[4] David L. Martin et al. Bringing Semantics to Web Services:
The OWL-S Approach. In Revised Selected Papers of the Intl
Workshop Semantic Web Services and Web Process Compo-
sition (SWSWPC’04), San Diego, California, USA.

[5] D. Djuric. MDA-based Ontology Infrastructure. Computer
Science Information Systems (ComSIS), 1(1), February 2004.

[6] R. Grønmo and M. C. Jaeger. Model-Driven Methodology
for Building QoS-Optimised Web Service Compositions. In
The 5th IFIP Intl Conference on Distributed Applications
and Interoperable Systems (DAIS 2005), Athens, Greece,
June 2005.

[7] R. Grønmo, M. C. Jaeger, and H. Hoff. Transformations
between UML and OWL-S. In European Conference on
Model Driven Architecture – Foundations and Applications
(ECMDA’05), Nuremberg, Germany, November 2005. (ac-
cepted for publication).

[8] R. Grønmo, D. Skogan, I. Solheim, and J. Oldevik. Model-
Driven Web Service Development. Intl Journal of Web Ser-
vices Research (JWSR), 1(4), Oct-Dec 2004.

[9] R. Hamadi and B. Benatallah. A Petri Net-based Model
for Web Service Composition. In CRPITS’17: Proceed-
ings of the Fourteenth Australasian database conference on
Database technologies 2003, Adelaide, Australia, 2003.

[10] ISO/IEC. ITU.TS Recommendation X.950 — ISO/IEC
13235-1: Trading Function: Specification, August 1997.

[11] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl. QoS Ag-
gregation for Service Composition using Workflow Patterns.
In Proceedings of the 8th Intl Enterprise Distributed Object
Computing Conference (EDOC’04), Monterey, California,
September 2004.

[12] M. C. Jaeger, G. Rojec-Goldmann, G. Mühl, C. Liebetruth,
and K. Geihs. Ranked Matching for Service Descriptions
using OWL-S. In Kommunikation in Verteilten Systemen
(KiVS’05), Kaiserslautern, Germany, February 2005.

[13] H. Lausen and M. Felderer. Architecture for an Ontology
and Web Service Modelling Studio. In Proceedings of the
Workshop on WSMO Implementations, Frankfurt, Germany,
September 2004.

[14] OMG. UML Profile for Modelling Quality of Service
and Fault Tolerance Characteristics and Mechanisms, OMG
Draft Adopted Specification. OMG Document: ptc/2004-06-
01, June 2004.

[15] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. In
Revised Papers from the Intl Workshop on Web Services, E-
Business, and the Semantic Web, Toronto, Canada, May.

[16] J. Peer. A PDDL Based Tool for Automatic Web Service
Composition. In Proceedings of the Second Intl Workshop
on Principles and Practice of Semantic Web Reasoning (PP-
SWR), St. Malo, France, September 2004.

[17] P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. En-
hancing Web Services Description and Discovery to Facil-
itate Composition. In Revised Selected Papers of the Intl
Workshop Semantic Web Services and Web Process Compo-
sition (SWSWPC’04), San Diego, California, USA.

[18] S. Ran. A Model for Web Services Discovery with QoS.
SIGecom Exch., 4(1), 2003.

[19] D. Skogan, R. Grønmo, and I. Solheim. Web Service Com-
position in UML. In Proceedings of the 8th IEEE Intl Enter-
prise Distributed Object Computing Conf (EDOC’04), Mon-
terey, California, September 2004.

[20] M. Tian, A. Gramm, H. Ritter, and J. Schiller. Efficient Se-
lection and Monitoring of QoS-Aware Web Services with the
WS-QoS Framework. In Proc. of the IEEE/WIC/ACM Intl
Conference on Web Intelligence (WI’04), Washington, DC,
USA, September 2004.

[21] J. T. E. Timm and G. C. Gannod. A Model-Driven Approach
for Specifying Semantic Web Services. In Proceedings of the
IEEE Intl Conference on Web Services (ICWS’05), Orlando,
Florida, USA, July 2005.

[22] V. Tosic, K. Patel, and B. Pagurek. WSOL - Web Service
Offerings Language. In Revised Papers from the Intl Work-
shop on Web Services, E-Business, and the Semantic Web
(CAiSE’02/WES’02), 2002.

[23] A. Tsalgatidou, M. Pantazoglou, and G. Athanasopoulos.
SODIUM deliverable D8 - Specification of the Unified Ser-
vice Query Language (USQL) v.0.4, June 2005.

[24] UDDI Spec Technical Committee. UDDI Version 3.0.1.
http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf, 2003.

[25] W3C. Web Services Architecture W3C Working Group
Note, February 2004. http://www.w3c.org/TR/ws-arch/.

[26] WSMO Working Group. D16.1v0.2 The Web Service Mod-
eling Language WSML, March 2005.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

