
1

A Study of Service Composition with QoS Management

Casey K. Fung

Engineering and

Information Technology

Boeing Phantom Works,

USA

casey.k.fung@boeing.com

Patrick C. K. Hung

Faculty of Business and

Information Technology

University of Ontario

Institute of Technology,

Canada

patrick.hung@uoit.ca

Guijun Wang

Engineering and

Information Technology

Boeing Phantom Works,

USA

guijun.wang@boeing.com

Richard C. Linger

Software Engineering

Institute

Carnegie Mellon

University, USA

rlinger@sei.cmu.edu

Gwendolyn H. Walton

 Mathematics and

Computer Science Dept.

Florida Southern

College, USA

gwalton@flsouthern.edu

Abstract

Quality of Services (QoS) management in compositions

of services requires careful consideration of QoS

characteristics of the services and effective QoS
management in their execution. A Web service is a

software system that supports interoperable application-

to-application interaction over the Internet. Web

services are based on a set of XML standards such as
Simple Object Access Protocol (SOAP). The interactions

of SOAP messages between Web services form the

theoretical model of SOAP Message Exchange Patterns

(MEP). Web Services Business Process Execution
Language (WSBPEL) defines an interoperable

integration model that facilitates automated process

integration in intra- and inter-corporate environments. A

service-level agreement (SLA) is a formal contract
between a Web services requestor and provider

guaranteeing quantifiable issues at defined levels only

through mutual concessions. Based on a prior research

work on Message Detail Record (MDR), this paper
further proposes a SOAP message tracking model for

supporting QoS end-to-end management in the context of

WSBPEL and SLA. This paper motivates the study of

QoS management in a Web service composition
framework with the evolution of a distributed toolkit in

an industrial setting.

Keywords: OOA, CBA, SOA, Web services, SOAP,

BPEL, MEP, QoS, MDR, SLA.

1. Introduction

Enterprise systems face many challenges, including

seamless integration of systems, allowing data access

from anywhere anytime, and providing services to

customers and partners inside and outside the enterprise.

In addition to functionality, quality considerations such

as extensibility, flexibility, connectivity, and

interoperability require that enterprise systems be easily

accessible through published interfaces and easily

enhanced in order to offer value-added services. One

approach to meet these challenges is to consider a

system to be a composition of a collection of services.

Each service makes its functionality available through

well-defined or standardized interfaces. The result of this

approach is a Service-Oriented Architecture (SOA), in

which services are fundamental elements that can be

independently developed and evolved over time. Each

service is a self-describing, composable, and open

software component. A SOA consists of services, their

compositions, interactions, and management [1, 5]. In

particular, management of quality in SOA is challenging

because quality identification, measurement, analysis,

and traceability have to be dealt with in a heterogeneous

environment and a scalable fashion.

Quality of Services (QoS) management in

compositions of services [32], especially for distributed

services, requires careful consideration of QoS

characteristics of the services and effective QoS

measurement in their execution. In the context of SOA,

different service providers and requestors may have

different QoS requirements in terms of performance,

reliability, timeliness, and security. For example, some

providers may have higher priority than others and may

require their message deliveries to be guaranteed with

correct ordering in faster response time. Similarly, some

requestors may be more critical than others, and thus

require shorter delays in receiving messages. To meet

QoS requirements of many concurrent providers and

requestors, QoS management must provide services such

as performance, admission control, prediction, resource

management, monitoring, and adaptation.

Current trends in information and communication

technology (ICT) are accelerating widespread use of

Web services in supporting SOA. A Web service is a

software system designed to support interoperable

application-to-application interactions over the Internet.

Web services are based on a set of standards such as

Universal Description, Discovery and Integration

(UDDI) [27], Web Services Description Language

(WSDL) [28], and Simple Object Access Protocol

(SOAP) [13, 14]. The interactions of SOAP messages

between Web services form the theoretical model of

SOAP Message Exchange Patterns (MEP). The Web

Services Business Process Execution Language

(WSBPEL) is an OASIS-proposed standard for formal

specification of business processes and interaction

protocols [33], formerly known as BPEL4WS [18].

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

2

WSBPEL defines an interoperable integration model that

facilitates automated process integration in intra- and

inter-corporate environments. A service-level agreement

(SLA) is a formal contract between a Web services

requestor and provider guaranteeing quantifiable issues

at defined levels only through mutual concessions [9].

The negotiation issues are described as SLA parameters,

and the SLA parameters are based on the domain

specific vocabularies. W3C also emphasizes the

important role of SLA in the selection of QoS.

According to some existing SLA specifications, one

potential solution that can be applied in this model is

Web Service Level Agreement (WSLA). Further, WSLA

even provides an extensible mechanism to include

domain specific vocabularies [29]. Thus the SLA of the

receiver should be advertised before the sender examines

whether the SOAP message could be disclosed to the

receivers.

Based on a prior research work [11] on Message

Detail Record (MDR), this paper further proposes a

SOAP message tracking model for supporting QoS end-

to-end management in the context of WSBPEL and

SLA. This paper is organized as follows: With a travel

reservation example, Section 2 elaborates on the

composition study and the QoS management in SOA and

introduces the conceptual model of SOAP MEP,

WSBPEL and SLA for illustrating QoS end-to-end

management. Section 3 illustrates the SOAP message

tracking model for supporting QoS end-to-end

management with a travel reservation example. This

model is adopting MDR in SOAP message headers.

Section 4 discusses conclusions and future research

issues.

2. QoS End-to-End Management in SOAP

Message Exchange Patterns

Many companies provide services on the Internet for

supporting automated business-to-business (B2B)

applications, e.g., a travel reservation process. A

business process contains a set of activities that represent

both business tasks and interactions between Web

services. Because of standardization trends, the need to

coordinate Web services for supporting business

processes in loosely coupled B2B environments is

becoming more critical. For illustration, a travel

reservation example basically may involve three parties:

a customer, a travel agency, and an airline. Referring to

Figure 1, the travel reservation process is described as

follows. The customer’s application sends a reservation

request in SOAP message to the travel reservation

system. The travel agency receives a customer request to

make a travel reservation. The request may include

information defining origin, destination, and day and

month of travel. The customer may also specify other

requirements such as a preferred mileage club (e.g., Star

Alliance or One World), a direct or indirect flight, and

the maximum reservation price. The travel agency may

specify QoS attributes that constrain the selection of the

candidate airline, such as the response time of service

and a lower bound for acceptable commissions to be

provided to the agency by the airline.

Receive

Customer’s

Request

Invoke

Airline A’s

Reservation

System

Invoke

Airline A’s

Flight

Schedule

System

Reply to

Customer

Invoke

Airline B’s

Flight

Schedule

SystemCustomer’s

Application

Travel

Reservation

System

Web Service SOAP Message

ID: Customer

ID: TravelAgent

ID: AirlineA ID: AirlineB

ID: AirlineA

ID: TravelAgent

identifier

Figure 1. An Illustrative Travel Reservation Process

Referring to the publish/find/bind model in Web

services [12], a SOAP message is fundamentally a one-

way transmission between SOAP nodes, from a SOAP

sender to a SOAP receiver. The SOAP message contains

two SOAP-specific sub-elements within the overall

envelope, namely a header and a body. As Web services

become more prevalent, the nature of electronic

transactions on Internet changes from simple browser-to-

business clicks to an orchestrated flow of messages

between cross-enterprise serviced. Consequently, more

than one Web service could participate in the federated

execution of a single transaction. In such a case, the

problem of end-to-end management becomes very

important. The problem of message tracking is to be able

to track all the messages that are part of one such

transaction through all the web services in which the

transaction executes.

The SOAP message tracking helps in QoS end-to-end

management of Web services because one can infer

metrics for the message flow between Web services.

QoS end-to-end management can be considered from

different perspectives, depending on the layer of the

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

3

protocol stack being addressed. In the network layer, the

resources of concern are bandwidth and traffic control.

Thus, QoS attributes of interest include performance,

reliability, and timeliness. In the middleware layer,

communication, CPU and memory are the main

concerns, so QoS attributes are, again, performance,

reliability, timeliness, and security. In the application

layer, resources are services and flows. Therefore, QoS

attributes can be any optional features provided by a

service.

Figure 2. End-To-End QoS Management Framework

Figure 2 depicts an end-to-end QoS management

framework. At the Transport API, the QoS enforcing

service (e.g., AMS, intermediary) passes the protocol

data unit and the transport/network service parameters

enquiries to transport/network. QoS enforcement down

to the network layer is enabled by the end-to-end

Transport parameters (between the two observation

points) such as transport-to-transport delay, TCP

retransmission count in the last observation interval, etc.

For example, if the Resource Reservation Setup Protocol

(RSVP) is not implemented on the end-system, then

depending on the QoS policy definition, either the Web

service QoS or the Transport API will map the Web

service QoS parameters to the Differentiated Services

Codepoint (DSCP) field. If metrics based on historical

data are being maintained, enforcing end-to-end QoS

requirements can also be carried out in the service layer

without enquiring into the network layer. (We will

revisit this topic in Section 3 together with the tracking

method.) Further, the execution of a single business

transaction can involve multiple SOAP messages being

exchanged between Web services. In general, headers

are typically used to represent management attributes

about messages. Web services requestors may need to

track their requests and understand causes for failure of

their requests. Web services providers that are using

other Web services to provide composite services may

like to understand the interactions between composite

Web services [10]. This sort of information can improve

the QoS in many Web services-based business

applications. However, none of the requirements in the

“Web Services Architecture Requirements” document

[12] defines the importance of QoS in SOAP message

flows. Thus, the major goal of this paper is to propose a

SOAP message tracking model for supporting QoS end-

to-end management and to present the importance of

QoS in per-to-peer SOAP Message Exchange Patterns

(MEP) [13]. Figure 3 depicts QoS concerns existing

between the SOAP message sender and ultimate

receiver. The information exchanges between the SOAP

sender and receiver contain different QoS attributes. The

sender may define its QoS requirements (e.g., response

time) in the SOAP message to be sent to the receiver. To

satisfy the sender’s requirements, the receiver may have

to enforce certain QoS.

S O A P M e s s a g e

U l t i m a t e R e c e i v e r

S O A P M e s s a g e W e b s e r v i c e

S O A P M e s s a g e

S e n d e r

Q o S

R e q u i r e m e n t s

Q o S

E n f o r c e m e n t

Figure 3. QoS Requirements and Enforcements

between SOAP Message Sender and Ultimate Receiver

Referring to Figure 1, the “Customer's Application”

Web service is the SOAP message sender and the

“Travel Reservation System” can be considered to be a

Web service. From the perspective of “Customer's

Application,” the “Travel Reservation System” is

considered to be an ultimate message SOAP receiver.

For illustration, the “Customer's Application” may

specify the response time as “less than 60 seconds” as a

QoS requirement to the “Travel Reservation System.”

Referring to the MEP, SOAP messages may be

transmitted through the intermediaries before reaching

the ultimate receiver. SOAP intermediaries (e.g., Internet

service providers, proxies and others) should be privy to

the exchange of SOAP messages between the sender and

receiver. Thus, the sender may have to define the QoS

requirements not only for the ultimate receiver, but also

for those intermediaries. For example, the sender may

request the intermediaries to forward the SOAP message

immediately. Referring to the SOAP message framework

[13], the forwarding intermediaries and active

intermediaries between the sender and ultimate receiver

are defined as follows:

• Forwarding Intermediaries: The SOAP header blocks

in a SOAP message require that the SOAP message be

forwarded to another SOAP node on behalf of the

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

4

SOAP sender. In this case, the processing SOAP node

acts in the role of a SOAP forwarding intermediary.

• Active Intermediaries: Based on the forwarding SOAP

intermediaries, active SOAP intermediaries can

modify the inbound SOAP message and then send the

modified outbound SOAP message. In most cases, the

active SOAP intermediaries are performing security

services, annotation services, and content

manipulation services.

In principle, the active and forwarding intermediaries

should not need to store the inbound SOAP messages. In

this scenario, the intermediaries should enforce the QoS

requirements from the sender. This QoS requirement can

be usually expressed via SOAP headers. A SOAP header

[14] is an extension mechanism that provides a way to

pass control information in SOAP messages such as

passing directives or contextual information related to

the processing of the message. This allows a SOAP

message to be extended in an application-specific

manner that might be encountered in the path of a

message from a SOAP sender to an ultimate receiver.

SOAP headers always involve the participation of SOAP

intermediaries along a path from an initial SOAP sender

to an ultimate SOAP receiver in MEP. Referring to

Figure 4, there are two possible paths for the response

SOAP message from the ultimate receiver to the sender.

Path 1 shows a direct response from the ultimate receiver

to the sender, and Path 2 shows an indirect response

from the ultimate receiver to the sender via an

intermediary.

SOAP Message

Intermediary

SOAP Message

Ultimate Receiver

SOAP Message Web service

SOAP Message

Sender

QoS

Requirements

QoS

Enforcement

QoS

Enforcement

(Path 1)

(Path 2) (Path 2)

Figure 4. SOAP Message Intermediary

 Referring to Figure 1, there is a SOAP message

intermediary “Airline A” between the “Customer’s

Application” and travel agent. There may also be a QoS

requirement such as the response time as “less than 40

seconds” enforced at the intermediary. In this scenario,

the “Travel Reservation System” directly sends the

response message to the “Customer’s Application” and

the customer may not know who are the intermediaries.

Referring to Figure 5, the QoS requirements also have to

be enforced in a delegation and propagation situation. In

many cases, the ultimate receiver may delegate some

activities to other Web services. This assignment process

is also called delegation or propagation [11]. In this

scenario, the ultimate receiver has to govern other

receivers’ QoS enforcement in accordance with the

sender’s and also its own QoS requirements. For

example in the transmission of high bandwidth

streaming video, content may require differential QoS

protocol in the network layer, rather than the “best

effort” protocols in use today. Referring to Figure 1, the

“Airline A” Web service delegates the work to “Airline

B” Web service for finding a flight schedule. Thus

“Airline A” may define a QoS requirement to “Airline

B” (such as the response time is “less than 20 seconds.”)

SOAP Message

Ultimate Receiver

Other Receivers

SOAP Message Web service

SOAP Message

Sender

QoS

Enforcement

QoS

Requirements

QoS

Requirements
QoS

Enforcement

QoS

Enforcement

Figure 5. Propagation and Delegation Scenario

3. Towards A QoS End-to-End

Management Model

Referring to Figure 1, the travel reservation system

invokes Airline A’s Web service to retrieve flight

schedules. If Airline A can not take the customer’s

request, Airline A may invoke a partner (such as Airline

B) to handle the request. When the results are returned

from the Web service, the travel reservation system

again invokes the Airline A’s Web service to make a

reservation. Once the travel reservation system receives

a confirmation from the airline’s Web service, the travel

reservation system will reply to the customer with

reservation information and will store relevant data on

the transaction.

Assume the following for the travel reservation

example: A user requests that the travel agency service

provides a reservation with the following parameters:

direct flight, from Tampa, to New York/Laguardia
airport, costing no more than $300. The travel agent

service provides an additional parameter to the Web

service broker: Response Time < 40 seconds. From the

perspective of the travel agency service, ResponseTime
includes network latency as well as the amount of time

the airline's Web service takes to process a request.

Thus, the travel agency defines ResponseTime for a

request to a specific airline Web service as the turn-

around time for the request, as calculated by the travel

agency service. (That is, Response time = elapsed time

between issuance of the request to the service and receipt

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

5

of a valid response.) If the airline's service does not

provide a valid response before the travel agency

service's timeout threshold, ResponseTime for this

request = some predefined constant value C, where C is

greater than the travel agency service's timeout value.

The simplified WSBPEL is shown in Figure 6. The

technical details of each activity are as follows:

• received: It allows the business process to do a

blocking wait for a matching message to arrive, e.g.,

TravelAgency.

• invoke: It allows the business process to invoke a

one-way or request-response operation on a

portType offered by a partner, e.g., airlineA,

airlineB and QoSManager.

• Reply: It is used to send a response to a request

previously accepted through a receive activity.

<process name="TravelReservationSystem"

targetNamespace="http://travelagencies.com/travelscheduleprocessing"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-

process/"
 xmlns:as="http://airlines.org/wsdl/AirLineWS"

 xmlns:qm="http://qos-management.org/wsdl/QoSManagerWS"
 xmlns:ta="http://travelagencies.org/wsdl/TravelAgencyWS"

 xmlns:bk="http://bank.org/wsdl/BankAgencyWS"

 suppressJoinFailure="yes">
 ...

 <flow>
 ...

 <receive partnerLink="TravelAgent"

 portType="ta:TravelAgencyWS_IF"
 operation="request"

 variable="request" createInstance="yes">

 <source linkName="Request-to-AirlineA"/>
 </receive>

 <invoke partnerLink="AirlineA"
 portType="as:AirLineWS_IF"

 operation="getSchedulesRequest"

 inputVariable="request"
 outputVariable="responseA">

 <target linkName="Request-to-AirlineA"/>
 <source linkName="AirlineA-to-AirlineB"/>

 <target linkName="AirlineB-to-AirlineA"/>

 <source linkName="AirlineA-to-Reservation"/>
 <agreement location="http://airlines.org/wsla/AirLineA"/>

 </invoke>
 <invoke partnerLink="AirlineB"

 portType="as:AirLineWS_IF"

 operation="getSchedulesRequest"
 inputVariable="request"

 outputVariable="responseB">
 <target linkName="AirlineA-to-AirlineB"/>

 <source linkName="AirlineB-to-AirlineA"/>

 <agreement location="http://airlines.org/wsla/AirLineB"/>
 </invoke>

 ...
 <invoke partnerLink="AirlineA"

 portType="as:AirLineWS_IF"

 operation="makeReservation"
 inputVariable="request"

 outputVariable="confirm">
 <target linkName="AirlineA-to-Reservation"/>

 <source linkName="Reservation-to-Reply"/>

 <agreement location="http://airlines.org/wsla/AirLineA"/>
 </invoke>
 ...

 <reply partnerLink="TravelAgent"
 portType=" ta:TravelAgencyWS_IF "

 operation="replyCustomer" />

 <target linkName="Reservation-to-Reply"/>
 </reply>

 ...
 </flow>

</process>.

Figure 6. A Simplified WSBPEL Document for the

Travel Reservation System

Each of the activities in a flow model must be

executed by an appropriate Web service. In this scenario,

the role of Web services broker is to assign an

appropriate Web service for each activity based on the

operations provided by the Web service and the

requirements specified by the activity. This assignment

process is called matchmaking. Each Web service will

have a SLA for specifying the QoS attributes to the

requestors in different contexts, e.g., response time. In

many scenarios, a Web service may have more than one

SLA for different requestors. For example, an airline

Web service may provide higher QoS for its alliance

members than other customers. Referring to Figure 6,

the WSBPEL document of the “Travel Reservation

System” must interact with the WSLA document of each

Web service involved in the process. However, there is

no such feature to define the WSLA in WSBPEL. Thus

we propose a new assertion <agreement> in both

“AirlineA” and “AirlineB” activities in the context of

WSBPEL. This assertion describes the location of the

WSLA document of the Web service that matched with

each activity. For example, Figure 7 shows the WSLA

document of “AirlineA” that defines the response time in

2 seconds.

<SLA xmlns="http://airlines.org/wsla"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/wsla

c:\Projects\WSLA\wsla.xsd"
 name="AirlineAServiceAgreement" >

 ...
 <ServiceDefinition name="AirlineAService">

 <Operation

xsi:type="wsla:WSDLSOAPOperationDescriptionType"
name="WSDLSOAPReserveSeat">

 ...
 <SLAParameter name="ResponseTime"

 type="float"

 unit="seconds">
 <Metric>responseTime</Metric>

 </SLAParameter>
 <Metric name="responseTime" type="double" unit="seconds">

 <Source>ms</Source>

 <Function xsi:type="wsla:NumberLessThanThreshold"
resultType="integer">

 <Metric>responseTimeHost</Metric>

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

6

 <Value>
 <LongScalar>2</LongScalar>

 </Value>

 </Function>
 </Metric>

 </Operation>
 ...

 </ServiceDefinition>

 ...

</SLA>

Figure 7. A Simplified WSLA Document for Airline A

Reservation Web Service

Message Detail Record (MDR) is a collection of

management attributes that are attached to every SOAP

message flowing between Web services. Based on a

prior research work [10] on MDR in SOAP message

headers, this paper further proposes a SOAP message

tracking model for supporting QoS end-to-end

management/measurement. Based on an SLA, the sender

may fill in some of the attributes in an MDR. The

receiver may fill in others. The MDR structure consists

of a unique identifier for the message, a time stamp

when the message was sent, and a time stamp when the

message was received. Referring to the travel reservation

example, the QoS requirement in response time from the

travel agency can be evaluated by the time stamps in the

MDR structure. For example, the travel agent fills in the

response time requirement (e.g., 60 ms) to be enforced at

Airline A and sent time attributes of TravelAgent’s

MDR’s before it is sent to the Airline A’s Web service.

Once the Airline A’s Web service receives the Travel

Agent’s message, it will fill in the received time of

TravelAgent’s MDR and create a new AirlineA’s MDR.

In this scenario, Airline A will also propagate the SOAP

message to Airline B’s Web service with its own

response time requirement (e.g., 40 ms) to be enforced at

Airline B. Again, Airline B will also fill in the received

time of AirlineA’s MDR and create a new MDR, and so

on. With this message tracking information collected on

the header of a message, the ResponseTime between any

two hosts in a transaction can be calculated.

When historical data of this kind is collected for a

group of related services, prediction can be carried out

based on formal analytical methods (e.g., Bayesian or

causal network model). To calculate a projected QoS

attribute value (e.g., ResponseTime) for a service for

which the system state is unknowable requires a method

that makes use of every source of available relevant

evidence, including information obtained from vendors,

personal judgment, accumulated history from past use of

the service, and any knowledge of specific events (e.g.,

updates to a component of the service or changes in

network configuration) that may invalidate the history. A

promising approach to dynamic calculation of QoS

attribute values involves application of Bayesian

statistical methods to measurement history data [31].

Bayesian analysis starts with a suitable set of pre-defined

beliefs that form the “prior distribution.” As new data

become available, they are combined with the prior

distribution to obtain a new distribution that can be used

to support analysis. When there is no evidence on which

to base an initial prediction, the priors must be based on

professional judgment. For example, for services of

unknown quality that are candidates for business-critical

use, one might use a prior distribution that represents the

worst case until evidence is available that indicates that

the service does in fact perform better than the worst

case. Referring to the travel reservation example, the

initial value of the projected ResponseTime, for which

there is no history, can be based on the travel agency's

best estimate or, in the absence of any information at all,

can be set pessimistically as equal to the travel agency

service's timeout value. ResponseTime can be

automatically calculated and submitted to the history

database by the travel agency service each time it issues

a request to an airline service.

Figure 8 shows a simplified SOAP message that is

received by Airline B. We propose to define the QoS

requirements in the SOAP header. In this scenario, the

response time is calculated for every outgoing SOAP

message as the duration between the time when a

message is sent out and the time when the response is

received. In particular, the MDR of a new message is

related to the MDR of the earlier message through a

parent-child relationship called MDRForest that is

supported with a set of mechanisms [10]. Based on the

MDRForest, a collection of aggregate metrics such as

average response times can be evaluated for further

analysis in supporting different QoS scenarios. Message

tracking could also be the basis for collecting other

accounting or auditing information about policy and

security enforcement.

<?xml version="1.0" encoding="UTF-8"?>
<env:Header
xmlns="http://registry.example.com/2003/soap-
header-p3p-extension.xsd" xmlns:env=
"http://www.w3.org/2003/05/soap-envelope"
id='header'>
<QoS>
 <QoS_id>TravelAgent-QoS-1111</QoS_id>
 <require_from>TravelAgent</require_from>
 <enforced_at>AirlineA</enforced_at>
 <response_time>40</response_time>
 <time_set>2004-08-12 12:00:23</time_set>
</QoS>
<MDR>
 <parent_mdr>None</parent_mdr>
 <message_id>TravelAgent-MDR-1111</message_id>
 <message_type>Flight-Schedule</message_type>
 <source>TravelAgent</source>
 <target>AirlineA</target>
 <time_sent>2004-08-12 12:00:23</time_sent>

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

7

 <time_received>
 2004-08-12 12:00:33
 </time_received>
<MDR>
<QoS>
 <QoS_id>AirlineA-QoS-1111</QoS_id>
 <require_from>AirlineA</require_from>
 <enforced_at>AirlineB</enforced_at>
 <response_time>20</response_time>
 <time_set>2004-08-12 12:00:35</time_set>
</QoS>
<MDR>
 <parent_mdr>TravelAgent-MDR-1111</parent_mdr>
 <message_id>AirlineA-MDR-1111</message_id>
 <message_type>Flight-Schedule</message_type>
 <response_time>40</response_time>
 <source>AirlineA</source>
 <target>AirlineB</target>
 <time_sent>2004-08-12 12:00:35</time_sent>
 <time_received>
 2004-08-12 12:00:38
 </time_received>
<MDR>
…
<env:Body Id="TravelAgent-Request-1111">
<getSchedules
xmlns="http://www.airlinecompany.com/services/Ai
rLineAWS">
 <origin>Tempa</origin>
 <destination>New York/Laguardia</destination>
 <day_of_travel>25</day_of_travel>
 <month_of_travel>September</month_of_travel>
 …
</getSchedules>
</env:Body>
</env:Header>

Figure 8. A Simplified SOAP Message Received at Airline B

4. Conclusions and Future Work

This paper motivates the study of QoS management in a

Web service composition framework with the evolution

of a distributed toolkit in an industrial setting. It presents

the importance of QoS in SOAP MEP. One of the major

processes in a loosely coupled Web services execution

environment is matchmaking, that is, an appropriate

Web service is assigned to satisfy a requestor’s

requirements with or without the assistance of a service

locator [19]. Alternatively, matchmaking can also

provide a ranked list of the n best candidates with

respect to the requestor’s requirements [20]. Usually,

more than one Web services claim they have the same,

or very similar, capabilities to accomplish a requestor’s

requirements. In many cases, the QoS may vary from

Web service to Web service. The majority of Web

services providers are not concerned about the level of

QoS provided to their requestors [21]. However, there

exist an increasing number of concerns about QoS with

respect to maintaining their popularity and reputation

[22]. Thus, it is obvious that the QoS perceived by the

requestors is becoming a dominant factor for the future

success of a Web service. In general, the principal QoS

attributes of a Web service include a diverse set of

service requirements such as the service availability,

accessibility, performance, time, efficiency, reliability,

scalability, dependability, regulatory, integrity and

security [23, 24, 25]. In the future, one may expect that

Web services providers should provide a list of trade-off

alternatives between the Quality of Service (QoS) and

the Cost of Service (CoS) to Web services providers,

especially in one-off services. Such a list would allow

Web services requestors to evaluate trade-off

alternatives according to their specific requirements and

constraints. CoS is measured by the resources required to

procure the QoS such as capital, hardware or software.

Thus, matchmaking can be based on binding support,

historical performance, QoS, and CoS classifications

[26].

 As Web services become more popular and complex,

the need for locating Web services with specific

capabilities at the service locator become more and more

important. We are currently working on the following

technical research issues:

• QoS Analysis: The decomposition of quality

requirements into measurable specification on

features and characteristics of a service;

• QoS Management Implementation: We have been

talking about QoS Management at the architecture

or language level. To implement the QoS

management in the QoS enforcing services is also a

very challenging task;

• QoS Ontology: Development of QoS vocabularies

and representation of their ontologies formally

based on QoS analysis;

• Federated Management: Based on the concepts of

SLAs as the tool to define relationships among

loosely coupled services, the use of intermediaries

to form a management network is promising and

challenging;

• Security and Privacy Access Control Policy: Who

can access, add or delete MDR in the SOAP header;

and

• System States that can be monitored by this service

level measurement method.

In the future, the QoS requirements should also be

exchanged with the negotiation protocol between the

SOAP message sender and receiver. One of the

candidates of the negotiation protocol proposed is WS-

Negotiation [15]. The advantages of using the protocol

are that: (1) the SOAP message sender could send its

privacy preference files to the ultimate receiver; and (2)

as a result of the negotiation with the policies and

sender's preference, an intelligent decision could be

made for both the sender and the ultimate receiver for

suiting a specific environment.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

8

References
[1] G. Wang, and C. Fung, “Architecture Paradigms and Their

Influences and Impacts on Component-Based Software

Systems,” Proceedings of the 37th Hawaii International

Conference on System Sciences, January 5-8, 2004.

[2] I. Foster, C. Kesselman, and Steve Tuecke, “The Anatomy

of the Grid,” International Journal of Supercomputer

Applications, 2001.

[3] IEEE STD 1471-2000, IEEE Recommended Practice for

Architectural Description of Software Intensive Systems, 2000,

http://standards.ieee.org/catalog/software4.html#1471-200

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design

Pattern: Elements of Reusable Object-Oriented Software,”

Addison-Wesley Press, 1995.

[5] M.P. Papazoglou, and D. Georgakopoulos, “Service-

Oriented Computing,” Communications of ACM, Oct. 2003.

[6] M. Uschold, P. Clark, F. Dickey, C. Fung, S. Smith, S.

Uczekaj, M. Wilke, S. Bechhofer, and I. Horrocks, “A

Semantic Infosphere,” Proceedings of the 2003 International

Semantic Web Conference (ISWC 2003), 2003, pp. 882-896.

[7] C. Szyperski, “Component Software: Beyond Object-

Oriented Programming,” Addison Wesley, 2002.

[8] C. Fung, S. Uczekaj, G. Wang, and S. Moody, “The

Evolution of Composition Framework in a Distributed System

Toolkit,” Proceedings of 2004 IEEE International Conference

on Web Services, pp. 600-604.

[9] A. Sahai, A. Durante, and V. Machiraju, “Towards

Automated SLA Management for Web Service,” HP Technical

Report, 2002.

[10] A. Sahai, V. Machiraju, J. Ouyang, and K. Wurster,

“Message tracking in SOAP-based Web services,” Proceedings

of the 2002 IEEE/IFIP Network Operations and Management

Symposium (NOMS 2002), 15-19 April 2002, pp. 33 - 47.

[11] IBM Corporation, “Security in a Web Services World: A

Proposed Architecture and Roadmap,” White Paper, Version

1.0, 2002. Online: www-

106.ibm.com/developerworks/library/ws-secroad/

[12] C. Mohen, “Tutorial: Application Servers and Associated

Technologies,” ACM SIGMOD International Conference on

Management of Data (SIGMOD'02), Madison, USA, June

2002.

[13] World Wide Web Consortium (W3C), “SOAP Version 1.2

Part 1: Messaging Framework,” W3C Proposed

Recommendation, 07 May 2003. Online:

www.w3c.org/TR/2003/PR-soap12-part1-20030507/

[14] World Wide Web Consortium (W3C), “SOAP Version 1.2

Part 0: Primer,” W3C Proposed Recommendation, 07 May

2003. Online: www.w3c.org/TR/2003/PR-soap12-part0-

20030507/

[15] P. C. K. Hung, H. Li, and J. J. Jeng, “WS-Negotiation: An

Overview of Research Issues,” Proceedings of the IEEE

Thirty-Seventh Hawaii International Conference on System

Sciences (HICSS-37), CD-ROM, January 5-8, 2004.

[16] Workflow Management Coalition (WfMC). Online:

www.wfmc.org

[17] F. Leymann, D. Roller, and M.-T. Schmidt, “Web services

and business process management,” IBM Systems Journal, vol.

41, no. 2, 2002, pp. 198-211.

[18] IBM Corporation, “Business Process Execution Language

for Web Services (BPEL4WS),” Version 1.0, 2002.

[19] P. C. K. Hung, and G. S. Qiu, “Implementing Conflict of

Interest Assertions for Web Services Matchmaking Process,”

Proceedings of the IEEE Conference on E-Commerce

(CEC03), Newport Beach, California, USA, June 24-27, 2003.

[20] D. Veit, J. P. Muller, M. Schneider, and B. Fiehn,

“Matchmaking for Autonomous Agents in Electronic

Marketplaces,” Proceedings of the fifth International

Conference on Autonomous Agents, 2001, pp. 65-66.

[21] W. E. Youngdahl, and D. L. Kellogg, “Relationship

between Service Customers' Quality Assurance Behaviors,

Satisfaction, and Effort: A Cost of Quality Perspective,”

Journal of Operations Management, Volume 15, Issue 1,

February 1997, pp. 19-32.

[22] J. Lee, J. Kim, and J. Y. Moon, “What Makes Internet

Users Visit Cyber Stores Again? Key Design Factors for

Customer Loyalty,” Proceedings of the CHI 2000 Conference

on Human Factors in Computing Systems, 2000, pp. 305-312.

[23] M. Conti, and M. Kumar, “Quality of Service in Web

Services,” Proceedings of the 34th Annual Hawaii

International Conference on System Sciences, 2001, pp. 3550-

3550.

[24] V. Firoiu, J. Y. Le Boudec, D. Towsley, and Z. L.

Chang. “Theories and Models for Internet Quality of Service,”

Proceedings of the IEEE, Volume 90, Issue 9, September 2002,

pp. 1565-1591.

[25] A. Mani, and A. Nagarajan, “Understanding quality of

service for Web services: Improving the performance of your

Web services,” Online: http://www-

106.ibm.com/developerworks/library/ws-quality.html

[26] IBM Corporation, “Web Services Conceptual

Architecture (WSCA 1.0),” 2001.

[27] Universal Description, Discovery and Integration (UDDI),

“UDDI Version 3.0,” UDDI Specification Technical

Committee Specification, 19 July 2002. Online:

uddi.org/pubs/uddi-v3.00-published-20020719.htm

[28] World Wide Web Consortium (W3C), “Web Services

Description Language (WSDL),” Version 1.2, W3C Working

Draft, 9 July 2002. Online: www.w3.org/TR/2002/WD-

wsdl12-20020709/

[29] IBM Corporation, “Web Service Level Agreement

(WSLA) Language Specification,” Version 1.0, 2003.

[30] R. Linger, M. Pleszkoch, G. Walton, and A. Hevner,

“Flow-Service-Quality Engineering: Foundations for Network

System Analysis and Development,” CMU/SEI-2002-TN-01,

Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA, 2002.

[31] C. Fung, P. Hung, R. Linger, and G. Walton, “Extending

Business Process Execution Language for Web Services with

Service Level Agreements Expressed in Computational Quality

Attributes,” Proceedings of the IEEE Thirty-Eighth Hawaii

International Conference on System Sciences (HICSS-38), Big

Island, Hawaii, USA, January 3-6, 2005.

[32] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj,

“Integrated Quality of Service (QoS) Management in Service-

Oriented Enterprise Architecture,” Proceedings of the 8th IEEE

Enterprise Distributed Object Computing Conference,

September 2004, pp. 21-32.

[33] OASIS, “Web Services Business Process Execution

Language,” Version 2.0. Online: http://www.oasis-

open.org/committees/download.php/10347/wsbpel-

specification-draft-120204.htm.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

