
 Compatibility Verification for Web Service Choreography

Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer
Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK

{hf1, su2, jnm, jk}@doc.ic.ac.uk

Abstract
In this paper we discuss a model-based approach to
verifying process interactions for coordinated web
service compositions. The approach uses finite state
machine representations of web service orchestrations
and assigns semantics to the distributed process
interactions. The move towards implementing web
service compositions by multiple interested parties as a
form of distributed system architecture promotes the
ability to support 1) compatibility verification of
activities and transactions in all the processes and 2)
that the composition is equivalent to the distributed
system specification. The described approach is
supported by a suite of cooperating tools for
specification, formal modeling and providing
verification results from orchestrated web service
interactions.

1. Introduction

Web Services are an emerging software architecture
that harnesses the flexibility and reach of the internet
with that of extended distributed systems engineering
practices. Web Service workflow languages aim to fulfill
the requirement of a coordinated and collaborative
service invocation specification to support long running
and multi-service transactions. Amongst the key issues
in the design and implementation of components in this
architecture style for critical business applications, is the
formation of compositions (also known as
Orchestrations) as a series of interacting workflows [1]
and how transactions of activities interact to support the
underlying business requirements. This issue is
collectively wrapped up in the term Web Service
Choreography [2]. These interacting workflows can be
constructed using various emerging standards and
managed by multiple parties in the domain of interest
and as such the task of linking these activities across
workflows within this domain is crucial. This work
considers the issues in web service choreography by
expanding on earlier work discussing modeling local
web service compositions [3] which focused on the
analysis and verification of behavior models of web
service compositions implemented in the Business

Process Execution Language for Web Services
(BPEL4WS) [4] specification. Additional tool support
for this approach has been documented in [5]. In this
paper we extend a formal approach to modeling and
analyzing the behavior of local web service compositions
with that of interacting web service compositions. The
aim of this analysis concentrates on the compatibility of
processes that take part in the complete composition
environment given a system specification. With an
accurate analysis process, the implementers of the
composition can be assured that interaction will be
compatible and therefore match the requirements of
interaction. To illustrate how these interacting
compositions are verified, we have constructed an
example distributed process, consisting of a series of web
service workflows. These are translated to a domain
independent representation, in the form of the Finite
State Process (FSP) notation, which is compiled using
the Labeled Transition System Analyzer (LTSA) tool,
and properties specified to designate the activities to be
assured. The remainder of the paper is organized as
follows: Section 2 describes the background and the
issues involved in web service compositions illustrated
with a motivating example composition based upon an
E-Marketplace. Section 3 discusses how compatibility
analysis of web service compositions can be undertaken,
whilst section 4 details the requirements and steps of an
approach to verifying web service compositions, and on
the results gained by its use. Section 5 concludes this
paper with a broader review of related work, how the
described approach is used as part of an automated
verification tool and how it is believed that the work
described in this paper has contributed to this area of
research.

2. Background

Web Services exhibit many similarities to traditional
software components that amongst which resemble
hosted objects which have a simple, well-defined
interface, and that are designed with the expectation of
reuse. In fact, the notions and ideas presented in
constructing software components are highly applicable
to web services, as they could simply be viewed as a type
of software component architecture but with the addition

of yielding a standard communication model. Some
problems of component composition have been reported
in [6] as:

• Initially identifying the appropriate components to

implement the desired functionality
• determining and resolving gaps between desired

functionality and the component’s functionality
• specifying the component interactions

These issues are equally applicable to web service

components. As web service deployment and use
becomes more widespread, the notion of managing the
composition of web services to integrate processes
together is being highlighted within research and the
adopted standards [7]. Web Service compositions, over
that of software component compositions however, hold
additional issues.

2.1. Web Service Compositions

Web Service Compositions are groups of related

services either locally or globally hosted on web servers.
The difference with web service compositions over that
of traditional software component compositions is that
web services compositions focus on the “autonomic open
system”; in that they are designed to exhibit a service for
varied client use and these can be reused without
significant changes incurred to the design, potentially by
any interested party. They also exhibit the operational
differences where run-time binding is highly loosely
coupled enabling a dynamic service invocation. Web
Service composition communication tends to be
composed through three specific workflow activities
(request, receive and reply) [8]. In BPEL4WS requests,
receive and replies are specified using the <invoke>,
<receive> and <reply> constructs respectively.
Figure 1 illustrates a conceptual diagram of
communicating partner web service compositions.

Web Service HostWeb Service HostWeb Service Host

Web Service
Composition

Web Service
Composition

Web Service
Composition

Web Service
Composition

Web Service
Composition

 Invoke receive

reply
receive

 in
voke

reply

Invoke rece ive

rep ly

receive invoke
reply

receive invoke
reply

In
vo

ke

 re
ce

ive

re
pl
y

Figure 1. Conceptual diagram of interacting

web service compositions

Web Services are also encapsulated components that
do not expose their internal behavior and as such, the
operation of using them is therefore also somewhat
“black box”. In additional to the traditional component
verification issues, several aspects of web service
compositions make a viable approach to verification a
highly desirable proposal:

• The coordination of web service composition

activities is crucial to synchronizing appropriate
behavior between processes. BPEL4WS proposes
“abstract processes” for choreography; however this
can only currently be validated at runtime.

• The clients of compositions will expect different
behavior depending on their individual requests and
therefore the composition must be tested against
various scenarios to reflect these different
sequences of activities.

• There is an assumption that a web service
composition will work in any process environment.
The assurance can only be given if interacting
services know whether a composition exhibits the
correct behavior.

• To facilitate coordinated transactions of web service
compositions, the appropriate activities must be
provided to support web service standards (e.g.
WSCI [2], WS-Transaction [9] and WS-
Coordination [10] specifications).

Web Service compositions can also be seen as the

implementation layer of a multi-stakeholder distributed
system (MSDS) [11]. An MSDS is defined as; “a
distributed system in which subsets of the nodes are
designed, owned, or operated by distinct stakeholders.
The nodes of the system may, therefore, be designed or
operated in ignorance of one another, or with different,
possibly conflicting goals”. With a service-oriented
architecture the focus is on interaction with multiple
parties and the behavior could be somewhat ad-hoc
depending on the requirements of the partner services.
The desirable element here is that to concisely reason
about the applicability of a solution we must be able to
determine if a distributed solution is correctly
orchestrated. Properties to satisfy this verification may
consist of a series of questions about the composition; for
example; if a request to purchase a product is sent to a
partner process, will the process eventually confirm the
purchase?

2.2. Motivating Example

A simple but effective example of the issues in web
service compositions is described given an E-Commerce

Marketplace system. One such scenario in this system
could include the seller and buyer interaction of products
with the Marketplace. We have illustrated such a
process as a message sequence chart composition in
Figure 2. The example consists of four phases, from
initial requests of offer and buy, through negotiation of
prices, to a price agreement being made.

M a r k e tp la c e C o m p o s it io n

O
ffe

r
ph

as
e

R
eq

ue
st

N
eg

ot
at

io
n

D
ea

l

B u y e r
C o m p o s it io n

M a rk e tP la c e
C o m p o s it io n

S e lle r
C o m p o s it io n

In v o k e (o ffe r)
In v o k e (re q u e s t)

R e p ly
(re q u e s te d)

R e p ly (o f fe re d)

In v o k e (s e ll
p r ic e)

In v o k e (a g re e d)

R e p ly (b u y p r ic e)

In v o k e (b u y
p r ic e)

R e p ly (s e ll p r ic e)

In v o k e (a g re e d)

Figure 2. An example scenario of interacting

web service compositions

This composition consists of three workflow
processes. From the Seller composition perspective, the
behavior of the marketplace of interest is that in the
ability to receive a request for “offering a product”,
“offers sell price” and “deal made”. However, from the
buyer perspective the behavior of interest is the ability to
make requests for “request for product”, “request price”
and “deal made”. Although both clients of the
marketplace are ultimately interested in whether deal can
be made, the paths to this end are different. For this
paper, we concentrate on the perspective of the Seller,
Buyer and Marketplace compositions and their initial
interaction behaviors in this example.

3. Compatibility of Compositions

Three levels of compatibility for component
compositions have been previously reported in [12].
These are defined as interface, behavior and input-
output (data) compatibility. Whilst input-output
compatibility is of interest, it is not the main focus of this
paper. Therefore, for behavior we apply the first two of
these concepts for compatibility against web service
compositions under the following topics;

• Interface Compatibility – focusing on semantics
of correlating invocations against receiving and
message replies between partner processes.

• Safety Compatibility – assurance that the
composition is deadlock free and is checked against
partial correctness of transitions.

• Liveness Compatibility – assurance against
starvation of progress (that the service process
eventually terminates) and that messages received
are served on a first-come-first-served basis.

Safety Compatibility focuses on performing safety

analysis of composition models, and determining if there
exist any deadlocks or other properties specified by the
analyst. Liveness Compatibility focuses on performing
progress analysis of composition models, and
determining if the composition exhibits behavior which
does not meet requirements of success. An example of
this is that the marketplace process can finally provide a
“dealmade” result. As a pre-requisite for specifying
safety or progress analysis, we must be able to observe
the path to this observable result which relies on the core
activity mapping (interface compatibility). The focus of
verification for safety and liveness therefore is from the
perspective of the behavior of each client process, in that,
for each verification run we are interested in whether a
process is activity compatible with its partner
compositions. As the verification process iterates
through all client requirements for assurances of process,
by changing focus of process compatibility, an entire
interaction assurance can be given.

As part of the BPEL4WS specification, abstract
processes can be defined which hide the private
implementation of interactions within the process.
These are not directly executable, but they can indirectly
impose behavior compliance upon private processes
executed by the BPEL4WS orchestration server.
Abstract processes may assist in execution however, as a
BPEL4WS orchestration server validates and assures
public protocol conformance of executing processes.
Whilst abstract processes assist in this way, we scope this
approach to the design of the core (known as private)
process to capture the real interaction and goals of each
BPEL4WS implementation and thus aid in complete
distributed system implementation verification. We
discuss further work around the abstract process later.
The core semantics of BPEL4WS, discussed in [3, 8, 13]
describe how the language provides interactions of web
service compositions. To model these semantics in our
approach requires us to map between activities in
processes, and to evaluate the questions suggested
previously, and that the order of these activities is
sufficient to provide the required composition behavior.

To illustrate the semantics of this interaction, we discuss
how these interactions occur in BPEL4WS composition
examples.

4. Verification Approach

In this part of the paper we describe the requirements
and corresponding steps of an approach, for verifying the
compatibility of web service compositions specified in
the BPEL4WS notation, illustrated by examples.

4.1. Requirements for Verifying Compatibility

The requirements for our approach are detailed as a
series of steps; from preparation to performing the
compatibility checks. These steps are:

• Gather all orchestrations to be used in the
composition compatibility verification

• Analyze composition orchestrations to gather all
activities for each process

• Model activities based upon semantics of operation
(BPEL4WS construct semantics) between processes
and partners

• Translate BPEL4WS composition into a model
representation (FSP)

• Compile processes into finite state machine and
compose all processes into a Labeled Transition
System

• Perform Safety and Progress Checks on composed
processes to verify that safety properties are not
violated and to analyze that compatibility
requirements hold true in the composition using
formal modeling verification techniques.

To commence the approach, illustrated in Figure 3, the
implementers must collate the processes that are required
as part of the verification specification. In our example,
these are the Seller, Buyer and Marketplace
compositions. The activity analysis phase determines
which activities the composition is performing (e.g.
gather all request, receive and reply activities). These
activities are then mapped between the compositions,
and semantics placed on how one invoke is matched with
a receive statement for which we describe the process
later. A model is then produced by translation of the
BPEL4WS and process semantics applied. When this
translation has completed, the resulting processes can be
composed together to form a complete model of the
composition and checks can be made on the model to
ascertain whether success on compatibility of behavior is
achievable.

Tool
Implementer

Compatibility
Verification

Progress
results

w
e
b

Verified
process

results

Model
Gen models

Deployers

Implementer

BPEL4WS
Process

BPEL4WS
Process

BPEL4WS
Semantics

Progress

Designer

Requirements

Figure 3. Compatibility Verification Approach

4.2. BPEL4WS Composition Examples

In the Marketplace example we have the following

partial BPEL4WS construction for the Seller interaction
flow of invocations. The flow of two invocations,
requests the marketplace service twice (concurrently) to
sell different items.

 <flow name="SellerFlow">
 <invoke partner="marketplace" portType="sellPT"

operation="Offer"
inputVariable ="sellinfo"
outputVariable="offered" />

 <invoke partner="marketplace" portType="sellPT"

operation="Offer"
inputVariable ="sellinfo2"
outputVariable="offered2" />

 <!— further activities here…. >
</flow>

Equally, for any offered items, we require a buyer
process to support buyers requesting items;

 <sequence name="BuyerSequence">
 <invoke partner="marketplace" portType="buyPT"

operation="Request"
 inputVariable ="buyinfo"

outputVariable="offereditems" />
</sequence>

Whilst a corresponding activity in the Marketplace
interaction process between seller and buyer, is:

 <sequence name="RequestPhase">
 <receive partner="seller" portType="tns:sellPT"

operation="Offer" variable ="sellitem"
createInstance="yes" name="SellerReceive" />

 <receive partner="buyer" portType="tns:buyPT"

operation="Request" variable ="reqitem"
createInstance="yes" name="BuyerReceive" />

 <reply partner="seller" portType="tns:sellPT"

operation="Offer" variable ="buyitem"
name="SellReply" />

 </sequence>

The potential “cause effect” of the composition
interaction of seller, buyer and marketplace processes is
illustrated as a message sequence chart in Figure 4.

Seller MarketPlace Buyer

seller.invoke.offer

Suspended
invoke

<receive>

<receive> <invoke>

<i
nv

ok
e>

<reply>marketplace.reply.request

buyer.invoke.request

Figure 4. Synchronization of related activities

in Marketplace Composition

4.3. Semantics of BPEL4WS communication

A detailed translation of BPEL4WS to FSP models is
given in [3], however, we add to this the semantics for
how to translate the connectivity and communication
between activities of the partner processes rather than
from a single process focus. To commence this we
require a process to analyze which activities are
partnered in the compositions. For example, invoke
from the seller process (to offer a product) will be
received by the marketplace process (receive offer
product from seller). Equally the buyer invokes activity,
to request for a product, will be aligned with receive in
the marketplace process. In BPEL4WS, the
communication is based upon a protocol of behavior for
a local service. However, the partner communication
can concisely be modeled using the synchronous message
passing model, described in [14]. The Sender-Receiver
example discussed uses Channels to facilitate message
passing between such a sender and receiver model. The
representation of a channel in BPEL4WS is known as a
port. The significant element of this discussion used in
our process is that of synchronization of the invoking
and receiving messages within compositions between
ports and whether this has been constructed concurrently

(FLOW construct in BPEL4WS) or as a sequence
(SEQUENCE construct in BPEL4WS) of activities.

4.4. Partner Activity Models and Semantics

The process models for the example can be

constructed in FSP by translation of flow and other
activity constructs in each process to corresponding FSP
statements and then composed as one complete model.
Transition semantics are labeled using the construct
name (invoke or receive), partner (seller) name, partner
process name (marketplace) and by the operation being
requested (e.g. offer a product). These provide us with a
set of labeled process transitions, such as “invoke_seller
_marketplace_offer”. If there is more than one invoke in
the seller process, then this can be sequentially
numbered. Equally, the message receive activity in the
Marketplace process example gives as an example
translation of “receive_seller_marketplace_offer”. The
labeled transitions can then be synchronized together by
searching for the relevant receive activity given an
invoke transition. For example, the transition of
invoke_seller_marketplace_offer is followed by a
receive.seller.marketplace_offer in the partner process.
To illustrate this activity, the examples previously in
BPEL4WS are listed below as FSP process models
(Actions -> Process, with || denoting a parallel
composition and ; a process sequence).

// SELLER FLOW MODEL
SI1 = (invoke_seller_marketplace_offer->END).
SR1 = (invoke_seller_marketplace_reply->END).
SI2 = (invoke_seller_marketplace_offer2->END).
SR2 = (invoke_seller_marketplace_reply2->END).
SSEQ1 = SI1; SR1; END.
SSEQ2 = SI2; SR2; END.
||S_BPELModel = (SSEQ1 || SSEQ2).

// BUYER SEQUENCE MODEL
BI1 =(invoke_buyer_marketplace_request->END).
BR1 =(invoke_buyer_marketplace_reply->END).
BSEQ1 = BI1; BR1; END.
||B_BPELModel = (BSEQ1).

// MARKETPLACE SEQUENCE MODEL
MPSI1=(receive_seller_marketplace_offer-> END).
MPSR1=(reply_seller_marketplace_offer->END).

Figure 5. Graphical LTS of Seller BPEL4WS Process

MPBR1=(reply_buyer_mp_request ->
reply_seller_mp_offer -> END).

MPSSEQ1 = MPSI1; MPSR1; END.
MPBSEQ1 = MPBI1; MPBI1; END.
||MP_BPELModel = (MPSSEQ1 || MPBSEQ1).
// MARKETPLACE SEQUENCE END

Each FSP Process can be compiled as a Labelled

Transition System (LTS), for which an example for the
seller flow process is illustrated in Figure 5. However,
we need to be able to connect models for verification.

4.5. Message Invocation Connectors

To model the interaction between processes we
require a process link between the <invoke>, <receive>
and <reply> actions of the BPEL4WS processes and a
model of how these interactions are buffered across the
distributed system. Partner process activity interactions
can be represented in FSP by using the notion of a
connector (Figure 6), which encapsulates the
interaction between the components of architecture.
This is implemented in FSP as a monitor, allowing us
to combine the concepts of information hiding and
synchronization (Figure 7).

BPEL4WS

Process

BPEL4WS

Process

Port Connector Model

<invoke input>

<invoke output>

<receive>

<reply>

Port Conn

Figure 6. BPEL4WS Process Port Connector

“Rendezvous” (Request-Reply) invocations are

specified in BPEL4WS with the <invoke> construct,
with both input and output container attributes. To
model these types of interactions, we use a generic
synchronous port model for each process port. In FSP,
an example of this is specified as follows;

// SYNCH REQUEST-REPLY PORT MODEL
PORT_REPLY = (reply[v:M]->
invoke_output[v]->PORT_REPLY).
PORT_INVOKE = (invoke_input[v:M] ->
receive[v]-> PORT_INVOKE).
||PORT1 = (PORT_INVOKE || PORT_REPLY).

Synchronous invocations specified with the

<invoke> construct and only an input container
attribute declare an interaction on a request only basis
(there is no reply expected). The model for this is;

// SYNCH REQUEST ONLY PORT MODEL
PORT_INVOKE = (invoke_input[v:M] ->
receive[v]-> PORT_INVOKE).
||PORT2 = (PORT_INVOKE).

With both of these invocation model types, the
connection interaction for invoke activities in
BPEL4WS can be modeled effectively using transition
links for send, receive and reply processes in FSP. The
task of modeling the invocation process and port is
completed by using the re-labeling feature of FSP
linking the appropriate activities between process and
port. An example of this is;

/ {invoke_seller_marketplace_offer /
invoke_input,receive_seller_marketplace
_offer / receive}

Figure 7. Connector Model for Invoke-Reply

4.6. Parallel Composition with Connectors

To complete the modeling of the compositions, we

specify an architecture model composing the previous
models for seller, seller port, marketplace, buyer port
and buyer processes. The statement for this is;

||CompArch = (S_BPELModel || S_PORT1 ||
MP_BPELModel || B_PORT1 || B_BPELModel).

Using the LTSA tool [14], we are now able to

compile these connectors as FSP models into a
complete LTS, and begin to assess correctness. A
partial view of a compiled architecture LTS model for
the seller interactions with seller port and the
Marketplace process is illustrated in Figure 8. As we
now have a complete model, we can use this as the
basis to perform our verification tests.

4.7. Safety and Liveness Property Verification

A safety property Q in FSP is represented by an
image of the LTS of the process expression that defines
the property. The image LTS has each state of the
original LTS and has a transition from each state for
every action in the process alphabet of the original.
Transactions added to the image LTS are to the error-
state and signify a failure in verification. Formally, to
check a safety property of an LTS we use the following
formula;

Figure 8. Partial View of Graphical LTS model of Seller-Marketplace composition port interactions

Property Q = E : lts(Q) = def image(lts(E)),

For an LTS P = <S, A, ∆, p>, image(P) =
<S ∪ {π}, A, ∆’, q>, where ∆’ = ∆ ∪ {(s,a, π)}|s
∈ S ,a ∈ A, and s’ ∈ S : (s,a,s’) ∈ ∆
where S is a finite set of states, A denotes the
alphabet of P and ∆ a transition map between actions

The result for either safety or liveness verification tests
is true whenever a required property (Q) for verification
is observed in (process1 || process2 …|| processx) where ||
is an FSP parallel process composition operator. The
main function of verifying safety compatibility between
compositions is that it is deadlock free. Deadlock
analysis of a LTS model involves performing an
exhaustive search of the LTS for deadlock states (i.e.
states with no outgoing transitions. This search is built
into the LTSA tool which when invoked can detect such
a presence. The LTSA supports Compositional
R∆eachability Analysis (CRA) of a software system
based on its architecture. CRA incrementally computes
and abstracts the behavior of composite components
based on behavior of their immediate children. Given
the model of the composition and a set of properties
(assumptions) we are interested to verify, we can also
use the LTSA tool to perform a series of traces on this
set of safety properties. For example, the following
property verifies that in a given composition, the seller
process invocation of the “offerproduct” operation has
an equivalent receive operation in the marketplace
process.

property SELLERINVRECEIVE =
(invoke_seller_marketplace_offer->
receive_seller_marketplace_offer).

Similarly, we can specify an FSP progress statement

to test liveness properties with an expression of a
required test that a sequence will eventually occur.
Using our example previously, to test that a reply can
finally be given we could express a property as;

progress MPSELLERINVREPLY =
{invoke_seller_marketplace_reply}.

We have also been able to model fault tolerance and

compensation sequences in BPEL4WS processes,
however, further work is required on verification in this
area to manage the scoping and specific fault
occurrences within process activity groups.

4.8. Analysis of Example Composition

We illustrate our approach with an analysis of the
example used in section 4.2. We perform the
translation of BPEL4WS to FSP, and then use the
LTSA tool to compile the models and perform safety
and progress checks for each compatibility test. In this
case, no deadlocks are found. However, if we introduce
a specific error, such as omitting a reply to the seller
process from the Marketplace process, the following
safety check results are displayed;

Trace to DEADLOCK:
 invoke_seller_marketplace_offer.0
 invoke_seller_marketplace_offer.1
 receive_seller_marketplace_offer.0
 invoke_buyer_marketplace.request.0
 receive_buyer_marketplace_request.0
 reply_buyer_marketplace_request.0
 invoke_buyer_marketplace_reply.0
 deadlock–seller reply not observed

The deadlock appears due to the lack of a reply for a

seller in the marketplace process. By iteratively
building the BPEL4WS processes, performing the
translation and verification approach described in this
paper, the implementers can be assured that an
interacting coordinated set of compositions can be
deployed and executed appropriately. Whilst this is a
time consuming task by hand, the use of an automated
verification tool for this approach provides a simplified
task to include in the wider development process.

5. Discussion and Conclusions

Other work on modeling and verification of web
service compositions have been reported in [15]. This
work was reported using an earlier, non-standard,
composition language and translated into Promela
(automata) processes. The Web Service Choreography
Interface (WSCI) [2] also describes the interaction of
web service compositions; however, implementation
verification from a business system composed of web
service orchestrations will need to be thorough.

To automate this approach we are leveraging the
work for local web service composition verification
previously, and adding multiple process verification to
the feature list. The functionality is currently a plug-in
[5] for the LTSA tool, however, we will be migrating
this tool across to the open-source Eclipse development
environment for distribution to a wider audience and to
seek to integrate with other web service design tools.

We have presented an approach to modeling and
verifying web service compositions constructed in the
BPEL4WS emerging standard specification. The use of
our approach is currently limited to the availability of
private processes implemented. BPEL4WS defines an
abstract process which furthers the interaction interface
using asynchronous “callback” declarations of ports.
We are seeking to broaden this work by combining both
abstract and private models and providing full
verification for choreography at implementation and
coordination layers. Further work is also required with
respect to transactional modeling and to verify this
against compensation routines between processes, as
related faults must explicitly be mapped to known fault
naming conventions. We believe that in parallel with
work such as WSCI for choreography, WS-Transaction
for transaction handling and WS-Coordination/WS-
Policy for profiling, roles and service assurance during
web service conversations there is sufficient need for a
verification process to confirm that designs and
implementations will prove successful once deployed.
By combining these models with the complete system
model, the additional verification of these routines is
incorporated into our approach. We are also seeking to
provide specification decomposition based upon a
resource model of how BPEL4WS processes are
composed to distributed requirements.

6. Acknowledgements

The authors would like to acknowledge that this

research was supported, in part, by the STATUS
ESPIRIT project (IST-2001-32298), the EPSRC
READS project (GR/S03270/01) and by an IBM

Innovation Award (2004).

7. References

[1] D. Chakraborty and A. Joshi, "Dynamic Service

Composition: State-of-the-Art and Research Directions,"
University Of Maryland, Baltimore, December 19 2001.

[2] A. Airkin, S. Askary, S. Fordin, W. Jekeli,, D. Orchard,
K. Riemer, "Web Service Choreography Interface
(WSCI) 1.0," W3C Working Group 2002.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-
based Verification of Web Service Compositions,"
presented at Eighteenth IEEE International Conference
on Automated Software Engineering (ASE), Montreal,
Canada, 2003.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, S. Thatte, and S.
Weerawarana, "Business Process Execution Language
For Web Services, Version 1.1," May, 2003.

[5] H. Foster, "LTSA-BPEL4WS Tool." Department of
Computing, Imperial College London, 2003. Available
to download at http://www.doc.ic.ac.uk/ltsa/bpel4ws.

[6] M. Fowler, "Components and the World Of Chaos,"
IEEE Software, vol. 3, pp. 83-85, 2003.

[7] J. Yang and M. P. Papazoglou, "Service Components for
Managing the Life-Cycle of Service Compositions,"
Information Systems, 2003.

[8] W. M. P. v. d. Aalst, M. Dumas, and A. H. M. t.
Hofstede, "Web Service Composition Languages: Old
Wine in New Bottles?," presented at Proceeding of the
29th EUROMICRO Conference, Los Alamitos, CA,
2003.

[9] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein,
T. Storey, and S. Thatte, "Web Services Transaction
(WS-Transaction)," BEA Systems, IBM, Microsoft
Corporation, Inc 2002.

[10] F. Cabrera, G. Copeland, W. Cox, M. Feingold, T.
Freund, J. Johnson, C. Kaler, J. Klein, D. Langworthy,
A. Nadalin, D. Orchard, I. Robinson, J. Shewchuk, and
T. Storey, "Web Services Coordination (WS-
Coordination)," BEA Systems, IBM, Microsoft
Corporation, Inc 2002.

[11] R. J. Hall, "Open Modeling in Multi-stakeholder
Distributed Systems" presented at Proc. First Workshop
on the State of the Art in Automated Software
Engineering,, 2003.

[12] M. Larrson and I. Crnkovic, "New Challenges for
Configuration Management," presented at the SCM-9
workshop, Toulouse, France, 1999.

[13] R. Khalaf, N. Mukhi, and S. Weerawarana, "Service-
Oriented Composition in BPEL4WS," presented at The
Twelfth International World Wide Web Conference,
Budapest, HUNGARY, 2003.

[14] J. Magee and J. Kramer, Concurrency - State Models
and Java Programs: John Wiley, 1999.

[15] S. Nakajima, "Model-Checking Verification for
Reliable Web Service," presented at OOPSLA 2002
Workshop on Object-Oriented Web Services, Seattle,
Washington, 2002.

