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Abstract 
In this paper we discuss a model-based approach to 
verifying process interactions for coordinated web 
service compositions.  The approach uses finite state 
machine representations of web service orchestrations 
and assigns semantics to the distributed process 
interactions.  The move towards implementing web 
service compositions by multiple interested parties as a 
form of distributed system architecture promotes the 
ability to support 1) compatibility verification of 
activities and transactions in all the processes and 2) 
that the composition is equivalent to the distributed 
system specification.  The described approach is 
supported by a suite of cooperating tools for 
specification, formal modeling and providing 
verification results from orchestrated web service 
interactions. 
 
 
1. Introduction 
 

Web Services are an emerging software architecture 
that harnesses the flexibility and reach of the internet 
with that of extended distributed systems engineering 
practices.  Web Service workflow languages aim to fulfill 
the requirement of a coordinated and collaborative 
service invocation specification to support long running 
and multi-service transactions.  Amongst the key issues 
in the design and implementation of components in this 
architecture style for critical business applications, is the 
formation of compositions (also known as 
Orchestrations) as a series of interacting workflows [1] 
and how transactions of activities interact to support the 
underlying business requirements.  This issue is 
collectively wrapped up in the term Web Service 
Choreography [2].  These interacting workflows can be 
constructed using various emerging standards and 
managed by multiple parties in the domain of interest 
and as such the task of linking these activities across 
workflows within this domain is crucial.  This work 
considers the issues in web service choreography by 
expanding on earlier work discussing modeling local 
web service compositions [3] which focused on the 
analysis and verification of behavior models of web 
service compositions implemented in the Business 

Process Execution Language for Web Services 
(BPEL4WS) [4] specification.  Additional tool support 
for this approach has been documented in [5].  In this 
paper we extend a formal approach to modeling and 
analyzing the behavior of local web service compositions 
with that of interacting web service compositions.  The 
aim of this analysis concentrates on the compatibility of 
processes that take part in the complete composition 
environment given a system specification.  With an 
accurate analysis process, the implementers of the 
composition can be assured that interaction will be 
compatible and therefore match the requirements of 
interaction. To illustrate how these interacting 
compositions are verified, we have constructed an 
example distributed process, consisting of a series of web 
service workflows.  These are translated to a domain 
independent representation, in the form of the Finite 
State Process (FSP) notation, which is compiled using 
the Labeled Transition System Analyzer (LTSA) tool, 
and properties specified to designate the activities to be 
assured.  The remainder of the paper is organized as 
follows:  Section 2 describes the background and the 
issues involved in web service compositions illustrated 
with a motivating example composition based upon an 
E-Marketplace.  Section 3 discusses how compatibility 
analysis of web service compositions can be undertaken, 
whilst section 4 details the requirements and steps of an 
approach to verifying web service compositions, and on 
the results gained by its use.  Section 5 concludes this 
paper with a broader review of related work, how the 
described approach is used as part of an automated 
verification tool and how it is believed that the work 
described in this paper has contributed to this area of 
research. 
 
2. Background 
 

Web Services exhibit many similarities to traditional 
software components that amongst which resemble 
hosted objects which have a simple, well-defined 
interface, and that are designed with the expectation of 
reuse.  In fact, the notions and ideas presented in 
constructing software components are highly applicable 
to web services, as they could simply be viewed as a type 
of software component architecture but with the addition 



of yielding a standard communication model.  Some 
problems of component composition have been reported 
in [6] as: 

 
• Initially identifying the appropriate components to 

implement the desired functionality 
• determining and resolving gaps between desired 

functionality and the component’s functionality  
• specifying the component interactions 

 
These issues are equally applicable to web service 

components.   As web service deployment and use 
becomes more widespread, the notion of managing the 
composition of web services to integrate processes 
together is being highlighted within research and the 
adopted standards [7]. Web Service compositions, over 
that of software component compositions however, hold 
additional issues.   

 
2.1. Web Service Compositions 

 
Web Service Compositions are groups of related 

services either locally or globally hosted on web servers.  
The difference with web service compositions over that 
of traditional software component compositions is that 
web services compositions focus on the “autonomic open 
system”; in that they are designed to exhibit a service for 
varied client use and these can be reused without 
significant changes incurred to the design, potentially by 
any interested party.  They also exhibit the operational 
differences where run-time binding is highly loosely 
coupled enabling a dynamic service invocation.  Web 
Service composition communication tends to be 
composed through three specific workflow activities 
(request, receive and reply) [8].  In BPEL4WS requests, 
receive and replies are specified using the <invoke>, 
<receive> and <reply> constructs respectively.  
Figure 1 illustrates a conceptual diagram of 
communicating partner web service compositions.    
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Figure 1.  Conceptual diagram of interacting 

web service compositions 

Web Services are also encapsulated components that 
do not expose their internal behavior and as such, the 
operation of using them is therefore also somewhat 
“black box”.  In additional to the traditional component 
verification issues, several aspects of web service 
compositions make a viable approach to verification a 
highly desirable proposal: 

 
• The coordination of web service composition 

activities is crucial to synchronizing appropriate 
behavior between processes.  BPEL4WS proposes 
“abstract processes” for choreography; however this 
can only currently be validated at runtime. 

• The clients of compositions will expect different 
behavior depending on their individual requests and 
therefore the composition must be tested against 
various scenarios to reflect these different 
sequences of activities. 

• There is an assumption that a web service 
composition will work in any process environment.  
The assurance can only be given if interacting 
services know whether a composition exhibits the 
correct behavior. 

• To facilitate coordinated transactions of web service 
compositions, the appropriate activities must be 
provided to support web service standards (e.g. 
WSCI [2], WS-Transaction [9] and WS-
Coordination [10] specifications). 

 
Web Service compositions can also be seen as the 

implementation layer of a multi-stakeholder distributed 
system (MSDS) [11].  An MSDS is defined as; “a 
distributed system in which subsets of the nodes are 
designed, owned, or operated by distinct stakeholders.  
The nodes of the system may, therefore, be designed or 
operated in ignorance of one another, or with different, 
possibly conflicting goals”.  With a service-oriented 
architecture the focus is on interaction with multiple 
parties and the behavior could be somewhat ad-hoc 
depending on the requirements of the partner services.  
The desirable element here is that to concisely reason 
about the applicability of a solution we must be able to 
determine if a distributed solution is correctly 
orchestrated.  Properties to satisfy this verification may 
consist of a series of questions about the composition; for 
example; if a request to purchase a product is sent to a 
partner process, will the process eventually confirm the 
purchase? 

 
2.2. Motivating Example 
 

A simple but effective example of the issues in web 
service compositions is described given an E-Commerce 



Marketplace system.  One such scenario in this system 
could include the seller and buyer interaction of products 
with the Marketplace.  We have illustrated such a 
process as a message sequence chart composition in 
Figure 2.  The example consists of four phases, from 
initial requests of offer and buy, through negotiation of 
prices, to a price agreement being made.  
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Figure 2.  An example scenario of interacting 

web service compositions 
 

This composition consists of three workflow 
processes.  From the Seller composition perspective, the 
behavior of the marketplace of interest is that in the 
ability to receive a request for “offering a product”, 
“offers sell price” and “deal made”.  However, from the 
buyer perspective the behavior of interest is the ability to 
make requests for “request for product”, “request price” 
and “deal made”.  Although both clients of the 
marketplace are ultimately interested in whether deal can 
be made, the paths to this end are different.  For this 
paper, we concentrate on the perspective of the Seller, 
Buyer and Marketplace compositions and their initial 
interaction behaviors in this example.  

 
3. Compatibility of Compositions 
 

Three levels of compatibility for component 
compositions have been previously reported in [12].  
These are defined as interface, behavior and input-
output (data) compatibility.  Whilst input-output 
compatibility is of interest, it is not the main focus of this 
paper.  Therefore, for behavior we apply the first two of 
these concepts for compatibility against web service 
compositions under the following topics; 

 

• Interface Compatibility – focusing on semantics 
of correlating invocations against receiving and 
message replies between partner processes. 

• Safety Compatibility – assurance that the 
composition is deadlock free and is checked against 
partial correctness of transitions. 

• Liveness Compatibility – assurance against 
starvation of progress (that the service process 
eventually terminates) and that messages received 
are served on a first-come-first-served basis. 

 
Safety Compatibility focuses on performing safety 

analysis of composition models, and determining if there 
exist any deadlocks or other properties specified by the 
analyst.  Liveness Compatibility focuses on performing 
progress analysis of composition models, and 
determining if the composition exhibits behavior which 
does not meet requirements of success.  An example of 
this is that the marketplace process can finally provide a 
“dealmade” result.   As a pre-requisite for specifying 
safety or progress analysis, we must be able to observe 
the path to this observable result which relies on the core 
activity mapping (interface compatibility).    The focus of 
verification for safety and liveness therefore is from the 
perspective of the behavior of each client process, in that, 
for each verification run we are interested in whether a 
process is activity compatible with its partner 
compositions.  As the verification process iterates 
through all client requirements for assurances of process, 
by changing focus of process compatibility, an entire 
interaction assurance can be given. 

As part of the BPEL4WS specification, abstract 
processes can be defined which hide the private 
implementation of interactions within the process.  
These are not directly executable, but they can indirectly 
impose behavior compliance upon private processes 
executed by the BPEL4WS orchestration server.   
Abstract processes may assist in execution however, as a 
BPEL4WS orchestration server validates and assures 
public protocol conformance of executing processes.  
Whilst abstract processes assist in this way, we scope this 
approach to the design of the core (known as private) 
process to capture the real interaction and goals of each 
BPEL4WS implementation and thus aid in complete 
distributed system implementation verification. We 
discuss further work around the abstract process later.  
The core semantics of BPEL4WS, discussed in [3, 8, 13] 
describe how the language provides interactions of web 
service compositions.  To model these semantics in our 
approach requires us to map between activities in 
processes, and to evaluate the questions suggested 
previously, and that the order of these activities is 
sufficient to provide the required composition behavior.  



To illustrate the semantics of this interaction, we discuss 
how these interactions occur in BPEL4WS composition 
examples. 

 
4. Verification Approach 
 

In this part of the paper we describe the requirements 
and corresponding steps of an approach, for verifying the 
compatibility of web service compositions specified in 
the BPEL4WS notation, illustrated by examples. 
 
4.1. Requirements for Verifying Compatibility 
 

The requirements for our approach are detailed as a 
series of steps; from preparation to performing the 
compatibility checks.  These steps are: 
 

• Gather all orchestrations to be used in the 
composition compatibility verification 

• Analyze composition orchestrations to gather all 
activities for each process 

• Model activities based upon semantics of operation 
(BPEL4WS construct semantics) between processes 
and partners 

• Translate BPEL4WS composition into a model 
representation (FSP) 

• Compile processes into finite state machine and 
compose all processes into a Labeled Transition 
System 

• Perform Safety and Progress Checks on composed 
processes to verify that safety properties are not 
violated and to analyze that compatibility 
requirements hold true in the composition using 
formal modeling verification techniques. 

 
To commence the approach, illustrated in Figure 3, the 
implementers must collate the processes that are required 
as part of the verification specification.  In our example, 
these are the Seller, Buyer and Marketplace 
compositions.  The activity analysis phase determines 
which activities the composition is performing (e.g. 
gather all request, receive and reply activities).  These 
activities are then mapped between the compositions, 
and semantics placed on how one invoke is matched with 
a receive statement for which we describe the process 
later.  A model is then produced by translation of the 
BPEL4WS and process semantics applied.  When this 
translation has completed, the resulting processes can be 
composed together to form a complete model of the 
composition and checks can be made on the model to 
ascertain whether success on compatibility of behavior is 
achievable. 
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Figure 3.  Compatibility Verification Approach 

 
 
4.2. BPEL4WS Composition Examples 

 
In the Marketplace example we have the following 

partial BPEL4WS construction for the Seller interaction 
flow of invocations.  The flow of two invocations, 
requests the marketplace service twice (concurrently) to 
sell different items. 

 
    <flow name="SellerFlow"> 
     <invoke partner="marketplace" portType="sellPT" 

operation="Offer"  
inputVariable ="sellinfo" 
outputVariable="offered" />  

     <invoke partner="marketplace" portType="sellPT" 

operation="Offer"  
inputVariable ="sellinfo2" 
outputVariable="offered2" />  

       <!— further activities here…. >  
</flow> 

 

Equally, for any offered items, we require a buyer 
process to support buyers requesting items; 

 
  <sequence name="BuyerSequence"> 
     <invoke partner="marketplace" portType="buyPT" 

operation="Request"  
        inputVariable ="buyinfo" 

outputVariable="offereditems" /> 
</sequence> 
 

Whilst a corresponding activity in the Marketplace 
interaction process between seller and buyer, is: 
 
   <sequence name="RequestPhase"> 
     <receive partner="seller" portType="tns:sellPT" 

operation="Offer" variable ="sellitem" 
createInstance="yes" name="SellerReceive" />  

     <receive partner="buyer" portType="tns:buyPT" 

operation="Request" variable ="reqitem" 
createInstance="yes" name="BuyerReceive" />  

     <reply partner="seller" portType="tns:sellPT" 

operation="Offer" variable ="buyitem" 
name="SellReply" /> 

  </sequence> 



The potential “cause effect” of the composition 
interaction of seller, buyer and marketplace processes is 
illustrated as a message sequence chart in Figure 4. 
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Figure 4.  Synchronization of related activities 

in Marketplace Composition 
 
4.3. Semantics of BPEL4WS communication 
 

A detailed translation of BPEL4WS to FSP models is 
given in [3], however, we add to this the semantics for 
how to translate the connectivity and communication 
between activities of the partner processes rather than 
from a single process focus.  To commence this we 
require a process to analyze which activities are 
partnered in the compositions.  For example, invoke 
from the seller process (to offer a product) will be 
received by the marketplace process (receive offer 
product from seller).  Equally the buyer invokes activity, 
to request for a product, will be aligned with receive in 
the marketplace process.  In BPEL4WS, the 
communication is based upon a protocol of behavior for 
a local service.   However, the partner communication 
can concisely be modeled using the synchronous message 
passing model, described in [14].  The Sender-Receiver 
example discussed uses Channels to facilitate message 
passing between such a sender and receiver model.  The 
representation of a channel in BPEL4WS is known as a 
port. The significant element of this discussion used in 
our process is that of synchronization of the invoking 
and receiving messages within compositions between 
ports and whether this has been constructed concurrently 

(FLOW construct in BPEL4WS) or as a sequence 
(SEQUENCE construct in BPEL4WS) of activities. 

 
4.4. Partner Activity Models and Semantics 

 
The process models for the example can be 

constructed in FSP by translation of flow and other 
activity constructs in each process to corresponding FSP 
statements and then composed as one complete model.  
Transition semantics are labeled using the construct 
name (invoke or receive), partner (seller) name, partner 
process name (marketplace) and by the operation being 
requested (e.g. offer a product). These provide us with a 
set of labeled process transitions, such as “invoke_seller 
_marketplace_offer”.  If there is more than one invoke in 
the seller process, then this can be sequentially 
numbered.  Equally, the message receive activity in the 
Marketplace process example gives as an example 
translation of “receive_seller_marketplace_offer”. The 
labeled transitions can then be synchronized together by 
searching for the relevant receive activity given an 
invoke transition.  For example, the transition of 
invoke_seller_marketplace_offer is followed by a 
receive.seller.marketplace_offer in the partner process.  
To illustrate this activity, the examples previously in 
BPEL4WS are listed below as FSP process models 
(Actions -> Process, with || denoting a parallel 
composition and ; a process sequence). 

 
// SELLER FLOW MODEL 
SI1 = (invoke_seller_marketplace_offer->END). 
SR1 = (invoke_seller_marketplace_reply->END). 
SI2 = (invoke_seller_marketplace_offer2->END). 
SR2 = (invoke_seller_marketplace_reply2->END). 
SSEQ1 = SI1; SR1; END. 
SSEQ2 = SI2; SR2; END. 
||S_BPELModel = (SSEQ1 || SSEQ2). 
 
// BUYER SEQUENCE MODEL 
BI1 =(invoke_buyer_marketplace_request->END). 
BR1 =(invoke_buyer_marketplace_reply->END). 
BSEQ1 = BI1; BR1; END. 
||B_BPELModel = (BSEQ1). 
 
// MARKETPLACE SEQUENCE MODEL  
MPSI1=(receive_seller_marketplace_offer-> END). 
MPSR1=(reply_seller_marketplace_offer->END). 

 

 
Figure 5.  Graphical LTS of Seller BPEL4WS Process 



MPBR1=(reply_buyer_mp_request -> 
reply_seller_mp_offer -> END). 

MPSSEQ1 = MPSI1; MPSR1; END. 
MPBSEQ1 = MPBI1; MPBI1; END. 
||MP_BPELModel = (MPSSEQ1 || MPBSEQ1). 
// MARKETPLACE SEQUENCE END 

 
Each FSP Process can be compiled as a Labelled 

Transition System (LTS), for which an example for the 
seller flow process is illustrated in Figure 5.  However, 
we need to be able to connect models for verification. 

 
4.5. Message Invocation Connectors 
 

To model the interaction between processes we 
require a process link between the <invoke>, <receive> 
and <reply> actions of the BPEL4WS processes and a 
model of how these interactions are buffered across the 
distributed system.  Partner process activity interactions 
can be represented in FSP by using the notion of a 
connector (Figure 6), which encapsulates the 
interaction between the components of architecture.  
This is implemented in FSP as a monitor, allowing us 
to combine the concepts of information hiding and 
synchronization (Figure 7).   

BPEL4WS

Process

BPEL4WS

Process

Port Connector Model

<invoke input>

<invoke output>

<receive>

<reply>

Port Conn

 
Figure 6. BPEL4WS Process Port Connector  

 
“Rendezvous” (Request-Reply) invocations are 

specified in BPEL4WS with the <invoke> construct, 
with both input and output container attributes.  To 
model these types of interactions, we use a generic 
synchronous port model for each process port.  In FSP, 
an example of this is specified as follows; 
 

// SYNCH REQUEST-REPLY PORT MODEL 
PORT_REPLY = (reply[v:M]-> 
invoke_output[v]->PORT_REPLY). 
PORT_INVOKE = (invoke_input[v:M] -> 
receive[v]-> PORT_INVOKE). 
||PORT1 = (PORT_INVOKE || PORT_REPLY). 
 
Synchronous invocations specified with the 

<invoke> construct and only an input container 
attribute declare an interaction on a request only basis 
(there is no reply expected).  The model for this is; 
 

// SYNCH REQUEST ONLY PORT MODEL 
PORT_INVOKE = (invoke_input[v:M] -> 
receive[v]-> PORT_INVOKE). 
||PORT2 = (PORT_INVOKE). 

With both of these invocation model types, the 
connection interaction for invoke activities in 
BPEL4WS can be modeled effectively using transition 
links for send, receive and reply processes in FSP.  The 
task of modeling the invocation process and port is 
completed by using the re-labeling feature of FSP 
linking the appropriate activities between process and 
port.  An example of this is; 
 

/ {invoke_seller_marketplace_offer / 
invoke_input,receive_seller_marketplace
_offer / receive} 

   
 

 
Figure 7. Connector Model for Invoke-Reply 
 

4.6. Parallel Composition with Connectors 
 
To complete the modeling of the compositions, we 

specify an architecture model composing the previous 
models for seller, seller port, marketplace, buyer port 
and buyer processes.  The statement for this is; 

 
||CompArch = (S_BPELModel || S_PORT1 ||        
MP_BPELModel || B_PORT1 || B_BPELModel). 
 
Using the LTSA tool [14], we are now able to 

compile these connectors as FSP models into a 
complete LTS, and begin to assess correctness.   A 
partial view of a compiled architecture LTS model for 
the seller interactions with seller port and the 
Marketplace process is illustrated in Figure 8.  As we 
now have a complete model, we can use this as the 
basis to perform our verification tests. 
 
4.7. Safety and Liveness Property Verification 
 

A safety property Q in FSP is represented by an 
image of the LTS of the process expression that defines 
the property.  The image LTS has each state of the 
original LTS and has a transition from each state for 
every action in the process alphabet of the original.    
Transactions added to the image LTS are to the error-
state and signify a failure in verification.  Formally, to 
check a safety property of an LTS we use the following 
formula; 



 
Figure 8.  Partial View of Graphical LTS model of Seller-Marketplace composition port interactions 

 
Property  Q = E : lts(Q) = def image(lts(E)), 

For an LTS P = <S, A, ∆, p>, image(P) =  
<S ∪ {π}, A, ∆’, q>, where ∆’ = ∆ ∪ {(s,a, π)}|s 
∈ S ,a ∈ A, and s’ ∈ S : (s,a,s’) ∈ ∆ 
where S is a finite set of states, A denotes the 
alphabet of P and ∆ a transition map between actions 

 
The result for either safety or liveness verification tests 
is true whenever a required property (Q) for verification 
is observed in (process1 || process2 …|| processx) where || 
is an FSP parallel process composition operator.  The 
main function of verifying safety compatibility between 
compositions is that it is deadlock free.  Deadlock 
analysis of a LTS model involves performing an 
exhaustive search of the LTS for deadlock states (i.e. 
states with no outgoing transitions.  This search is built 
into the LTSA tool which when invoked can detect such 
a presence.  The LTSA supports Compositional 
R∆eachability Analysis (CRA) of a software system 
based on its architecture.  CRA incrementally computes 
and abstracts the behavior of composite components 
based on behavior of their immediate children.  Given 
the model of the composition and a set of properties 
(assumptions) we are interested to verify, we can also 
use the LTSA tool to perform a series of traces on this 
set of safety properties.  For example, the following 
property verifies that in a given composition, the seller 
process invocation of the “offerproduct” operation has 
an equivalent receive operation in the marketplace 
process. 
 

property SELLERINVRECEIVE =  
(invoke_seller_marketplace_offer-> 
receive_seller_marketplace_offer).  

 
Similarly, we can specify an FSP progress statement 

to test liveness properties with an expression of a 
required test that a sequence will eventually occur.  
Using our example previously, to test that a reply can 
finally be given we could express a property as; 

 

progress MPSELLERINVREPLY =  
{invoke_seller_marketplace_reply}. 

 
We have also been able to model fault tolerance and 

compensation sequences in BPEL4WS processes, 
however, further work is required on verification in this 
area to manage the scoping and specific fault 
occurrences within process activity groups. 

 
4.8. Analysis of Example Composition 
 

We illustrate our approach with an analysis of the 
example used in section 4.2.  We perform the 
translation of BPEL4WS to FSP, and then use the 
LTSA tool to compile the models and perform safety 
and progress checks for each compatibility test.  In this 
case, no deadlocks are found.  However, if we introduce 
a specific error, such as omitting a reply to the seller 
process from the Marketplace process, the following 
safety check results are displayed; 

 
Trace to DEADLOCK:  
  invoke_seller_marketplace_offer.0 
  invoke_seller_marketplace_offer.1 
  receive_seller_marketplace_offer.0 
  invoke_buyer_marketplace.request.0 
  receive_buyer_marketplace_request.0 
  reply_buyer_marketplace_request.0 
  invoke_buyer_marketplace_reply.0 
  *deadlock–seller reply not observed* 

 
The deadlock appears due to the lack of a reply for a 

seller in the marketplace process.  By iteratively 
building the BPEL4WS processes, performing the 
translation and verification approach described in this 
paper, the implementers can be assured that an 
interacting coordinated set of compositions can be 
deployed and executed appropriately.  Whilst this is a 
time consuming task by hand, the use of an automated 
verification tool for this approach provides a simplified 
task to include in the wider development process. 

 



5. Discussion and Conclusions 
 

Other work on modeling and verification of web 
service compositions have been reported in [15].  This 
work was reported using an earlier, non-standard, 
composition language and translated into Promela 
(automata) processes.  The Web Service Choreography 
Interface (WSCI) [2] also describes the interaction of 
web service compositions; however, implementation 
verification from a business system composed of web 
service orchestrations will need to be thorough.   

To automate this approach we are leveraging the 
work for local web service composition verification 
previously, and adding multiple process verification to 
the feature list.  The functionality is currently a plug-in 
[5] for the LTSA tool, however, we will be migrating 
this tool across to the open-source Eclipse development 
environment for distribution to a wider audience and to 
seek to integrate with other web service design tools. 

We have presented an approach to modeling and 
verifying web service compositions constructed in the 
BPEL4WS emerging standard specification.  The use of 
our approach is currently limited to the availability of 
private processes implemented.  BPEL4WS defines an 
abstract process which furthers the interaction interface 
using asynchronous “callback” declarations of ports.  
We are seeking to broaden this work by combining both 
abstract and private models and providing full 
verification for choreography at implementation and 
coordination layers.  Further work is also required with 
respect to transactional modeling and to verify this 
against compensation routines between processes, as 
related faults must explicitly be mapped to known fault 
naming conventions.  We believe that in parallel with 
work such as WSCI for choreography, WS-Transaction 
for transaction handling and WS-Coordination/WS-
Policy for profiling, roles and service assurance during 
web service conversations there is sufficient need for a 
verification process to confirm that designs and 
implementations will prove successful once deployed.  
By combining these models with the complete system 
model, the additional verification of these routines is 
incorporated into our approach.  We are also seeking to 
provide specification decomposition based upon a 
resource model of how BPEL4WS processes are 
composed to distributed requirements. 
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