Incorporating QoS Specifications in Service
Discovery

V. Deora, J. Shao, G. Shercliff, P.J. Stockreisser, W.A. Gray, and N.J. Fiddian

School of Computer Science
Cardiftf University
Cardiff, UK
v.deora@cs.cf.ac.uk

Abstract. In this paper, we extend the current approaches to service
discovery in a service oriented computing environment, such as Web Ser-
vices and Grid, by allowing service providers and consumers to express
their promises and requirements for quality of service (QoS). More specif-
ically, we allow service providers to advertise their services in an extended
DAML-S that supports quality specifications, and we allow service con-
sumers to request services by stating required quality levels. We propose
a model here for incorporating QoS specifications and requirements in
service discovery, and describe how matchmaking between advertised and
requested services based on functional as well as quality requirements is
supported in our model.

1 Introduction

There is a growing interest in service oriented computing (SOC) in recent years
[M21314]. Central to SOC is the notion of a service which can broadly be con-
sidered as a software component that represents some computational or data-
offering capability. By allowing services to be advertised declaratively, discovered
dynamically and invoked remotely, SOC makes it possible for users to locate,
select and execute services without having to know how and where they are
implemented. As such, this new computing paradigm offers great potential for
distributed applications in an open environment and on a large scale.

In this paper, we consider the problem of how to support dynamic service dis-
covery within an SOC environment. This is an important issue because an SOC
environment can potentially contain thousands of autonomous services which
may come and go at any time. It is desirable therefore that the user is able to
request a service by stating declaratively what is required, rather than having
to specify how to obtain or access a specific one at a pre-determined location.
In other words, discovering which services are available to meet the requirement
of a specific service request should be performed dynamically at the time the
request is made.

A general approach to supporting this type of service discovery is based on the
register-find-bind model [B] outlined in Figure [l Here, service providers (SPs)
make their services available by registering their capabilities in a centralised

C. Bussler et al. (Eds.): WISE 2004 Workshops, LNCS 3307, pp. 252-B63], 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Incorporating QoS Specifications in Service Discovery 253

service registry. Service requesters (SRs) then locate their required services by
sending their requirements to the registry. A matchmaking component is often
implemented as part of the registry to match an incoming service request with
those available in the registry. If a match is found, the details of the advertising
SP are returned to the requesting SR. The SP and SR are then said to be bound
to complete their task.

Service Registry

Register Find

Service Providers ¢ Service Requesters
Bind

Fig. 1. A Generic Service Discovery Model

Currently, matchmaking between requested and registered services is largely
based on their functional attributes. To illustrate this, consider the following ex-
ample. Suppose that there are several SPs who offer multimedia services to PDA
or mobile phone users, and we have an SR who wishes to purchase a monthly
subscription package for science-fiction movies and news services, including 30
free text messages and at least 50 free talk minutes. This service request may be
represented abstractly as follows:

subscription_type = monthly

+ Video_Content where media_style = science_fiction
+ Html_content where html_content_type = news

+ text_messages where number_of _free_messages = 30
+ Phone_Calls where number_of_free_minutes > 50

Fig. 2. A Request for Service

Here, the request is made in terms of the required functions, for example, the
qualifying SP must offer science fiction movies. To determine which SP(s)
can offer the required service, the matchmaking component searches through
the registry, typically using a string comparison method, to see if any registered
services match some or all of the functional attributes listed in the request.
If, for example, SP1 has advertised that it offers science fiction movies or

254 V. Deora et al.

cartoons, then SP1 is identified as a potential provider for the required service
and its details are returned to the SRIY

The above model works fine if we assume that the SR is only interested in
the functional aspects of a service. In practice, however, it is quite possible that
we may have several SPs offering the same service, and just like in a common
marketplace, an SR may wish to select a service based on functional as well as
other attributes such as quality and cost. Thus, it would be desirable that the
SR can pose the following request, where frame rate = 24 and availability
= 7 days/week are QoS requirements:

subscription_type = monthly

+ Video_Content where media_style = science_fiction
(frame_rate = 24 & availability = 7 days/week)

+ Himl_content where html_content_type = news

+ text_messages where number_of_free_messages = 30

+ Phone_Calls where number_of _free_minutes = 50

Fig. 3. Service Request with QoS Requirements

The current function-based approaches are not sufficient to support this more
advanced form of service discovery. In this paper, we extend the existing ap-
proaches to service discovery by incorporating QoS specifications and require-
ments into matchmaking. That is, we let SPs advertise their functional capa-
bilities and QoS promises to the registry, and monitor the actual quality of the
services offered by the SPs. An SR can then request a service by specifying not
only functional requirements, but also QoS expectations. We propose a two-step
service discovery model here, and describe how matchmaking between adver-
tised and requested services based on functional as well as QoS requirements is
supported in our model.

The rest of the paper is organised as follows. Section 2 discusses the related
work. Section 3 introduces our service discovery model. We will explain how
service advertisement, request and matchmaking are supported in our model.
Section 4 presents conclusions and discusses future work.

2 Related Work

The progress on supporting dynamic service discovery in SOC is largely repre-
sented by the development of UDDI [6], which is currently a de facto standard
for service advertisement and discovery. The standard UDDI does not offer any

! Note that it is not necessary to find a single SP who can satisfy the SR’s request
completely, and the matchmaking component will search for all the SPs who can
serve any part of the request.

Incorporating QoS Specifications in Service Discovery 255

support for QoS specification and relies largely on keyword matching for service
discovery. Recently, some extensions have been made to UDDI to allow inclu-
sion of QoS in service specifications [7], but they support only a very limited set
of specific attributes, for example, network response time. Our approach differs
from these extensions in that we employ a QoS ontology in service specification.
This allows richer semantics of services to be specified and more sophisticated
matchmaking between advertised and requested services to be performed, using
a wide range of QoS attributes that require different means of representation,
monitoring and assessment.

Integrating QoS with service description has also been considered by the
work on deriving service level agreement (SLA) for web services. IBM, for ex-
ample, has recently introduced a framework which allows SRs to form contracts
with SPs using an XML-based language [8]. This framework also allows a rep-
resentation with which the QoS provision agreed by the SPs can be monitored.
While these works also attempt to integrate QoS with service descriptions and
store such extended service descriptions in a repository for reference, they dif-
fer from our work in that they consider QoS representation and integration for
services after they have been discovered, rather than in the initial discovery of
relevant services. In other words, we attempt to use QoS information as part of a
service-selection process, whereas the works on SLA consider it from the service
provision perspective.

Various service description languages, such as WSDL [9], DAML-S [10] and
OWL-S [11], have been proposed. WSDL is used currently in conjunction with
UDDI as a standard for describing web services. This is a low level mechanism
which does not support semantic description of services. DAML-S, and its newer
version OWL-S, are developed by the semantic web community for describing
services at a higher level. They support the use of service ontology in service
description and allow some form of reasoning in service discovery [12[I3]. Al-
though these languages are quite powerful in describing the functional aspects
of a service, they offer little support for specifying the non-functional aspects.
We also use DAML-S for service descriptions, but extend it to include explicit,
separate QoS specifications.

3 QoS-Based Service Discovery

In this section we introduce our QoS-based service discovery model. Our ap-
proach is outlined in Figure Ml which is an extension to the generic service dis-
covery model given in Figure [l

The service registry in our model consists of two components: the Yellow
Pages (YP) component and the QoS component. The YP component is similar
in purpose to the matchmaking component that we described in Section 1, and
is used to determine which advertised services match the requirements stated
in an incoming service request. Note however that in our model both functional
and quality properties may be specified. The QoS component, on the other hand,
is used to calculate the quality of a service on demand, using the QoS ratings

256 V. Deora et al.

Service Registry

YP QoS
Component Component
Regi‘ste/v ‘\Fi‘nd

| Service Providers |4—’| Service Requesters |

Bind

Fig. 4. QoS based Service Discovery

collected from the previous uses of the service. By interacting with these two
components, an SR can find a required service in two steps:

— Searching. In this step, the SR sends a service request containing func-
tional and/or QoS requirements to the YP component. For example, SR1
may request a service that can offer science fiction movies (a functional
requirement) and the frame rate of movie delivery is required to be 24
frames per second (a QoS requirement). The SR uses this step to search for
SPs who claim to be able to offer the required service. The YP component
will return a list of SPs whose advertisements match what is required in the
SR’s request.

— Evaluation. Following the searching step, the SR, can ask the QoS compo-
nent to assess how well each SP returned by the YP component can actually
provide the service in this step. This is necessary because service advertise-
ments can not entirely be trusted, and some SPs may not honour what they
have promised. For example, the YP component may find, from the adver-
tisements, that SP1 can provide the movie service that SR1 has requested,
but the past experience by other users may suggest that SP1 is more likely
to provide, on average, 22 instead of 24 frames per second for its movie deliv-
ery. Allowing QoS assessment by the QoS component in this step therefore
gives the SR the opportunity to establish what can really be expected from
a particular SP.

We consider this two-step service discovery model being a significant improve-
ment over the existing approaches. By allowing QoS attributes of a service to
be specified (by SRs and SPs), searched (by the YP component) and evaluated
(by the QoS component), our approach supports a more meaningful, accurate
and relevant service discovery in SOC. In the rest of the paper, we will primarily
consider the searching step, and will discuss how service advertisement, request
and matchmaking are supported in our model. The reader is referred to [14] for
a detailed description of the evaluation step.

Incorporating QoS Specifications in Service Discovery 257

3.1 Description of Services

To support dynamic and automatic service discovery, it is first necessary to be
able to describe services in a machine-processable way. To enable this, we need
an expressive service description language and some ontologies for common ter-
minology. In our model, we use DAML-S [10] for service description. We choose
DAML-S because it allows us to describe not just the low-level service function-
ality and requirements in terms of message format, data types and protocols, but
also attach semantic information, such as service classification and descriptions,
to the services. For standardising terminology in service description, we create
two ontologies. The service ontology provides SPs and SRs with a common ter-
minology for advertising and requesting services, and enables the YP component
to match advertisements with requests. The quality ontology, on the other hand,
specifies what QoS attributes are and how they are related to the services.

Creating a service ontology is supported by DAML-S and is relatively
straightforward, but is domain dependent. Thus, different service ontologies are
needed for different domains. For a simple media application, for example, a sam-
ple service ontology is given in FigureH (for simplicity of presentation, we have
expressed the ontology here as a class diagram, rather than its implementation
in RDF)

Communication

PhoneCalls

TextMessaging

Video
Content

Fig. 5. A Service Ontology for a Simple Media Application

Creation of a quality ontology is, however, not currently supported by DAML-
S, and requires some explanation. For different classes of services, a large number
of attributes may be used to describe their QoS properties. Some are domain
dependent and will only be relevant to a specific class of services. For example,
frame rate is only relevant to a movie service. Others are domain independent
and are applicable to all types of service. For example, availability [I5] is
applicable to movie as well as other services.

2 Note that due to naming conflicts with DAML-S our top-level service is of class
Product — DAML-S itself defines Service as a class from which all services inherit.

258 V. Deora et al.

Thus, it is important that our quality ontology distinguishes between these
two types of QoS attributes, so that we do not repeat ourselves in specifying
service independent QoS for each individual service. Motivated by this observa-
tion, we group all QoS attributes into service specific and service independent, as
shown in the example ontology given in Figure Blfor the simple media service. As
can be seen, a service must include a service specific QoS attribute explicitly (e.g.
VideoContent has FrameRateCategory as one of its QoS property), but will in-
clude service independent QoS attributes implicitly (e.g. VideoContent also has
AvailabilityCategory, PerformanceCategory and ReliabilityCategory as
its QoS attributes).

Service
Specific

Service
Independent Video
Content
v / accuracy
. frame rate !

Availability Performance Reliability 3 v
Category Category Category Frame Rate Accuracy
Category Category

Fig. 6. A Quality Ontology for the Simple Media Application

The two ontologies are then integrated with DAML-S to facilitate service
description. This is achieved by making our Product class to inherit from the
ServiceProfile class provided by DAML-S. This is illustrated in Figure[d. Note
that DAML-S defines its Service class in terms of Service Profile, Service
Model and Service Grounding. For our work, we have only used Service
Profile as this is sufficient for service discovery purposes.

It is worth noting that in the extended service description in DAML-S, we
have also included the QualityPreference class. This is to allow an SR to
specify preferences in searching for the required service. By stating whether
it wishes to maximise service quality or perform some user specified tradeoff
between quality and cost, a flexible service discovery can be supported. More
detailed discussion on this is, however, beyond the scope of the current paper.

SPs and SRs can then advertise and request services using the extended
service description facilities given in Figure [l To ensure that service advertise-
ments and requests adhere to the service and quality ontologies, we introduce
advertisement and request schemas. Due to space restrictions we will not dis-

Incorporating QoS Specifications in Service Discovery 259

Ss
~
N
N

. \

provides
[PN \
Ne-- \ \

’ ! . \
’ | providedBy \
' \
' Ne - “ presents
—Am=a
\ \
......)

’ !
/
Service Specific

,, presentedBy »

’
/
accuracy ,/

1

qualityPreferences =~~~ -

’
’
»
Accuracy
Category

Fig. 7. The Extended Service Description in DAML-S

cuss these schemas further. However, it is worth noting that SPs and SRs do
not have to specify values for all QoS properties that are listed in the quality
ontology. If some QoS property is unspecified, we will treat it as unknown (if it is
in an advertisement) or uninterested (if it is in a request). Once created, service
advertisements and requests are sent to the YP component for registration and
matchmaking, respectively.

3.2 Matchmaking

Matching a service request with the advertised ones is performed by the YP
component. In this section, we explain how this is done. Suppose that we have
a set of advertised services A and a service request R, respectively, as follows

A={s],s5,...,s%} R={s1,85,...,8}

where each s? (1 < ¢ < n) is an advertised service and each s’ (I1<j<k)isa
requested service. Note that a single service request may ask for several services.

For matchmaking purposes, we assume that an advertised service (s%) and a
requested service (s") are represented as follows:

s = (sn, sp, fs,qs) s" = (sn, fs,qs)
where sn is the service name, sp is the service provider, fs is the set of func-
tional specifications and ¢s is the set of QoS specifications. We refer to these
components using the “.” notation, that is, s*.sn refers to the service name
of s®.

260 V. Deora et al.

Our matchmaking task is to find a set of SPs who offer services that will
match any subset of R. That is, we search for

M={s}|s} =R CR,1<i<n}

where s¢ = R’ denotes that s? provides a service that satisfies the functional
and QoS requirements of each s” € R’. The following steps describe how M is
found.

1. Determine which advertisements are relevant to R. This is not simply a
process of comparing s{.sn to s%.sm. Since our service ontology organises
classes of services as a hierarchy, it is necessary to traverse the service on-
tology too. For example, the example ontology given in Figure [0 defines
VideoContent and HTMLContent as two sub-classes of Multimedia. If an SP
advertises to offer Multimedia service, then this SP is considered to offer
both VideoContent and HTMLContent services together. Thus, to search for
SPs who can provide VideoContent and HTMLContent services, it is neces-
sary to consider the advertisements that offer Multimedia services too. The

following procedure explains how this is performed by the YP component:

input A = {s{,s5,...,s%}, R={s],s5,...,s},}, ont = service ontology
output Rel C A

1 Rel=10

2 foreach s} (1<j<k)

3 Rel = Rel U {s{.sp | s{.sn = s7.sn,1 <i <n}
4 p=sj;

5 while (p # null)

6 p = getParentClass(p, ont)

7 S={s¢|stsn=p1<i<n}

8 for each s € S

9 ¢ = getComponentServices(s)

10 Rel = Rel U{s?.sp | ¢ C R, s?.sn =p}
11 return Rel

The YP component will first find all the advertisements that have the same
service names as those requested (line 3). Then, the YP component recur-
sively traverse the service ontology up (line 6) to find those services that
are more general than s”, but contain no component services that are not
requested in R (lines 9 & 10). This “no more than required” restriction is
necessary because currently we assume that an advertised service must be
taken in its entirety. For example, one is not allowed to take the HTMLContent
service alone from an SP if it has advertised to offer Multimedia service.
Clearly, SPs who offer more than necessary (and perhaps will charge more)
are undesirable.

2. Determine which advertisements meet functional requirements. In this step,
the functional requirements specified in each s” € R are used to determine

Incorporating QoS Specifications in Service Discovery 261

which advertised services that the YP component discovered in Step 1 must
not be returned to the SR. That is, the YP component performs the follow-

ing:
input Rel = {s{,s5,...,8%}, R={s],s5,...,s%}
output RF' C Rel
1 RF=0
2 for each s} (1<j<k)
3 REF = RF U {s{.sp | s{.sn = s}.sn,s{.fs > s%.fs,1 <i<m}
4 return RF

where s{.fs > s'.fs expresses that advertised functionality (s{.fs) must be
equal to or better than the requested (s}. fs). For example, if the SR requires
Media style = science fiction, then movie services advertisements that
offer cartoons will be disregarded at this stage. This is a fairly straightfor-
ward process. If no advertisements can be found, the YP component will
send failed message to the SR.

3. Determine which advertisements meet QoS requirements. This is similar to
Step 2, except that the conditions for matching are different. Assume that
qa € si.qs is one of the advertised qualities for sf and gr € sj.gs is one
of the requested qualities for s7. The YP component will match ga with gr
according to the following:

ladvertised (ga)[requested (gr)[matching condition|

specified specified qa > qr
specified unspecified matching
unspecified specified matching

That is, if either gqa or gr is unspecified, then the YP component considers
the two qualities unconditionally matching. This is justified because they
represent the cases where either the SR is not interested in some QoS prop-
erties or whether its QoS requirements can be met or not cannot be verified.
At the end of this step, any advertisements that do not meet the required
QoS properties will be dropped from RF, and the details of SPs for the
remaining advertisements are returned to the SR.

The above description explained how the YP component performs matchmaking
between advertised and requested services during the searching step. As we have
outlined earlier in this section, our service discovery model also has a second
step — the evaluation step. The SR may decide to use the QoS component in the
evaluation step to establish what can really be expected from the SPs returned
by the YP component. This is particularly useful in cases where some SPs cannot
be trusted or some QoS requirements specified by the SR are unspecified by the
SPs. The QoS component can in such cases help to establish some “facts” about
the “unknowns”, based on other users’ experience with the services. We have
developed an expectation-based QoS calculation model and for details of our
algorithm, the reader is referred to [14].

262 V. Deora et al.

4 Conclusions and Future Work

In this paper we presented a framework for incorporating QoS specifications in
service discovery. The proposed service discovery model is currently being imple-
mented as part of the CONOISE project [I6], which aims to develop agent-based
technology for forming and managing virtual organisations (VOs) in an SOC en-
vironment. In our model we extended the standard DAML-S to allow SPs and
SRs to advertise and request services with both functional and QoS require-
ments, and described our matchmaking mechanism. It is important to note that
the service and quality ontologies developed here are not fixed schemas. They
can be created and modified as required, without affecting the underlying ser-
vice discovery mechanism. Thus, our model provides a scalable, dynamic service
discovery in an open, distributed computing environment.

We also introduced a two-step QoS-based service discovery model in this
paper. With this model, we distinguish between what might be expected of a
service (derived from advertisements, previous experiences or recommendations)
and what might be materialised (calculated from previous uses of the service).
We see this distinction being significant, as it mirrors service discovery in the
real world and allows meaningful service discovery to be conducted.

There are several issues which will need further studies. Currently, we use a
single YP component. It will be interesting to consider the case where multiple
YP components, either distributed or working as a cluster, are used, and study
how they may collaborate, especially if we allow each YP component to have its
own local domain service and quality ontologies. It will also be useful to consider
service composition, that is, to allow SRs to request composition of services, and
to extend our matchmaking with a similar capability. Finally, our matchmak-
ing mechanism is rather basic at the moment. There is a need to consider a
more powerful matchmaking mechanism whereby ontological reasoning is fully
exploited.

Acknowledgments. This work is supported by British Telecommunications
ple, and we would like to thank the members of the CONOISE project team for
their constructive comments on this work.

References

1. Casati, F., Shan, M.C.: Definition, execution, analysis, and optimization of com-
posite e-services. IEEE Data Engineering Bulletin. Vol. 24(1) (2001) 29-34

2. Leymann, F.: Web services: distributed applications without limits. In: Proceedings
of Tenth Conference on Database Systems for Business, Technology and Web.
(2003)

3. Piccinelli, G., Stammers, E.: From e-processes to e-networks: an e-service-oriented
approach. In: Proceedings of Third International Conference on Internet Comput-
ing. Vol. 3 (2002) 549-553

4. Rust, R.T., Kannan, P.K.: E-service: a new paradigm for business in the electronic
environment. Communications of the ACM Vol. 46(6) (2003) 36—42

10.

11.

12.

13.

14.

15.

16.

Incorporating QoS Specifications in Service Discovery 263

. Kreger, H.: Web services conceptual architecture (WSCA). (http://www-

4.ibm.com/software/solutions/webservices/pdf/WSCA.pdf) (2001)

Belwood, T. et al: UDDI Version 3.0.1 Specification. (http://www.uddi.org/)
Chen, Z., Liang-Tien, C., Silverajan, B., Bu-Sung, L.: Ux: An architecture pro-
viding qos-aware and federated support for uddi. In: Proceedings of the First
International Conference on Web Services. (2003)

Ludwig, H., Keller, A., Dan, A., King, R.P.: A service level agreement language for
dynamic electronic services. In: Proceedings of Fourth IEEE International Work-
shop on Advanced Issues of E-Commerce and Web-based Information Systems.
(2002) 25-32

Christensen, E. et al: Web services description language (WSDL).
(http://www.w3.org/TR/wsdl)

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., Mclllraith, S.,
Narayanan, S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: Daml-s: Web service
description for the semantic web. In: Proceedings of First International Semantic
Web Conference. (2002)

Web-Ontology Working Group: Web ontology language - services (OWL-S).
(http://www.daml.org/services/owl-s/1.0/)

Dogac, A., Cingil, 1., Laleci, G.B., Kabak, Y.: Improving the functionality of uddi
registries through web service semantics. In: Third International Workshop on
Technologies for E-Services. (2002) 9-18

Dogac, A., Kabak, Y., Laleci, G.: Enriching ebxml registries with owl ontologies
for efficient service discovery. In: Fourteenth International Workshop on Research
Issues on Data Engineering. (2004)

Deora, V., Shao, J., Gray, W.A., Fiddian, N.J.: A quality of service management
framework based on user expectations. In: Proceedings of the First International
Conference on Service Oriented Computing. (2003) 104-114

Mani, A., Nagarajan, A.: Understanding quality of service for web services.
(http://www-106.ibm.com/developerworks/library /ws-quality.html) (2002)
Norman, T.J., Preece, A., Chalmers, S., Jennings, N.R., Luck, M., Dang, V.D.,
Nguyen, T.D., Deora, V., Shao, J., Gray, W.A., Fiddian, N.J.: Conoise: Agent-
based formation of virtual organisations. In: The Twenty-third SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence.
(2003)

	Introduction
	Related Work
	QoS-Based Service Discovery
	Description of Services
	Matchmaking

	Conclusions and Future Work

