A Quality of Service Management Framework
Based on User Expectations

Vikas Deora, J. Shao, W. Alex Gray, and Nick J. Fiddian

School of Computer Science
Cardiff University
Cardiff, UK
{v.deora,j.shao,w.a.gray,n.j.fiddian}@cs.cf.ac.uk

Abstract. The ability to gauge the quality of a service is critical if we
are to achieve the service oriented computing paradigm. Many techniques
have been proposed and most of them attempt to calculate the quality
of a service by collecting quality ratings from the users of the service,
then combining them in one way or another. We argue that collecting
quality ratings alone from the users is not sufficient for deriving a reli-
able or accurate quality measure for a service. This is because different
users often have different expectations on the quality of a service and
their ratings tend to be closely related to their expectations, i.e. how
their expectations are met. In this paper, we propose a quality of service
management framework based on user expectations. That is, we collect
expectations as well as ratings from the users of a service, then calculate
the quality of the service only at the time a request for the service is
made and only using the ratings that have similar expectations. We give
examples to show that our approach can result in a more accurate and
meaningful measure for quality of service.

1 Introduction

There is a growing interest in service oriented computing (SOC) in recent years
[2J3l4]. Central to SOC is the notion of service which can broadly be consid-
ered as a software component that represents some computational or business
capability. By allowing services to be advertised declaratively, discovered dynam-
ically and invoked remotely, SOC makes it possible for users to locate, select and
execute services without having to know how and where they are implemented.
This new computing paradigm offers great potential for agent-based e-commerce
applications [BJ67]. For example, vendors may wish to identify suitable partners
from time to time to form a virtual organisation [§] so that they together can
compete better in the market, and consumers would always want to select the
services that best serve their interests. All such “match-making” tasks can po-
tentially be performed by the agents automatically in an SOC environment.

In this paper, we consider the problem of quality of service (QoS) manage-
ment in SOC. This is an important problem to consider because, just like in any
other business environment, it is possible to have several service providers (SP)

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 104-[I14] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

A Quality of Service Management Framework 105

offering the same service but with different qualities in an SOC environment.
It is essential, therefore, that an agent should select a service that meets not
only the required capability with the lowest possible price, but also the quality
requirement. Various methods for modelling, calculating and monitoring QoS
have been proposed in the literature [QJI0JTTI12], especially for web services and
multi-agent systems [I3[I4]15]. A common approach is to collect quality ratings
from the users of a service and then aggregate them in one way or another to
derive the quality of the service. The following example explains this.

Suppose that we have three SPs who offer a multimedia news service to PDA
or mobile phone users. Suppose also that there are six users (or their agents) who
have used the services, and each of them has been asked to rate the quality of
the service he or she has used in terms of news update frequency. Table [l below
shows the quality ratings collected from the users, where ratings are expressed
as real numbers in [0, 1] with 0 representing the most unsatisfactory quality and
1 the most satisfactory.

Table 1. Collected Quality Ratings

SP1 SP2 SP3
Users update frequency|update frequency|update frequency
Al 0.3 0.3
A2 0.8 0.9
A3 0.3 1.0
A4 0.8
A5 0.5 0.1
A6 0.6 0.3
Aggregate rating|0.50 0.67 0.47

For simplicity of presentation, we assume that the aggregate quality rating for
each SP is derived by combining the individual ratings using a simple arithmetic
average. So according to Table[ll, SP2 offers the best service with respect to news
update frequency.

While various methods may be employed to aggregate the collected ratings
more rationally, for example, using a weighted average so that the reputation
or trust of the user may be taken into account [I6I4], this approach to quality
rating calculation suffers from two fundamental weaknesses:

— First, users are invited to rate a service in “absolute” terms, e.g. 0.3 or 0.8
out of 1.0 in our example. Such quality ratings may not be very meaningful or
can even be misleading in some cases, because the context within which the
ratings are derived is not known. For example, Al rated SP1 low perhaps
because SP1’s news update was not frequent enough for him or her, but
this does not necessarily mean that the same frequency is not good enough
quality for someone else, e.g. for A2.

106 V. Deora et al.

— Second, the aggregate quality rating for a service is derived “statically” using
all the ratings collected from the users. This does not take into account the
fact that some of the ratings may not be relevant to a particular quality
assessment request. For example, if the request was to assess the quality of
SP1, SP2 and SP3 in terms of their ability to update news at least 4 times
a day, then A6’s rating should not be included in the quality calculation if
A6 had expected a minimum of 8 updates per day from SP2.

In this paper, we address the above two problems by introducing a new model
for collecting and monitoring QoS “relatively”. That is, we attempt to collect
from service users QoS ratings as well as their expectations on QoS, so that
we can measure QoS in relative terms, i.e., how well a delivered service meets
users’ expectations. Based on user expectations, we also propose to calculate
the quality of a service dynamically at the time a request for QoS assessment
is made, and use only the ratings that have similar expectations. We show that
our approach can result in a more accurate and meaningful measure for quality
of service.

The rest of the paper is organised as follows. Section 2 introduces our frame-
work for managing QoS information. Section 3 discusses how we calculate QoS
based on user expectations and gives examples to show how our approach works.
Related work is considered in Section 4, and finally Section 5 presents conclusions
and discusses future work.

2 The QoS Model

To develop a QoS management model, it is essential to understand what the
term quality actually entails. Unfortunately, what defines quality is vague, and
different views exist in different studies and from different perspectives [TOJTT]
T7IT2]. The following three views are, however, most common.

— Quality as Functionality. This view considers quality in terms of the amount
of functionality that a service can offer to its users. For example, if SP1
allows you to select different positions of cameras from which you may watch
a football game, and if this functionality is not provided by SP2 or SP3, then
SP1 can be considered as offering a better quality than SP2 and SP3 do.

— Quality as Conformance. This view sees quality as being synonymous with
meeting specifications. For example, if SP1 specified in its service agreement
that it would provide 1 Mb/s bandwidth for its news service and SP1 did
provide users with 1 Mb/s bandwidth (or more) at all times in its operation,
then SP1 is usually considered as offering good quality of service.

— Quality as Reputation. This view links quality to users’ perception of a
service in general. It is worth noting that this perception is typically built
over the time of the service’s existence. For example, the BBC news service
is generally considered to be offering good quality to its users, due to its
reputation built over many years as a news service provider.

A Quality of Service Management Framework 107

These different views of quality require QoS to be monitored and measured
differently. Quality as functionality characterizes the design of a service and can
only be measured by comparing the service against other services offering similar
functionalities. Quality as conformance, on the other hand, can be monitored for
each service individually, and usually requires the user’s experience of the service
in order to measure the “promise” against the “delivery”. Finally, reputation can
be regarded as a reference to a service’s consistency over time in offering both
functionality and conformance qualities, and can therefore be measured through
the other two types of quality over time.

While it is possible to establish all three types of quality for a service in an
SOC environment, it is perhaps most interesting and relevant to understand how
quality as conformance may be monitored. In this paper, therefore, we adopt the
conformance view and define QoS to be a degree of satisfaction that the user
has experienced after using a service. More specifically,

Definition 1. let S be a service and Ay, As, ..., A, be a set of attributes that
describe S and upon which we wish to monitor the quality for S. Assume that
for each A;, A? is the advertised quality (or the quality that the service provider
promised to offer), and A¢ is the delivered quality (or the actual quality that the
service provider delivered). Then the QoS for A; is given by

Qa, = f(A}, A))
where f is a function that calculates the conformance between A$ and A{.

The above definition captures the notion of conformance generically, but does
not specify how A¢ and A¢ may be obtained and Qa, may be calculated. In
practice, it may not be realistic to expect every A; to have an A value specified
by the service provider, and its A‘ii value monitored and @) 4, calculated by the
system automatically. Often, we need user feedback to help assess the quality of
a service.

While the need for involving users in QoS assessment is well recognised,
existing methods tend to collect quality ratings only from the users. This is in-
adequate if we wish to measure quality as conformance according to Definition 1.
In this paper, we propose to collect “fuller” ratings from the users and then to
use such ratings to assess QoS.

Definition 2. Let U be a user and A be an attribute of a service S. A quality
rating on A by U is a triple

(Eu(A), Pu(A), Ru(A))

where E,(A) represents the quality that U expects from A, P,(A) the actual
quality of A perceived or experienced by U after using S, and R, (A) the quality
rating that U gives to A.

Collecting (E,(A), P,(A), R, (A)) from users can perhaps be considered as
a way of “materialising” the conformance calculation function introduced in

108 V. Deora et al.

Definition 1. Instead of relying on the system for monitoring A¢ and calculating
Q4,, we obtain P,(A;) and R, (4;) from the user. The use of E,(A;) represents
a shift from using SP advertised values to user expectations on quality in QoS
calculation. This is significant. While some correlation between A? and F,(A;)
can be expected - users are likely to be influenced by advertisement in forming
their expectations, expectations are not solely based on advertisement. Other
factors, such as the user’s past experience with the service, the price the user is
paying for the service, or the recommendation by a friend for the service can all
influence the user in forming his or her expectation on the quality of the service.
Thus, by including user expectations as part of user rating on a service, we can
hope to interpret such ratings more accurately and meaningfully.

To explain how the proposed QoS model works, consider the example we gave
in the Introduction again. Suppose that we still ask the six users to rate the new
services in terms of update frequency, fr, but this time use the expectation model
we introduced here. Assuming that we represent E, (fr), P,(fr) and R, (fr) all as
real numbers in [0, 1], Table 2 below shows the ratings collected from the users.

Table 2. Expectation based Quality Ratings

SP1 SP2 SP3

Users|(E(fr), P(fr), R(fr))|(E(fr), P(fr), R(fr)) |(E(fr), P(fr), R(fr))
Al |<0.9,0.7,0.3 > <0.7,0.5,0.3 >
A2 |<04,04,08> |<05,05,09>

A3 1<0.8,0.6,0.3 > <0.4,0.5,1.0 >
A4 < 0.6,0.6,0.8 >

A5 [<0.9,07,05 > <09,05,01>
A6 (< 0.9,0.7,0.6 > <0.7,0.5,0.3 >

How a user arrived at a particular rating may never be known to us, but it
is interesting to speculate what the ratings shown in Table [might suggest. The
majority of the users of SP1 and SP3 seem to have high expectations (probably
as the result of some effective recommendations or advertising effort), but do not
seem to get what they expect (perhaps due to the unexpected level of business
that SP1 and SP3 have got themselves into). SP2, on the other hand, is the
opposite: users do not have high expectations but are generally satisfied with
the service. In the following section, we show how this difference in expectation
is taken into account when assessing QoS for services.

3 Collection and Calculation of QoS Ratings

In this section, we consider how the QoS ratings may be collected from the
users and be used in the calculation of QoS by the Quality Assessment (QA)

A Quality of Service Management Framework 109

agent that we are currently constructing as part of the CONOISE project
(www.conoise.org). The basic system architecture is outlined in Figure[d] below.

QA Agent
ReBe(&)> Rating Rating <Eu(A), Pu(A), Re(A)>
™| Calculator Collector |+
Qo3 User
Assessment

Requester

Rating

Repository

Fig. 1. The system architecture of the QA agent

The QA agent consists of two main components. The Rating Collector is
responsible for soliciting quality ratings from the users. In this paper, we have
assumed that the users are willing, when asked, to return quality ratings on the
services they have used and their ratings can be trusted. We have also assumed
that all three elements of a user rating, F,(A), P,(A4) and R, (A), are expressed
as real numbers in [0,1]. These simplification assumptions have resulted in a
fairly straightforward process for collecting ratings from the users, but they
may not be particularly realistic for many practical applications. To relax these
assumptions, it is possible to incorporate some more advanced techniques into
our QA agent, so that issues such as how to collect quality ratings from users or
agents whom we can not fully trust may be addressed [L8[16l19/14].

The Rating Calculator is responsible for calculating QoS from the collected
ratings. To aggregate individual ratings into an overall assessment of quality for
a given service S, two calculations are necessary:

1. combining individual ratings for each A; of S into an aggregate rating for
A;, and
2. combining the ratings for individual A;’s into an overall rating for S.

Currently, we treat all quality attributes of a service to be of equal importance
and the overall rating for S is derived by a simple average of the individual
ratings for its attributes. But it is possible to consider a weighted average so
that the fact that some attributes are more significant than others may be taken
into account [20)].

How to combine individual ratings for each A; into an aggregate one, how-
ever, needs some explanation. In contrast to many existing methods which simply
aggregate all the collected ratings on A;, our approach is to selectively aggre-
gate only the ratings that have similar expectations. That is, we allow a quality

110 V. Deora et al.

assessment request R to specify a quality expectation, Er(A;), on A;, and de-
rive an aggregate quality rating for A; by using only the ratings in the Rating
Repository that have similar expectations to Er(A;). More specifically,

— If R does not specify any quality expectation on A;, then Q(A4;), the quality
rating for A;, is

k
Q(A) = w; x R;(A;)
j=1

where R;(A;) is user j’s rating on A; and w is a weight. This is equivalent to
the majority of existing approaches to quality calculation: the overall rating
for A; is a weighted sum of individual ratings, and the weights are used to
allow factors such as reputation or trust to be taken into account [16/14].

— If R specifies a quality expectation Er(4;) = « € [0, 1] on A;, i.e. the quality
expectation on A; is «, then

Q(A;) = ij x R} (A;)

where R;(A;) is the element of the rating (E}(A), Pj(A), Rj(A)) in the Rat-
ing Repository whose corresponding expectation element E}(A;) is similar
to Er(4;) = «. In this paper, we use a simple criteria for determining
whether the two are similar: E%(A;) and Er(A;) = a are compatible if
|E%(A;) — a| < 0, where § is a constant. However, more complex forms of
similarity test are possible, for example, by specifying quality expectations
as “ranges” over [0,1] (instead of points) and by allowing fuzzy matching
between E’(A;) and Eg(A;) = a.

By aggregating individual quality ratings dynamically at the time when a QoS
assessment request is made and by comparing the raters’ and the requester’s
expectations on qualities, our approach is able to calculate QoS in “context”,
that is, to use the ratings which are actually relevant to the context within which
the QoS assessment request is made.

Now consider our example and Table[again. Suppose that the QA agent has
been asked to assess QoS for all three SPs in terms of news update frequency,
given Fr(fr) = unspecified, Eg(fr) = 0.5 and Er(fr) = 0.8, respectively. Assum-
ing that we have 6 = 0.1, the result of calculation by the QA agent is given in
Table Bl

As can be seen from Table B] the quality ratings for SPs can vary with re-
spect to expectations. For example, when the expectation is Egr(fr) = 0.5, SP3
emerges to be the best service provider, whereas when the expectation is changed
to Er(fr) = 0.8, we have SP1 as the winner. This is in contrast to conventional
approaches to quality calculation that do not consider user expectations (equiv-
alent to setting E'r(fr) = unspecified, resulting in SP2 being the best provider
for all cases), our method gives a more meaningful rating for a service on a
case-by-case basis.

A Quality of Service Management Framework 111

Table 3. Calculated quality ratings for SPs

SP1 SP2 SP3
Expectation aggregate ratinglaggregate rating|aggregate rating
ERr(fr) = unspecified|0.50 0.67 0.47
Egr(fr) =0.5 0.80 0.85 1.00
Egr(fr) =0.8 0.43 0.30 0.20

Finally, it is worth mentioning that although P,(A;), the quality perceived
by the user, is not used in quality calculation in this paper, it can play an
important role in deriving more accurate quality assessment. For example, by
monitoring the relationship between R, (A4;) (the verdict) and |Fy(A;) — Py (A;)]
(the basis for the verdict) over a period of time with sufficient rating data, we
can determine whether a particular user has been harsh or lenient in rating the
services. By factoring such knowledge into quality calculations, we can deliver
more accurate QoS assessment of services.

4 Related Work

There exist a large number of proposals in the literature for managing QoS as
reputation or trust for service providers. These approaches, e.g. [2IJT6IT9/14],
typically seek to establish the quality of a service by gathering ratings from
the users who have used the service, but do not consider the context within
which the ratings are derived. The need for having some contextual information
alongside the ratings themselves has been identified only recently. For example,
Maximilien and Singh [20] suggest that some attributes be used to describe the
ratings and users be allowed to define their preferences on the importance of
individual ratings. While this work is similar to the method proposed here in
principle, it does not include user expectations as part of the context, and thus
does not help to identify the reasons behind the ratings given by users.

Our approach to include expectations as part of QoS management was in-
spired by work done in the area of marketing, where user expectations are com-
monly collected as a way of understanding quality. For example, the SERVQUAL
system [I2] uses the difference between what consumers expect and what they
perceive to determine product/service quality, so that quality may be improved
to meet users’ expectations better. Our approach however differs from marketing-
based ones in that we do not directly use expectations to calculate the actual
quality of a product or service, but as a basis for determining which ratings are
relevant to a given QoS assessment request.

The idea of using similar expectations in assessing QoS is also akin to the
concept of collaborative filtering [22]. In collaborative filtering, users are cate-
gorised into several groups and the users in the same group are considered to
have the same “likes” and “dislikes”, or expectations. This common expectation

112 V. Deora et al.

is then used to determine or predict if a given item (e.g. a book) would be of
any interest to a particular user. We also use similar expectations to determine
the quality of a service for a given quality assessment request in our QoS man-
agement framework, but there is a fundamental difference between our work
and that in collaborative filtering: we do not attempt to classify users (raters
and requesters). The groups of users who have similar expectations are formed
dynamically in our model, based on the given QoS assessment request and the
criteria for similarity measures.

It is worth noting that quality management has also been considered in other
research areas [9IT0JI723l24]. For example, Mecella et al. [I7] have designed a
broker which can select the best available data from a number of different service
providers based on a specified set of data quality dimensions such as accuracy,
completeness, currency and consistency. In [9/10], QoS management for network
resources has been considered. These studies aim to identify and establish suit-
able quality matrices for specific services in specific application areas, so that
the quality of these services can be meaningfully gauged. In contrast, the quality
management model proposed in this paper assumes the availability of appropri-
ate quality attributes (or matrices), and is designed to address the problem of
how qualities of similar services may be compared based on user ratings and
expectations.

5 Conclusion

In this paper, we have introduced a user expectation based framework for mod-
elling and calculating QoS in an SOC environment. This framework is founded
on the following basic observation: if A rates the quality of S as x, then this
rating is only meaningful to B if A and B have similar expectations on S. So
instead of aggregating all the quality ratings collected from the users of services,
we propose to calculate QoS dynamically at the time a QoS assessment request
is made, and use only the ratings that have similar expectations to that of the
request. This, as we have shown in the paper, can lead to more accurate and
meaningful rating in QoS assessment.

The work reported in this paper is still at an early stage, and a number of
issues still need to be investigated. First, there is a need to consider how user
expectation may be best represented. The current real-number based represen-
tation is rather limited, and does not allow the user to specify, for example, the
minimum and maximum expectations. Second, better techniques for matching
expectations need to be developed, particularly for expectations that are not
expressed as simple real numbers. We envisage that some reasoning mechanisms
will be required. Finally, there is a need to consider what happens when there
are no matching expectations when assessing QoS, or the so-called “cold start”
problem [25]. This is particularly interesting to consider in our quality model, as
tightening or relaxing similarity measures in the model can have a direct impact
on matchable expectations.

A Quality of Service Management Framework 113

Acknowledgments. This work is supported by British Telecommunications
plc, and we wish to thank the members of the CONOISE project team for their
constructive comments on this work.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Casati, F., Shan, M.C.: Definition, execution, analysis, and optimization of com-

posite e-services. Data Engineering Bulletin 4 (2001) 29-34

Leymann, F.: Web services: distributed applications without limits. In: Proceedings
of 10th Conference on Database Systems for Business. (2003) 2-23

Piccinelli, G., Stammers, E.: From e-processes to e-networks: an e-service-oriented
approach. In: Proceedings of 3rd International Conference on Internet Computing.
(2002) 549-553

. Rust, R.T., Kannan, P.K.: E-service: a new paradigm for business in the electronic

environment. Communications of the ACM 46 (2003) 36-42

He, M., Jennings, N.R., Leung, H.: On agent-mediated electronic commerce. IEEE
Trans on Knowledge and Data Engineering 15 (2003) 985-1003

Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B.: Autonomous
agents for business process management. International Journal of Applied Artificial
Intelligence 14 (2000) 145-189

Papazoglou, M.P.: Agent-oriented technology in support of e-business. Communi-
cations of the ACM 44 (2001) 71-77

Petersen, S.A., Gruninger, M.: An agent-based model to support the formation
of virtual enterprises. In: International ICSC Symposium on Mobile Agents and
Multi-agents in Virtual Organisations and E-Commerce. (2000)

Aurrecoechea, C., Campbell, A.T., Hauw, L.: A survey of qos architectures. Mul-
timedia Systems Journal 6 (1998) 138-151

Chalmers, D., Sloman, M.: A survey of quality of service in mobile computing
environments. IEEE Communications Surveys and Tutorials 2 (1999) 2-10

Lee, Y.W., Strong, D.M., Khan, B.K., Wang, R.Y.: Aimq: a methodology for
information quality assessment. Information and Management 40 (2002) 133-146
Parasuraman, A., Zeithaml, V.A., Berry, L.L.: Reassessment of expectations as a
comparison standard in measuring service quality: implications for future research.
Journal of Marketing 58 (1994) 201-230

Trzec, K., Huljenic, D.: Intelligent agents for qos management. In: Proceedings of
First International Conference on Autonomous Agents and Multi Agent Systems.
(2002) 1405-1412

Yu, B., Singh, M.: An evidential model of distributed reputation management. In:
Proceedings of First International Conference on Autonomous Agents and Multi
Agent Systems. (2002) 294-301

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J.: Quality driven web service
composition. In: Proceedings of Twelfth International Conference on World Wide
Web. (2003) 411-421

Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and
reputation. In: Proceedings of 35th Hawaii International Conference on System
Sciences. (2002) 2423-2431

Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.:
Managing data quality in cooperative information systems. In: Proceedings of 10th
International Conference on Cooperative Information Systems. (2002) 486-502

114

18.

19.

20.

21.

22.

23.

24.

25.

V. Deora et al.

Braynov, S., Sandholm, T.: Incentive compatible mechanism for trust revelation.
In: Proceedings of First International Conference on Autonomous Agents and Multi
Agent Systems. (2002) 310-311

Schillo, M., Funk, P., Rovatsos, M.: Using trust for detecting deceitful agents in
artificial societies. Applied Artificial Intelligence, Special Issue on Trust, Deception
and Fraud in Agent Societies (2000) 825-848

Maximilien, E.M., Singh, M.: Conceptual model of web service reputation. SIG-
MOD Record, ACM Special Interest Group on Management of Data (2002) 36-41
Maes, P., Guttman, R.H., Moukas, A.G.: Agents that buy and sell. Communica-
tions of the ACM 42 (1999) 81-91

Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recom-
mendations. In: Proceedings of ACM 2000 Conference on Computer Supported
Cooperative Work. (2000) 241-250

Burgess, M., Gray, W.A., Fiddian, N.: Establishing a taxonomy of quality for use
in information filtering. In: Proceedings of 19th British National Conference on
Databases. (2002) 103-113

Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. Journal of Management Information Systems 12 (1996) 5-34

Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and metrics for cold-
start recommendations. In: Proceedings of 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. (2002) 253—260

	Introduction
	The QoS Model
	Collection and Calculation of QoS Ratings
	Related Work
	Conclusion

