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Abstract

We discuss a basic process calculus useful for modelling applications over global comput-
ing systems and present the associated semantic theories as determined by some basic notions
of observation. The main features of the calculus are explicit distribution, remote operations,
process mobility and asynchronous communication through distributed data spaces. We intro-
duce some natural notions of extensional observations and study their closure under operational
reductions anfr language contexts to obtararbed congruencandmay testing For these
equivalences, we provide alternative tractable characterizations as labelled bisimulation and
trace equivalence. We discuss some of the induced equational laws and relate them to design
choices of the calculus. In particular, we show that some of these laws do not hold any longer
if the language is rendered less abstract by introducing (asynchronous and undetectable) fail-
ures or by implementing remote communications via process migrations and local exchanges.
In both cases, we also investigate the adaptation of the tractable characterizations of barbed
congruence and may testing to the lower-level scenarios.
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1 Introduction

Programming computational infrastructures available globally féerimg uniform services has
become one of the main issues in Computer Science. The challenges come from the variable
guarantees for communication, co-operation and mobility, resource usage, security policies and
mechanisms, etc. that have to be taken into account. A key issue is the definition of innovative
theories, computational paradigms, linguistic mechanisms and implementation techniques for the
design, realisation, deployment and management of global computational environments and their
application.

On the foundational side, the demand is on the development of tools and techniques to build
safer and trustworthy global systems, to analyse their behaviour, and to demonstrate their confor-
mance to given specifications. Indeed, theoretical models and calculi can provide a sound basis
for building systems which are “sound by construction” and which behave in a predictable and
analysable manner. The crux is to identify what abstractions are more appropriate for programming
global computers and to supplyfective tools to support development and certification of global
computing applications. This paper should be considered as a contribution to this line of research.

A distinguishing feature of applications over so-called “global computers” is the necessity of
dealing with dynamic and unpredictable changes of their network environment, due to unavailabil-
ity of network connectivity, bandwidth fluctuations, lack of resources, failure of nodes, network
reconfigurations, etc.. These issues have to be considered together with the more traditional ones of
distributed applications, like heterogeneity (of operating systems and application software), scala-
bility (huge number of users and nodes) and autonomy (resources managedteigntdadminis-
tration domains). Indeed, global computers are fostering a new style of distributed programming
whose key principle isetwork awarenesse. applications have information about the network (lo-
cation, latency, congestion, etc.) and can adapt to its variations. Moreover, applications should also
supportdisconnected operatior{87], that permit software components to be remotely executed
even if their owner is not connected.

In our view, a language for global computing should be equipped with primitives that support:

network awareness,i.e. locations can be explicitly referenced and operations can be remotely
invoked;

disconnected operations,i.e. code can be moved from one location to the other and remotely
executed,

flexible communication mechanisms like distributed repositories [18, 17, 23] storing content ad-
dressable data;

remote operations, like asynchronous remote communications.

Semantic theories, needed for stating and proving observable properties, should reflect all the above
listed distinctive features of global systems at user’s application level, but they should ignore issues
such as routing or network topology, because they are hardly observable at the user level.

Several foundational languages, presented as process calculi or strongly based on them, have
been developed that have improved the formal understanding of the complex mechanisms under-
lying global computers. We want to mention the Ambient calculus [13][Z8], DJoin [24] and
Nomadic Pict [41]. They are equipped with primitives to represent at various abstraction levels
the execution contexts of the net where applications roam and run, they provide mechanisms for
coordinating and monitoring the use of resources, and they support the specification and the imple-
mentation of security policies. However, if one contrasts them with the above list of distinguishing
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features of languages for global computers, one realizes that all of them fall short for at least one of
the targets.

Here we want to develop the semantic theory of an alternative model that takes its origin from
two formalisms with opposite objectives, namely the programming langXageam [6], a full
fledged programming language basedkanam [19], and ther-calculus [33], the generally recog-
nized minimal common denominator of calculi for mobility. The resulting model has been called
cKram (core Kram)?®. It can be thought of as a variant of thecalculus with process distribution
and mobility, remote operations and asynchronous communication through distributed repositories.
Given the direct correspondencedtfLam with X-KLam, we believe that the tractable behavioural
equivalences we develop in this paper provide powerful tools to write sound programs for global
computers. First, programs writtenXaKram are mapped down tcKram; here they are verified,
by using behavioural equivalences to formalize and prove properties; finally, they can run on an
actual global computer, like the Internet, by exploiting their Java-based translation [7].

We develop the semantic theory of the proposed language by defining behavioural equivalences
over terms as the maximal congruences induced by somedizsgcvableshat are dictated by the
relevant features of global computers. The approach can be summarized as follows:

1. Define a set of observables (values, normal forms, actual communications, ...) to which a
term can evaluate by means of successive reductions.

2. Define a basic equivalence over terms by stating that two terms are equivalent if and only if
they exhibit the same set of basic observables.

3. Consider the largest congruence over the language induced by the basic equivalence or by its
co-inductive closure.

A similar approach has already been used to study models of concurrent systems (e.g., CCS [34, 10]
andrn-calculus [40, 4]). Obviously, the designation of basic observables is critical. Thus, we draw
inspiration from everyday experience: a user can observe the behaviour of a global computer (at the
application level) by testing

i. whether a specific site is up and running (i.e., it provides some data of any kind),
ii. whether a specific information is present in (at least) a site, or
iii. whether a specific information is present in a specific site.

Other calculi for global computers rely on (barbed) congruences induced by similar observables:
for example, Ambient [13] uses a barb that is somehow relatdddabove, while the barbs in
Dr-calculus [28] are strongly related iio. .

A question that naturally arises is whether these observables yield ‘interesting’ congruences.
The three basic observables, together with the discriminating power providg€iLioy contexts,
all yield the same congruence, when used similarly. This is for us already an indication of the
robustness of the resulting semantic theories. Moreover, as we will show, the observables are still
suficiently powerful to give rise to interesting semantic theories also when considering lower-level
features like, e.g., failures. Due to its intuitive appeal, in the rest of this paper we shall use only the
first kind of observable.

A major drawback of the approach relying on basic observables and context closures is that
the resulting congruences are defined via universal quantification over all language contexts, and

'As a programming notatiorKram was presented in [5]; here, we turn it into a calculus, by equipping it with an
LTS-based operational semantics and a few behavioural equivalences.
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Nets: N == 0 | I=C | NylIN2 | (V)N

Components: C = | P|ClC

Processes: P u= nil | aP | P[P, | X | recXP
Actions: a 1= in(p@u | out()@u | evalP)@u | new()
Input Parameters: p == u | !x

Table 1:cKramm Syntax

this makes their checking very hard. It is then important to devise proof techniques that avoid such
guantification. We shall define a labelled transition system (with labels indicating the performed
action) and exploit the labels to avoid quantification over contexts. We shall present tractable char-
acterizations of two ‘touchstone’ congruences, narbalped congruencandmay testingin terms

of (non-standard) labellebisimilarity andtrace equivalence, respectively. In doing this, we have

to face the problems raised by the presence of explicit localities and by the facKihats is
asynchronous (both in the communication and in the mobility paradigm) and higher-order (because
processes can migrate).

The rest of the paper is organized as follows. In Section 2 we pre&antm’s syntax and
reduction-based semantics. In Section 3 we define barbed congruence and may testing, while in
Sections 4 and 5 we present their alternative characterizations. In Section 7 we discuss some of the
equations induced by the semantic theories and show that some of them break down when rendering
the language less abstract by implementing remote communications via process migrations and
local exchanges or by introducing (asynchronous and undetectable) failures. Finally, in Section 8,
we discuss related work.

2 The Process LanguageKram

In this section, we present the syntaxcéfLamm and its operational semantics based on a structural
congruence and a labelled transition system (LTS).

2.1 Syntax

The syntax of cKram is reported in Table 1. A countable sel of names
LU,...,u,...,XY,....,XY,...is assumed. Names provide the abstract counterpart of the set of
communicabl®bjects and can be used as localities, basic variables or process variables: we do not
distinguish between these three kinds of objects. Notationally, we prefer letters. when we
want to stress the use of a name as a localjty,. . . when we want to stress the use of a name as a
basic variable, ani., Y, ... when we want to stress the use of a name as a process variable. We will
useu for basic variables and localities.

Processesranged over by, Q, R, ..., are thecKLamm active computational units and may be
executed concurrently either at the same locality or fiedint localities. They are built up from
the terminated processl and from the basic actions by using prefixing, parallel composition and
recursion.Actionspermit removingadding data frorto node repositories, activating new threads
of execution and creating new nodes. Actiwgw is not indexed with an address because it always
acts locally; all the other actions explicitly indicate the (possibly remote) locality where they will
take dfect. Notice thain(l)@!” evolves only if datuml) is present ifl’; indeed,n()@!’ is a form
of name matching operataterived from theLinpa [26] pattern-matching.
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[ a [ Q) [hb) ]| — = 5
in(! xY@u {u} {x} ’ = H 00 ‘ ;() ‘
i”(E‘Z))%‘l i“l’UZ; g I=c | MuiE) b(C)
Out(U)@uy | {Us, Ly Np I No || in(Ny) U fn(No) | br(Ns) U b(N5)
e"r":‘é(v?l()@“ f”(P)(DU{“} br{‘l(}P YL oON | Ny — (1) br(N) U {1}
[ C ] 0 \ bn) |
il 0 0
M {1} 0
aP (fn(P) — bn(@)) U fn(a) | bn(P) U bn(a)
Pl | P2 fn(Pl) U fn(Pz) bn(Pl) U bn(Pz)
X (X} 0
rec X.P fn(P) — {X} bn(P) U {X}

Table 2: Free and bound names

Nets ranged over byN, M, H, K, . .., are finite collections of nodes. Aodeis a pair | :: C,
where localityl is the address of the node a@ds the (parallel) component locatedlatCompo-
nents ranged over bz, D, .. ., can be either processes or data, denote)byn the net ¢1)N, the
scope of the namieis restricted td\; the intended £ect is that if one considers the et || (vI)N2
then localityl of N, cannot be immediately referred to from withidy (this is the powerfubr-
calculus’ mechanism for restricted names).

Namesccurring incKLamv processes and nets cantdmund More precisely, prefiin(! X) @u.P
bindsx in P; this prefix is similar to thel-abstraction of tha-calculus. Prefinew(l).P bindsl in
P, and, similarly, net restriction/()N bindsl in N. Finally, rec X.P bindsX in P. A name that is
not bound is calledree. The setdn(-) andbn(-) (respectively, of free and bound names of a term)
are defined accordingly (their definitions are shown in Table 2). The(9eaif names of a term is
the union of its sets of free and bound names. As usual, we say that two teralghareaquivalent
written =,, if one can be obtained from the other by renaming bound names. We shall say that a
nameu is fresh for_ if u ¢ n(_). In the sequel, we shall work with terms whose bound names are
all distinct and diferent from the free ones.

Notation 2.1 We write A = W to mean thatA is of the formW; this notation is used to assign a
symbolic nameA to the termW. We shall use notatiofi” to denote tuples of objects (e.gis a
tuple of names); this will be sometimes writtenxas, for an appropriate index-set Moreover, if
T'= (I3, ..., 1n), we shall assume that lj fori # j. If X = (Xq,...,%) andy = (y1,...,¥m) then
X,y will denote the tuple of pairwise distinct elemenss,(.., Xn, Y1,...,Ym). When convenient,
we shall regard a tuple simply as a set (thus we can writeTeg_gL to mean that all components
of I'are inL). We shall sometimes writen()@!, out()@! and() to mean that the argument of the
actions or the datum are irrelevant. Finally, we omit trailing occurrences of pradessd write

n
_1‘[l Wi for the parallel composition (botli and ‘||') of terms (components or nets, resj\).
J:

2.2 Operational Semantics

cKram operational semantics is given in terms of a structural congruence and a reduction relation.
Thestructural congruences, identifies nets which intuitively represent the same net. It is defined
as the least congruence relation over nets that satisfies the laws in Table 3. Most of the laws are
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(ALPHA) N = N if N=, N’
(PZero) N|JJO = N
(PGom) NilIN2 = Nz Ng
(PAss) (NplIN2)IIN3 = Ngll (N2l N3)
(RCowm) (M)(MIN = (vI2)(WI)N
(Ex) Nyl (/DN2 = (V)(N1 [l N2) if 1 ¢ fn(Ny)
(ABs) |:C = |:(Cnil)
(Rec) | :recX.P = |: P[recXPix]
(RNobE) OON = ()N nil)
(CrLonE) [:CCo = I :Cq |l :Co

Table 3: Nets Structural Congruence

taken from ther-calculus (see, e.g., [38]) with lawAgs), that is the equivalent of lawPZero)
for ‘|', and law Rec), that freely foldgunfolds recursive definitions. Additionally, we have law
(RNobE), saying that any restricted name can be used as the address ofaaratiaw CLoNE),
that transforms a parallel between co-located components into a parallel between nodes. Notice
that commutativity and associativity df tan be obtained byRCom), (PAss) and CrLong). In the
sequel, by exploiting Notation 2.1 and laRCom), we shall write ()N to denote a net with a
(possible empty) sétof restricted localities.

In what follows, we shall only consider nets where each bound name is associated to a node; by
virtue of rule RNobk) this is always possible.

The reduction relation is given in Table 4. In ruld®-Qut) and R-Evar), existence of the
node target of the action is necessary to place the spawned component. Notice that existence of the
target node can only be checked at run-time. Indeed, an approach like [28] does not fit well global
computing setting because it relies on a typing mechanism that would require the knowledge of the
whole net. RulesR-IN) and R-March) require existence of a matching datum in the target node.
Rule (R-Marcn) says that actioin(l,)@l; consumes exactly the datuiia) atl;. Rule R-In) says
that actionin(! X)@I; can consume any datumatlq; I, will then replace the free occurrences of
x in the continuation of the process performing the action. RRIKNEw) says that execution of
actionnew(l’) simply adds a restriction ovérto the net; from then on, a new node with locality
can be allocatgdeallocated by using lawR(NoDE).

cKram adopts d.mpa-like [26] communication mechanism: communication is asynchronous
and data are anonymous. Notice that, even if there exist prefixes for placing data to nodes, no
synchronization takes place between (sending and receiving) processes. On the contrary, a sort of
synchronization takes place between a sending process and its target node (sé@uigsahd
(R-Evar)). A similar synchronization takes place between the node hosting a datum and the process
looking for it (see rulesR-IN) and R-March)).

2Restricted names can be thought of as private network addresses, whose corresponding nodes can be activated when
needed, and successively deactivated, by the owners of the resource (i.e. the nodes included in the scope of the restriction).
If names would represent not only localities but also other communicable objects, the law should be slightly modified for
it to deal only with bound locality names.
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(R-Our) (R-PR)
[ out(l)@Ip.P |l Iynil — TPl d) N; — N;
(R-Evar) Ni [Nz — N[N
[ :eval(P)@I1.Py || I1:nil — 1Pyl Py

(R-Res)
(R'IN) N — N’
L in()@I1.P || 1y o) — 12 P[laad |17 0 nil
(R-Marcr) (V)N — (V)N
[in(l)@1.P | 1y ) +— TPy il (R-Srruct)
(R-New) N=Mr— M =N
[ new().P +— (W) :: P :nil) N — N

Table 4:cKram Operational Semantics

3 Touchstone Equivalences

In this section we present (weak) equivalences yielding sensible semantic theotiésaier. The

approach we follow relies on the definition of abservation(also callecbarb) that intuitively for-

malises the interactions a process can be engaged in. We use observables to define equivalences that
equate those nets that cannot be taken apart by any basic obsematimng their computations,

or (i) in any net context, orii{) during their computations in any net context. Notationally, we shall

use = to denote the reflexive and transitive closure-ef.

Definition 3.1 (Barbs and Net Contexts) N .

_PredicateN | | holds true if and only iN = (v)(N" || | :: {I")) for somel, N" andl” such that
¢l

PredicateN | | holds true if and only iN = N’ for someN’ such thatN" | I.

A net contextC[-] is acKram net with an occurrence of a ho[g to be filled in with any net.
Formally,

cll == [1 | NlIcll | ohel

We have chosen the basic observables by taking inspiration from the corresponding ones of the
asynchronoug-calculus [4]. One may wonder if our choice is “correct” and argue that there are
other alternative notions of basic observables that seem quite natural, as we have discussed in the
Introduction. A first alternative could be to consider as equivalent two nets if they make available
the same set of data, possibly irffdrent nodes. A second alternative could be to consider as
equivalent two nets if they have exactly the same data at the same localities. Later on, we shall
prove that the congruences induced by these alternative observables do coincide. This means that
our results are quite independent from the observable chosen and vindicates our choice. Moreover,
notice that, by using other kinds of observation predicates, more sophisticated equivalences should
come into the picture. For example, in [10] it is shown hawst testingandfair testingcan be
obtained in CCS by only changing the basic observable.

Now, we say that a binary relatio® between nets is

e barb preservingif NR M andN | | imply M |} I;
e reduction closedif N ‘R M andN +— N’ imply M = M’ andN’ ‘R M’;

e context closedf N R M impliesC[N] R C[M] for every contexC[-].
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Our touchstone equivalences should at the very least relate nets with the same observable behaviour;
thus, they must be barb preserving. However, an equivalence defined only in terms of this property
can be hardly considered a ‘touchstone’: indeed, the set of barbs changes during computations (usu-
ally, it shrinks) or when interacting with an external environment (usually, it widens). Moreover,

for the sake of compositionality, our touchstone equivalences should also be congruences. These
requirements lead us to the following definitions.

Definition 3.2 (May testing) = is the largest symmetric, barb preserving and context closed rela-
tion between nets.

Definition 3.3 (Barbed congruence)= is the largest symmetric, barb preserving, reduction and
context closed relation between nets.

We want to remark that the above definition of barbed congruence is the standard one, see [29, 38].
May testing is, instead, usually defined in termobgerversexperiment&and possiblesuccesses

of experimenf22]. However, if we let~" denote the equivalence oKLam nets defined &l [22],

we can prove that the two definitions do coincide. Moreover, the inclusions between our touchstone
equivalences reflect the inclusions that hold insthealculus. To define may testing like in [22], we

let test be a fresh and reserved name used to repartes®f anexperimen{i.e. a computation)

of a net and awbserver The latter is a net containing @ node whose addresstisst that can only

host the datungtest), and (i) processes that may emit the dat¢rest) attest. A computation

. . . ... OK
reports success if, along its execution, a daftiast) at nodetest appears; this is written— .

Definition 3.4 N =~ M if, for any observeK, it holds thatN || K % if and only ifM || K O_—K> .

’

Proposition 3.5 c =~ = =,

IR

Proof: That = is a sub-relation ot trivially follows from their definitions. The inclusion is strict
because the latter equivalence abstracts from the branching structure of the equated nets, while the
former one does not (because of reduction closure). This is standard in process calculi, e.g., in CCS
andn-calculus.

. . OK
We start proving thats C ~’. Let N ~ M and pick up any observét such thaiN | K = .
Then, by contextualityN || K ~ M || K and, by barb preservatioN, || K || test (that comes from

oK .. . . . . _
N || K= ) implies thatM || K || test. Sincetest is a hame occuring only iK (by definition
. oK :
of observers), it must b# | K= , as required.
Viceversa, we need to prove that is barb preserving and context closed. Netx’ M.
Barb preservation. Let N || | and considelKK = test :: in(IX)@l.out(test)@test. Then,
o} o}
N || K =K> that, by hypothesis, impliel! || K =K> . Now, because of freshnessfst,
this is possible only iM | I.

Context closure. The proof is by induction on the structure of the conteki. The base case is
trivial. For the inductive case, we have two possibilities:
e C[] £ D[] Il H. By induction, D[N] =" D[M]; we pick up an observeK and
prove thatC[N] || K % impliesC[M] || K O_—K> (by symmetry, this sflices). We
now consider the observét || K; by Definition 3.4, by induction and by the fact that

DIN] || (H 1| K) == we have thaD[M] || (H || K) = . The thesis easily follows by
rule (PAss) and because C ~'.
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e C[-] = (vW)DI[:]. By induction,D[N] =" D[M]; we pick up an observef and we prove
thatC[N] || K O_—K> impliesC[M] || K % . Sincel is bound, we can assume, up-to
alpha-equivalence, thatg fn(K); in particular,| # test. Now, C[N] || K O_—£> if

and only if D[N] || K O_—K> (and similarly when replacin®y with M). This sufices to

conclude. .

The problem beyond barbed congruence and may testing is that context closure makes them
hardly tractable, because of the universal quantification over all net contexts. In the following
sections, we shall provide two tractable characterisations of these equivalencdssiasuéation
and as draceequivalence.

Before doing this, we show that we can change observables without changing the congruences
they induce; this proves the robustness of our touchstone equivalences and supports our choice. We
shall give the explicit proof only for barbed congruence, but the same arguments hold also for may
testing. Recalling from the Introduction, other two reasonable observables in a global computing
framework can be existence of a specific (visible) datum in some node of a net, or existence of a
specific (visible) datum in a specific node of a net.

Definition 3.6 (Alternative Reduction Barbed Congruences)Let =; and =, be the reduction
barbed congruences obtained by replacing the observable of Definition 3.1, respectively, with the
following ones:

1. N L {yiff N = (DN’ || I” 22 (Iy) for somd such that{l, 1’} nT=0

2. N |y, () iff N = ()N || 1 :: (I2)) for somd such that{ly, I} N 1T=0
We now prove that, thanks to contextualiy,=; and=, do coincide.
Proposition 3.7 =1 = = = =,

Proof: Notice that we only need to consider barb preservation. Indeed, reduction closure and
contextuality are ensured by definition by all the reduction barbed congruences we are considering.

=, C=. Let N =, M. Suppose thaN || I). This implies thatal’ : N | (I). Hence, by
hypothesisM |- {I) that, by definition, implieg | (I).

= C= LetN = MandN |J I. ThenM | I, otherwise the context][|| I’ :: in(!X)@!l.out(l") @I’
(for I fresh) would brealk;.

= C . LetN = M andN [j, (I2). This means thal = ()N’ || I1 :: (I2)) for {l1, 12} n1T = 0.
It must hold thatM |}, (I2) otherwise the context][|| I’ :: in(l2)@l1.out()@I’ (for I” fresh)
would distinguishN andM (according tox). !

4 Bisimulation Equivalence

To coinductively capture barbed congruence, we introduce a labeled transition system (LTS) to
make apparent the action a net is willing to perform in order to evolve. For the sake of presentation,
we introduce the syntactic categoryinért components

L o=nil | )
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(LTS-Our) (LTS-EvaL)
| out(l)@1L.P ~5 1= Pl 1y (1) | evalQ)@I1.P —5 1= Ply = Q
(LTS-IN) (LTS-March)
| in(l )@ P 25 1 2 Pllapd || 17 2 nil | in(l)@1.P 2% 1 P 1y 2 nil
(LTS-New) (LTS-Exists)
I new(l).P 5 (A))(1 =2 P I” = nil) o1 280 )il
(LTS-Senp) (LTS-Comwm)
> | , nil @ | , lo <l , () @11 ,
N1—>N1 N2—>N2 Nl-————>Nl N2-———>N2
Ng I N2 = Nj || Nj Np Il N2 = N || Nj

(LTS'RES) (LTS'()PEN)

a (@l PR
N— N’ | ¢ n(a) N—— N I"=#I

OON S ()N’ o 0@
(LTS-RPR) (LTS-Srrucr)
Nt 5N;  bn(@)nfa(N) =0 N=N; N SN, Np=N

N[N N || N N N

Table 5: A Labelled Transition System

for grouping those components that are unable to perform any basic operatidab&hed transi-

tion relation 5 , Is defined as the least relation over nets induced by the inference rules in Table 5.
Transition labels take the form

X =T | (VT5|@| a:::)(l > 1q | > <1y

We will write bn(a) for Tif a = (vT) | @1 and for@, otherwise;fn(e) is defined accordingly.
Moreover, from the definition of the LTS, it easily follows that, wheis of the form ¢1) (") @1,
we can have eithdr= 0 (hencel’ is not bound in the net executing, or [ = {I’}.

Let us now briefly comment on some rules of the LTS; most of them are adapted from the
n-calculus [38]. Rule I(TS-Exists) signals existence of nodes (labeil @ 1) or of data (label
(I2) @11). Rules (TS-Out) and (TS-EvaL) express the intention of spawning a component and
require the existence of the target node to complete successfullyl(fieSenn)). Similarly, rules
(LTS-In) (given in an early style) and-{S-March) express the intention of performing an input;
this input is actually performed (rul&TS-Comm)) only if the chosen datum is present in the target
node. Notice that, in the right hand side of rul€$%-Ix) and (TS-March), existence of the node
target of thein can be assumed: indeed |ifprovides datunil,), this implies thatl; does exist.
Rule LTS-Open) signals extrusion of bound names; as in some presentation af¢hkeulus, this
rule is used to investigate the capability of processes to export bound names, rather than to extend
the scope of bound names. To this last aim, |&r] is used; in fact, in rulel(TS-Comm) labels
do not carry any restriction on names, whose scope must have been previously extended. Rules
(LTS-Res), (LTS-Psr) and (TS-Srruct) are standard. The structural congrueneeinvolved in
rule (LTS-Srrucr) is the one in Section 2.

Notation 4.1We shall writeN 5 to mean that there exists a ¢tsuch thatN — N’ Alternatively,
we could say thalN can perform a-step. Moreover, we shall usually denote relation composition
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by juxtaposition; thus, e.g —— M means that there exists a Métsuch thalN - N’ < M. We
shall use the convention that putting a bar over a relation means that such a relation does not hold

(e.g. N % N’ means thaN cannot reduce to’ performinga). As usual, we let= to stand for
T a @ a . a .
—*, = tostand for= — = ,and = to stand for= , if = 7, and for = , otherwise.

The LTS we have just defined is ‘correct’ w.r.t. the operational semantigsiaiv, as stated by
the following Proposition. Notice that- is the actual semantics dKramv; the LTS of Table 5 can
be thought of as a technical device deployed to give a tractable formulation of barbed congruence.

Proposition 4.2 N — M if and only ifN = M.
Proof: Both the directions are proved by an easy induction on the inference of the judgemgents.

Now, we prove some relationships between transitions of the LTS and the syntactical form of the
net performing them.

Proposition 4.3 The following facts hold:
nil @1

1. N—— N ifand only ifN = N” || | :: nil; moreoverN” = N’ = N.

2. N M N’ if and only if N = N” || | :: {I’); moreoverN’ = N” ||| :: nil.

3. NY2O @ \ifand only itN = (7)(N” || 1 =2 (1Y) for | # I; moreoverN’ = N || I :: nil.
Proof: In all statements, the ‘if’ part is straightforward, by usingT$-Exists) and
(L'I'(i—)S(Ir};IgIT)/(LTS—PAR)/(LTS—OPEN)/(LTS—Res). For the converse, we explicitly consider the case

N ————— N’ (the other cases are similar). The proof now proceeds by induction on the length
of the inference of this reduction.

Base: the derivation is inferred using just two rules; such rules can onlyLB&-Exists) and

(LTS-Open). Thus,N £ ()(1 = (")), for I” = 1, andl = ¢y <2211 - nil. we triv-

ially conclude.

Induction: we reason by case analysis on the last rule applied:
W) () @1
(LTS-Res) In this caseN = (vI”)Ny andl” ¢ {1, ). HenceN; 21, N:: by induction,
N1 = WI)(N2 || 1)) andN, = No || | ::onil forl # 17, HenceN = (W7, I")(N2 || | ::
AN = I)(O7)N [Tz 7)) andN = (VI”7)N2 || 122 nil.

) N4y @l i i
(LTS-RxRr) In this caseN = Np || N2, Np M N7 andl” ¢ fn(Nz). The thesis easily

follows from the inductive hypothesis.

. N4y @l .
(LTS-Srruct) In this caseN = Ng, Np M N; andN; = N’. The thesis follows by

induction and by transitivity of. 1

We now characterize barbed congruence by using the labels of the LTS instead of the universal
guantification over all contexts. In this way, we obtain an alternative characterizatiomaérms
of a labelledbisimilarity.

Definition 4.4 (Bisimilarity) A symmetric relatiorl® betweerctKram nets is a(weak) bisimula-
tionif for eachN R M it holds that:
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1.ifENS N then, for somév’, M £ M andN’ R M’;
2. if N =5 N’ then, for somevi’, M ||| = nil = M’ andN’ R M’:

) PR
3. if N =—= N’ then, for somé’, M || I1 :: (I,) = M’ andN’ R M’.
Bisimilarity, ~, is the largest bisimulation.

Our bisimulation is somehow inspired by that in [36]. The key idea is that, since sending

operations are asynchronous, the evolutior5 N’ can be simulated by a n& (in a context
where localityl is present) through execution of some internal actions that ledd’ tolndeed,
since we want our bisimulation to be a congruence, a context that provides the target locality of the
sending action must not tell apatandM. Hence, folN || | :: nil to be simulable by || | :: nil, it
must hold that, upon transitionN; be simulable byM’. Similar considerations hold also for input
actions (third item of Definition 4.4), but the context now-ig|[l1 :: (I2).

The LTS we developed does not use labels containing processes. Thus, the bisimulation we
have just defined is clearly tractable and we strongly conjecture that it is decidable, under proper
assumptions: techniques similar to those in [35] could be used here.

4.1 Soundness w.r.t. Barbed Congruence

The key result of this subsection is Lemma 4.7 that will easily allow us to conclude that bisimilarity

is a sound proof technique for barbed congruence. To prove this result, we need some technical
tools. First of all, we introduce the notion bisimulation up-to structural congruenci is defined

as a labelled bisimulation except for the fact that #hen the consequents of Definition 4.4 is
replaced by the relatios R =. Lemma 4.5 shows that a bisimulation up=tas a bisimulation.

Then, Lemma 4.6 characterizes all the possible executions of tigg Ngin terms of the evolutions

of N andC[-] separately.

Lemma 4.5 If N ~ M then for any netdN’ and M’ such thatN = N’ and M = M’ it holds that
N ~ M,

Proof: LetR = { (N;,N2) : Ni = N/ and N = N; }. We shall prove thalk is a labelled
bisimulation. LetN; — My; by (LTS-Srruct) we have thalN; = Ng % M. We only consider
the case forr = y; the other cases are similar. By hypotheN§,£> M, for someM, such that

M1 ~ Ma. Then,N, = N, £ M, and M1, My) € R because of reflexivity of. I

Lemma 4.6 C[N] 5 Nifand only if one of the following conditions hold:
1. N5 N with n(e) n bn(C[]) = 0, or
2. C[0] 5 ¢'[0], or

3. NS N witha = (va', C[-] = C1[(¥)C2[-]] and fr(@) N bn(C1[:], C2[-]) = 0, or

4. C[] £ Ca[Ca[] I H] with H L H7, N =L N andll ¢ b(Ca[]), or

5. C[] £ C1[Co[] | H] with H =5 H’, N @1, N" andl ¢ br(C4[]), or

6. C[] 2 C1[Co[] I H] with H 222 @ 1 N 221 v and{le, 1) A b(Cal]) = 0, or
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l2 <1y Ol ) @1h
N———

7. C[-] = C1[Co[] I| H] withH —— H’, N” andly ¢ bn(C['])

Moreover, the resulting neN is, respectively, structurally equivalent ©[N’], or C’'[N], or
C1[C2[N']], or C[N’], or C1[C2[N] || H'], or C1[(V)C2[N" || H']] (cases 6 and 7.). Finallyy = 7
in cases 4.,5.,6.,and 7. .

Proof: The “if” part is trivial, by using the LTS of Table 5 and by observing that> M’ with

n(a) N bn(D[-]) = 0 implies D[M] 5 D[M’]. The “only if” part is proved by induction on the
length of the inference of5 . In the base case (length 1), it must®E] = [-]; hence, obviously
C[N] £ N3 N’ £ ¢[N’] (and hence we fall in case 1. of this Lemma). For the inductive step, we
reason by case analysis on the last rule applied in the inference:

(LTS-Res). Inthis case, it must be B
DIN] SN 1 ¢n(a)

CIN] = (M)DIN] S ()N’

We can now apply induction and reason by analysis on the used case of this lemma.

1. NS N, n(a) Nbn(D[]) =0 andN’ = DI[N’]. Hence, we still fall in case 1. by using
the contexC[-] = (W)D[-].

2. DIO] 5 7’[0] and N’ = 2Y[N]. Hence, we still fall in case 2. with contextqy-] =
D[ ]andC'[-] = (W)D'[].

3. N_i N, a2 (), D[] 2 Di[(W")D-[-]] and n(a) N bn(D4][-], D2[-]) = 0; moreover,
N’ = D1[D,[N’]]. Hence, we still fall in case 3. by using the conte&t$:] = (vI)D4[ ]
andCz['] = D[]

4. D[] £ Di[Ds[] || H with H L 17 N 25 N’ and1 ¢ br(D,[]); moreover,
DIN] 5 D[N’]. Hence we still fall in case 4. by using the conte®ig-] = (v1)D1[ ]
andCz['] = D[]

5. 6. and 7. are similar.

(LTS-Oren). In this case, it must be

| | —
DIN] 2y @11 N b1

vlo) (I | —
CIN] £ (ipp[N] L2280 §

We can now apply induction and reason by analysis on the used case of this lemma; we have
to consider only the first two cases.

1. N 2@, N’, {I1, 12} N bn(D[]) = 0 andN £ D[N’]. Hence, we fall in case 3. by

using the context€4[-] = [-] andC2[-] = D[-].

Iy @1 — . . ,
2. DIO] L@ﬂ [0l and N = ©’[N]. Hence, we still fall in case 2. with contexts

Cl]=(2)D[-]andC’[[] = D'[].
(LTS-RR). In this case, one of the following inferences should hold:
K5 K bn(e) nn(D[N]) = 0 DIN] SN bna) nn(K) =0

or =
C[N] £ D[N] || K = D[N] || K’ C[N] £ D[N] || K 5 N || K
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By using the first inference, we fall in case 2. with resulting cong&ki] = D[] || K’. By
using the second inference, we can apply inductive arguments similar to those used in the
(LTS-Res) case, but now the contegf-] we consider isD[-] || K instead of ¢1)D]-].

(LTS-Snb). In this case, one of the following inferences should hold:

K 5K DN 25 D[N - KCHK DN N
CIN] £ D[N] || K 5 D[N] || K’ CIN] £ D[N] || K 5 N’ || K

To apply induction, notice that we only have to consider the first two cases of this lemma,
since the actions fired b§p[N] are diterent fromr and have no restricted names. For the
first reduction, we have the following cases.

nil @ |

1. N—— Nandl ¢ bn(D[]). Hence, we fall in case 5. by usi@[] = [], C2[-] £
D[ ]andH £ K.

2. D[0] el D[0]; hence, we still fall in case 2. with resulting conteX{-] = D[] ||
K'|Il::C.

For the second reduction, we have similar cases; we just list ffezetices.

1. N’ =2 D[N’] and we fall into case 4. .
2. N’ £ 9/[N] and the resulting context &[] £ 2/[-] || K.

(LTS-Comm). In this case, one of the following inferences should hold:

PR — | | lo <l | | —
DIN] 2« k (I2) @11 K’ o K 122l DIN] (I2) @11 N

CIN] 2 DIN] | K 5 N’ || K’ CIN] 2 D[N] || K 5 N7 || K’

Like before, we just have two possible inductive cases for each reduction (namely, the first
two of this lemma). For the first reduction we have the following cases.

1. N AL N’, {l1, 12} nbn(D[-]) = 0 andN’ = D[N’]. Hence, we fall in case 6. by using
Cil] =[], Co[] = D[] andH = K.

2. DIO] AL ’[0] and N 2 2Y[N]. Hence, we still fall in case 2. with resulting
contextC’[-] = D[] || K".

For the second reduction, we have similar cases. The oftgreince is that case 1. in the
induction leads to case 7. in the conclusion.

(LTS-Srrucrt). In this case, it must be
C[N] = M; 5 My=N
C[N] SN

We now proceed by induction on the structure of con&&xt. The base case (f@[] = [-])
trivially falls in case 1. of this Lemma. For the inductive case, let us reason by case analysis
on according to the structure 61-]:

Cl-]1 £ WD)DJ:]. We furtherly identify three sub-cases:
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e if My 2 (WI)M andl € bn(a), for someM = D[N], then we can apply the structural
induction toD[N] <, M’, for someM’ = M, anda = (vl)a’, and fall in one of
the first two cases of this Lemma. By using rul& $-Open), we can conclude that
CIN] 5 N falls in cases 2. or 3. of this Lemma.

e if My 2 (WI)M andl ¢ bn(a), for someM = D[N], then we can apply the structural
induction toD[N] 2 M, for someM’ such thatl, = (vI)M’, falling in one of the
cases of this Lemma. Then, by using 6-Res), we can conclude tha&t[N] 5N
falls in the same case of this Lemma.

e otherwise, we can prove tha@{N] = M} % M such thatM] = (vI)M by using
a no longer inference (but possibly using more structural laws). Hence, we can
reduce this case to the previous one.

Cl-]1 £ D[] | K. Because of the structure 61-], it can be one of the following cases:

e K5 K andN = D[N] || K’. In this case, we are trivially in case 2. of this Lemma.

e D[N] S N andN = N’ || K. In this case, we use the structural induction.
o If @ = 7 then other four cases are possible:

_ pIN] 2L Nk el
that eithemN = N’, or D[0] - D’[0]. In both cases is easy to conclude.

M |l L — “ — —~ — . L
~ N 22O Kk 27 ks andN = GV || KY). This case is similar

to the previous one.

— DI[N] mel, DIN], K “Lk andN = D[N] || K’. By structural induction,

it can be one of the first two cases of this Lemma and we can easily conclude.

“ — W) (I I — — —
— piNy 22 [,k Y2 @1 andN = GV || KY). This case is similar

to the previous one. ]

K andN = N’ || K. By structural induction, it can be

Lemma 4.7 ~ is a congruence relation.

Proof:
We start by proving that is substitutive w.r.t. to the net contex@-], namely thatN ~ M
impliesC[N] ~ C[M] for eachC[-]. To this aim, we prove that

R = {(CINL,C[M]): N~ M}
is a bisimulation up-te. LetC[N] 5N; according to Lemma 4.6 we have to examine seven cases.

1. N5 N for n(a) N bn(C[]) = 0; we reason by case analysis@n

a = y. By hypothesis of bisimilarity, M L M and N ~ M. Hence, trivially,
C[M] aN C[M’] and, by definition ofR, it holds thatC[N’] R C[M’].

a = »| . By hypothesis of bisimilarityM || | :: nil = M’ andN’ ~ M’. Sincel ¢ bn(C[‘]),
we have thaC[M] || | :: nil = C[M || | z nil] = C[M’] andC[N’] R C[M’] up-to
structural equivalence.

a=lp <l1. By hypothesis{ll,Iz}nbn(C[-]) =0; thUS,C[M] |11 4oy = C[M | 1q 3 <|2)]
By hypothesis of bisimilarityM || 11 :: (I2) = M’ andN’ ~ M’. Thus,C[M] || |1 ::
(I2) = C[M’]andC[N’] R C[M’] up-to=.
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2. C[O] 5 C’'[Q]; trivially, C[M] 5 C’[M]. Moreover, by definition ofR, we have that

e if @ = ythenC’'[N] R C’'[M].
e ifa=»I,thenC[M] ||| :: nil = C’'[M]andC’[N] R C’'[M].
o if a= Iy <1y, thenC[M] ||| :: {I2) = C'[M]andC’[N] R C’'[M]

3N 2O N, gl 2 GGl for 11 ¢ bCi[],Col]), and N 2

C1[C2[N’]]. By hypothesis of bisimilarity, M % M’ and N ~ M’. Thus,

(2) {2y @11
C[M] =—————= C1[C2[M’]]. The thesis easily follows.

4. By hypothesisC[] 2 C1[Co[] || H] Wlth H2CL i N =L N, for | ¢ br(Cal]), and
N = C[N’]. By Proposition 4.3H = = H || | 2 nil; thus,C[M] = C[M || | :: nil].
By hypothesis of bisimilarityM || | :: niI = M’ andN’ ~ M’. Hence C[M] = C[M’] and
N ‘R M’ up-to=.

5. C[1 £ CilCal] || H with H =5 H', N “225 N’ andl ¢ br(Cz[-)). By hypothesis of

bisimilarity, M ml—&> M andN’ = M’. HenceC[M] = C1[C2[M] || H’]. The thesis easily
follows.
0N (2) @ 1x

6. C[] £ C1[Co[] Il H] with H ———— H’, N = N/, for {I3, 1} N bn(C2[]) = 0, and
N = C1[(VI)(C2[N] || H")]. By Proposition 4.3H = OGDH” 11732 ) andH = H” || 11 =
nil; thus,C[M] = C1[()(C2IM |l 11 =2 (I2)] | H”)]. By hypothesis of bisimilarityM || I3 ::
(I2) = M’ andN’ ~ M’. HenceC[M] = C1[(VI)(C2[M'] || H”)] andN R C1[(v1)(C2[M'] ||
H")] up-to=.

2 <1y o) (1) @11

7. C[-] = C1[Co[] Il H] with H H, N N’, for {l1, 12} N bn(C2[-]) = 0, and
M) (2 @11

N = Cl[(vl)(Cz[N] I H)]. By hypothesis of bisimilarityM =———= M’ andN’ ~ M.
Hence C[M] = C1[(M)C2[M’ || H’]] and N R C1[(v1)(C2[M’] || H")] up-to =.

We are left with proving that is an equivalence relation. Reflexivity and symmetry follow by
definition. To prove transitivity, we consider the relatiBn= { (N1, N») : N; ~~ No} and prove

that it is a bisimulation. LeN; * M =~ N, N; g N; and let us reason by case analysison

a = y. Inthis caseM é M’ for someM’ such tha1N’ ~ M’. If M’ = M, then we conclude up-to

=. Otherwise, it must be th&t, £ N, andM’ ~ NJ; henceN; ~~ N; andN] R NJ.

a = »|. By hypothesisM || | :: nil = M" andN; ~ M’. By context closure, we have that
M1 :nil = Nz [[1:nil; henceNa || |2 nil = N andM’ =~ NJ. Itis easy to conclude that
N; R NJ.

a= lp < Ip. Similarly, M || 11 2 {I2) = M’ andN; ~ M’. Moreover,N; || |1 :: (I2) = N; and
M’ ~ NJ, that impliesN; R N. 1

Theorem 4.8 (Soundness of w.r.t. =) If N ~ M thenN = M.

Proof: We shall now prove that is barb preserving, reduction closed and contextual. By defini-
tion, this implies thatr C =.
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() @ | — —
e [f N | | thenN % , for somel’ and| such thatl ¢ I; hence, by hypothesis of

W @l
bisimilarity, M % and thusM || | (these implications rely on Proposition 4.3 and

Definition 4.4).

e By Proposition 4.2N — N’ implies thatN — N’; this, in turn, implies, by hypothesis of
bisimilarity, thatM = M’ (and, again, by Proposition 4.2 this me&n$= M’) andN’ ~ M’.

e By Lemma 4.7, for all net contexi[], it holds thatC[N] ~ C[M]. 1

4.2 Completeness w.r.t. Barbed Congruence

We now want to prove the converse, namely that all barbed congruent processes are also bisimilar.
To this aim, we need three technical results. The first one gives some simple equations that hold true
w.r.t. barbed congruence. The second result gives an alternative characterization of the contextuality
property of Definition 3.3. The third result states that we can throw away fresh localities hosting
restricted data without breaking barbed congruence.

Proposition 4.9 The following facts hold:
1. )1z in(x)@V.P | 1z dy) = (1)( :: P[AK))
2. 1 zout("@l PV anil = 1PV d7)
3. lzevalQ@U.PllI"znil =1:P|l:Q
4. (v)N = N whenevet ¢ fn(N)

Proof: The firstthree equations can be easily proved by providing a proper bisimulation containing
each of them; this fact, together with Theorem 4.8, proves pai?jAB). The last equation is
proved by first observing that C = (this can be easily proved). Them))N = (WI)(N || | :: nil) =

N || (D( :: nil) = N || 0 = N (indeed, ¢)(I :: nil) = 0, as it can be easily verified). Thus, by
inclusion of= in = and by transitivity ofz, the claim holds. 1

Lemma 4.10 A relation R is contextual if and only if
1. NR MimpliesthatN ||| :: PR M || | :: P for any namd and proces#$, and
2. NR M implies that(vI)N R (vI)M for any naméd

Proof: It is trivial to prove that contextuality implies points (1) and (2) of this Lemma. For the
converse, let us assum&R M and pick up a contex®[-]. We now proceed by induction on the
structure ofC[-]. The base case is trivial. For the inductive case, we have two possibilities:

1. C['] £ D[] || K. By induction, we have thaD[N] R D[M]. We now proceed by induction
on the structure oK. The base case is trivial, up-ta For the inductive case, it can be
eitherK = | :: P || K" or K £ (vI)K’. In the first case, by point (1) of this Lemma, it
holds thatD[N] || | :: PR D[M] || | :: P; then, by second induction, we can conclude
C[N] R C[M]. In the second case, we can always assumeltlsafresh forO[-], N and
M (this is always possible, up-to alpha-equivalence). By second induction, we have that
DIN] || K R D[M] || K” and, by point (2) of this Lemma, we can conclude ugsto

2. C[] £ (W)D[-]. By induction we have thaD[N] R D[M]; thus, by point (2) of this Lemma,

it holds that ¢)D[N] R ()D[M], i.e. C[N] R C[M]. .

Lemma4.11If W)(N || I+ =2 (1)) = (W)(M || I+ :: (1)) andl; is fresh forN and M, thenN = M.
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Proof: It suffices to prove that
RE2{(NM) T gn(N,M) A (DN s ()= (DM T (D)}
is barb preserving, reduction closed and contextual NL& M.

Barb preservation. Let N || I’ for I’ # |. Then, it trivially holds that)(N || 15 :: <)) { I,
DM 15 <) IV andM | I” (indeed” # |; because of freshnesslg).

Now, letN || |. The argument above does not hold becaul@\ || I :: (1)) ¥ |. However,
we can consider the conte®f] = [-] || I5 - in(!x)@I¢.in('y)@x.out()@l;, wherel’, is fresh.
Now, C[(VI)(N [ 1+ =2 <I))] U I%; hence, by hypothesig[(vI)(M | I+ :: <I))] U I}. Because of
freshness offf andl’;, it must be thatM || I.

Reduction closure. Let N — N’; thus, ¢1)(N [| It :: (1)) — ()(N" || I+ =2 (I}). By hypothesis,
this fact implies thaty()(M || 1 :: 1)) = M such that ¢)(N” || It :: ({I)) = M. Since
ls ¢ n(M), I+ :: (I) is not involved in the transition; thus it follows thd = M’ and

M = (W)(M’ || I+ =2 (I)). Thus, the claim is proved up-te.
Contextuality. According to Lemma 4.10, we have to prove just two cases.

1. Foranyl’ andP, itholdsthatN || I’ : PR M || I’ :: P.
Let us first assume that¢ fn(I” :: P). In this case, it is easy to conclude because
DN T ANV 2 P= DNV P s 2z (1)) (and similarly when replaciniyl
with M), by transitivity of = and because C =.

We now consider the case in whitke fn(P) butl” # |. We use the contexg[-] =
MO Y intx)@ls.out(x)@15. P[] || 15 2 nil), wherel is a fresh name. Then,
CIOD(N [ T = {ID] = (e, DN (11 = out(H@IG.P | 15 22onil) = (vg, (N || 17 =
P le (D)) = DN I 1" P IE 2 «<I)). These equalities hold true by using,
resp., Proposition 4.9(1), (2) and (4). Simila@g(vD)(M || 15 = )] = (WM || IV =
Pl 17 =2 (). By transitivity, C[(VI)(N [| I+ :: <I))] = C[(v)(M || It = (I))] implies that
DN =P o) = )M 2P D) and thusN [ 17 PR M| 20 P

The case fot’ = | is dealt with similarly. It uses context[-] = (vI¢)([-] Il I}
in(!x)@I s.eval(P[XI])@x.out(x)@I} ), wherel; is a fresh name, and Proposition 4.9(3).

2. For anyl’, it holds that(vI")N R (vI")M.
Letl” # I,I;. Then ¢I/,D(N || It 2 1)) = (WD((I')N || 15 22 (1)) (and similarly when
replacingN with M). By transitivity of = and because C = we can easily conclude.

LetI” = | # ls. Then we consider the conteg[-] = (¢)([] II I}
in(!X)@l¢.new(I”).out(I”)@l%), for I} and1” fresh. ThenC[(V)(N || I+ = ()] =
M) DN 115 2 <17)) (and similarly when replacing! with M). Thus, we can con-
clude that ¢(1”)((VN || 15 2 1”7)) = (A7) (VDM || 15 22 <1”")) that implies ¢1)N R (vI)M.

Finally, letl” = It # |. Then we consider the conteg{-] = (vI¢)([-] Il I}
in(!x) @I s.out(x)@I%), for I} fresh. TherC[(VI)(N [ 1+ =2 <I)] = ()((e)N [ 15 22 <1))
(and similarly when replaciny with M). Thus, we can conclude. 1

Theorem 4.12 (Completeness af w.rt. =) If N = M thenN ~ M.

Proof: It is enough to prove that is a bisimulation. We now pick up a transitidh— N’ and
reason by case analysis en
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a = 1. This case is simple because of reduction closure.

a= {I) @I'. Inthis case, we consider the cont&ft] = [-] || I+ :: in(D@I’".new(l”").out(l”)@I ¢,
for I+ andl” fresh, and the reductio@[N] = (vI”)(N’ || I+ :: I”)). By contextuality and

reduction closure, it must be th&{M] = M such that ¢I”)(N’" || It :: {I”’)) = M. This

— he@v
implies thatM || I¢; but this is possible only iM :ﬂ__, M; = M. Moreover, because

J— I I/
of freshness of; andl”’, we can state tha¥l = (vI”’)(M2 || I :: <I"")). Thus,M % M,

and, by Lemma 4.1\’ = M.

a= W) {)@!". We now consider the conteg-] =[] || I :: in(!X)@I’".out(X)@I ¢, for | fresh,
and the reductio®[N] = (VI)(N’ || I+ :: (I)). By arguments similar to those above, we

_@! . . .
are ensured tha?l ———= ; we now prove thaM (weakly) afers inl” a restricted locality.

By contradiction, let us assume thisit only offers inl” free names and let us pick up one

I// I/
of these names, sdy. ThenM % M’ andC[M] = M’ || |1 :: (I”). But it cannot

be that ¢)(N" || I+ = (1)) = M’ || I 2 (I”) for any M" because of the contexq [|| I% :
in(I")@l¢.out()@l;. Hencel” must be bound iMM; we can now alpha-convelt to | in M

(this is possible since we are assuming that bound names are pairwise distindferehti

vy (y @ I’
from the free ones, and hencég n(M)). Thus,M % M” and ¢D(N” || 1+ :: () =

DM )1 15 2 (y); by Lemma 4.11, we can conclude.

a= nil @l . We now consider the contegt[-] = [-] || I :: evallnil)@l.new(l’). out(l") @I+,
for I+ fresh, and the reductio@[N] = (vI))(N” || 1+ :: (I”)). Like before, we have that

M =——ZL M7 and 17N |15 22 (7)) = ()M || I :: (I’)) that sufices to conclude.

a = »|. We consider the context][|| | :: nil and the reductioN || | :: nil — N’. Then,
by contextuality and reduction closuri || | :: nil = M’ andN’ = M’. This sufices to
conclude (see Definition 4.2).

a = |, <« 11. This case is similar to the previous one; we just consider the conteki{ :: (I2)
and the reductiom || 17 :: (I2) — N’. I

Corollary 4.13 (Tractable Characterization of Barbed Congruence)~ = =.

5 Trace Equivalence

In this section, we develop a tractable characterization of may testing. For some well-known process
calculi, may testing coincides with trace equivalence [22, 8, 9]; in this section, we show how a
similar result is obtained also in the settingefLam. To the best of our knowledge, this is the first
tractable characterization of may testing for a distributed language with process mobility.

The idea beyond trace equivalence is tNaand M are related if and only if the sets of their
traces coincide. Put in another form,Nf exhibits a sequence of visible actiomsthenM must
exhibit o~ as well, and viceversa. In an asynchronous setting [9, 16], this requirement must be
properly weakened, since the discriminating power of asynchronous contexts is weaker: in the
asynchronous-calculus, for example, contexts cannot observe input actions.

To define a proper trace equivalence we slightly modify the LTS of Table 5 by adding the rule

lp «lq

N Ip¢fn(N)

(LTS-Rcv)
W) 1y <1

N—22"2 NIy nil
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(L1) oMo' <o o-M)eal-o’ if (V)o” # L

(L2) o-()(p-eal-0’) =0 o-(M)eal-¢-o’ if (V)(¢-oal-07) # L
(L3) oMo’ <o o-(M)eal-eal-o’ if (V)o” # L

(L4) o-()p- el -0’ =0 o-()p-0’

(L5) ool -(eal-o’ =<9 o-(M)eal-o

(L) o-»l -ODI@] 0@ =0 o-(NI@I->l-0 ifl'el

Inlaws (1), (L2), (L3) and (5), eAl stands for either>1 or " « |
(henceeal in rule (L3) stands fornil @1 or (I’y @1, respectively)
Inrule L4),¢ canonlybel” <1 or (') @I

Table 6: The Ordering Relation on Traces

that permits distinguishing the reception of a free name from the reception of a bound name (this is
akin to the asynchronouscalculus in [9]). In the latter case, the received ndgnmust be fresh

for the receiving net and, because of |&RNpbE), it can be considered as the address of a node;

of course,bn((vl~) "<« 1)= 1. Notice that rule (TS-Rcv) is not needed by the bisimulation we
introduced in the previous section to capture barbed congruence. Thus, the new transition system
exploits the following labels:

o= v | ¢ o u= ohr@l | sl | ol el

where ¢ collects together all the visible labels. Clearly, ruldd$%-Res), (LTS-Psr) and
(LTS-Srruct) from Table 5 must now exploji instead ofe. Then, we define a complementation
function over the labels of the LTS. Formally,

>l = nil @I nl@l = »I
W12 <y M)l @13 M)l @13 W12 <1y

We leto to range over (possibly empty) sequences of visible actions, i.e.

o = € | oo

wheree denotes the empty sequence of actions anepresents concatenation. As usu\al,é

denotesN = andN "":‘T> denotesN i> Z, . A naive formulation of trace equivalence such as
“N = ifand only if M < " would be too strong in an asynchronous setting: for example, it would
distinguishN = | :: in(!X)@l1.in(ly)@l, andM = | :: in(ly)@l».in(!X)@Il1, which are instead may
testing equivalent. Like in [9], a weaker trace equivalence can be defined as follows.

Definition 5.1 (Trace Equivalence) < is the largest symmetric relation betwedfiamm nets such
that, wheneveN < M, it holds thatN SN impliesM = , for somer’ < 0.

The crux is to identify a proper ordering on the traces such that may testing is exactly captured
by <. The ordering is obtained as the reflexive and transitive closure of the ordesgrdgfined in
Table 6. The intuition beyona’ < ¢ is that, if a context can interact with a net that exhibifghen
the context can interact with any net that exhibits The ordering<y relies on the functionv()o-,
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that is used in lawsL(), (L2) and (3) when movingremoving a label of the formy{’) I’ « | . In
this case, the information thHtis a fresh received value must be kept in the remaining trace. The
formal definition is

_ o if TN fn(o) =0
Mo = § o1- )V <1” .05 ifl={'}ando=01- " < I” -0 andl’ ¢ fn(oy, 1)
1 otherwise

To better understand the motivations underlying this definition, consider the following example that
justifies the side condition of law.{) (similar arguments also hold for laws?) and (3)). In the
trace ¢I") I’ <1 - (I"y @|” performed by the nd\l, the input action cannot be erased. Indeed, since
I”is fresh (see the meaning of label'§ I’ < 1), N cannot get knowledge dfwithout performing the
input and, consequently, cannot perform the aciih@1” . On the other hand, ¥l could receive
I” from a communication with another nold@é (thus, it can perform actiolf <|””” after |’ <), then
the firstinput action can be erased and)(” < I”” - (I"Y @1”" <o (W)l <1 - 1" <1 - (I"Y@I" .

The intuition beyond the rules in Table 6 now follows. The first three laws have been inspired
by [9], while the last three ones are strictly related to théediénce between a ‘pure’ name and
a name that is used as a node address. lay gtates that an input, an output or a migration
cannot be directly observed; at most, #ffect of an output can be observed (by accessing the
datum produced by the output). Law2) states that the execution of an infouttpufmigration
can be delayed along computations without being noticed by any observerLBastdtes that two
adjacent ‘complementary’ actions can be deleted (by using a terminology burrowed from CCS [32],
we say thap and¢’ are complementary if they can synchronize to yietd-asee rulesl(TS-Comm)
and (TS-Senp)). Law (L4) states that, since bound names can always be used as node addresses,
then the receptigtransmission of a bound nanteenables outputsiigrations tol’. Law (L5)
states that an input frolralways enables outputsigrations td; indeed, if a datum frorhhas been
retrieved, thet exists and any outptmigration to it is enabled. Of course, an oufmigration tol
always enables other outptsgrations td. Similarly, law (L6) states that, if an outptmigration
tol” is enabled after an actiagnof the form @ | @I, then the outpytnigration can be fired before
¢, sincel” was already present. However, this is not possiblehfs been created befapeand¢
extruded it (i.e., i’ €1).

Remarkably, may testing in the (synchron@synchronousk-calculus [8, 9] cannot distin-
guish bound names from free ones; thus, a bound name can be replaced with any name in a trace.
This isnot the case here: indeed, bound names can be always considered as addresses of nodes,
while free names cannot. This makes fialience for an external observer; thus, a law like

o- ("M@l - (@1 <0 o ()Y @I -0’

(that, mutatis mutandis, holds for the asynchronowsalculus [9]) does not hold faKLaim.

5.1 Soundness w.r.t. May Testing

To prove that trace equivalence exactly captures may testing we rely on the classical definition of

o
the latter equivalence [22], as proposed in Definition 3.4. By using the L_Jé corresponds to

(test) @ test . . .
= = ; when it is convenient, we still useK to denote labektest) @ test .

First, we extend the complementation of a label to traces as expectable:

ifo=¢€

—_ e
7= ¢-0 fo=¢ o
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Remarkablyz = o~. Then, we give a Lemma that describes fisient and a necessary condition
for the success of an experiment.

Lemma 5.2 LetN be a net anK be an observer. Then

o 70K . OK
1. N= andK ——= imply thatN || K = ;
oK . . . o 70K
2. N || K= implies that there exists@ such thatN = andK — .

Proof:

1. The proof is by induction on the lenght of The base step is trivial. For the inductive step,
we have thatr = ¢- o’ and we consider the possibilities for All the cases are trivial, except
for the following two:

)17 <l ’
e ¢ = (W')I" <« |. Now, we have thaN = N’ L N = , for I’ ¢ fn(N’);
M @l 7 -OK . . OK
moreoverK = K/ —————— K” —= . By induction,N” || K" = . Now, by
Proposition 4.3.3K” = (WI)(K™ || | = (")) andK” = K || | :: nil; thus, N ||
oK . . .
K= W)(N || K” || ")) 5 (VI")(N” || K”) = (indeed, sinc& is an observer,

it can only emittest attest; thus,l’ # test).
¢ =W"){I"y @I . This case is similar.

2. By definition, it must be thal || K( 5 )"H oK ; the proof is by induction om. The base
step is simpleo- = €. For the inductive step, we have two subcases:

’

T T . . fod o’-0OK
e N||K— N | K'(—)"H. By induction,N' = andK’ =—= , for someo”’. There
are six possibilities for the first-step:
(@) N5 N’ andK’ = K: in this case, we can pick up = ¢”.

(b) N’ = N andK 5 K’: like before.
nil @ |

(c) N—> N” andK ——— K’: we can pickupr = »| - o

(d N—— mel N’ andK—>K"we can pickupr = nil @I - o
(e) N———> N andK ——— hel K’: we can pickupr= 1" « | -¢”.
H N—— vol N’ andK—>K’:we can pickupr = (I') @I - o

e N || KS ()N || KY(5)™IH. SinceH = (WI’)H’ for someH’ (indeed,r-steps
cannot remove restrlctlons) it must Bet test. Thus,N’ || K’ (—> -1 oK and,

o’-0K
by induction,N’ Z andK’' — , for someo”’. There are only two possibilities for
the firstr-step:

) () @| > _
(@ N mnel, N’ andK —5 K. By definition of the LTS, we have to extend

the scope of’ before passing it by using rul&fr). Thus,l” ¢ fn(K) and, by rule
(LTS-Rev), we have thak L K’. Thus, we can pick up-= (WI'){I") @1 -

o’.

I <l @ @l . L
(b) N—— N’ andK M K’: this case is similar. 1

The next Lemma states that the laws in Table 6 are ‘sound’, in the sense that, if an observer can
observe a trace (i.e., that can provide), then it can also observe any trace< o.
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Lemmab5.3 Leto’ < o andN SN :then,N .

Proof: By definition,o”’(<0)"o; we proceed by induction om The base step is trivial, by reflex-
ivity. For the inductive step, we let’(<0)" 10" <o o; it suffices to prove thal Z implies that

N = . Indeed, by induction, the latter judgement implies tNat= , as required. We reason by
case analysis on the law in Table 6 used to infér<y o~. Notice that all the laws hide a double
formulation that is made explicit in this proof.
. ~ . ~ N o1 M @1 o2
(LD.a: oczo1-(W)I" «| -opando” £ o1 - (vl)o,. By definitionN= N ——— N’ = ;
moreoverN’ = (V)N || I (")) andN” = N”’ |12 nil. Now, if | = 0 or I N fn(o) =

0, then it must be thalN’ ELN and, henceN —_—> . Otherwise, it must bé = {I’} and
oy II I/I e

o2 203 I «I” -ogforl” ¢ fn(os,1”); thus, NZEEEN N7’ & N Z, . Now,
0'103(V')(|>@|”~0_4 . a”’

N’ 25 ()N 11122 () 11722 (1)) and hence e N=.

_ 1 i@l 72
(LY).b: o £=01- > -0pando” £ o1 - 02. By definition,N N % N 22 ; moreover,

N’ = N” and henceN ——= , as required.

(L2)a: o 2 o1- DI <1 -¢p-0pando” 2 o1- (W@ I < | -0y). By definition,
o1 (V—Ij (" @l ’ ¢ 1" o2 . ’ N/ Y ” | .
N=N — N’"= N"” = ;moreoverN’ = (W)(N ||| :: {I"))andN” =N ||| :: n
L~ — . F0) (I @1 72
Now, if | = @ or | nfn(¢) = 0, then it must be thatN’ (/)(V)——UZ> and, hence,
— ) ) I/ @IN
N — . Otherwise, it must be = |I” <« I” forl” # I”’; thus,N” % N’””. Now,
Ay @1 @ . 02 el
N’LN”’ Ny —— e N7z nllé,andhencedg::».
I o1 il @1 é
(L2).b: o £ op-51-¢-cpande” 2 gq-¢» | -0y, By definition,N = N’ @1 N7 L N 22
moreoverN’ = N” = N” ||| :: nil. Thisimplies thalN’"” = N’ || | :: nil (since nodes cannot

o1é nil @1 o2
disappear along reductions) aN——=, as required.

(Laoc 2 o -0V <1 - () @I .oy and ¢ = - Wo,. By definition,
71 W 1)y @1 I’ 72
N % N’ M—» N; = N; LR N 2 ; moreover,N’ = (vI)(N || I <)) and

= N ||| :: nil. Thus, N’ = (vI)(N’ I <I ) = (N |12 nil) £ Na. Now, if I = 0 or

T nfn(crg) = (), thenN3 =2, and, henceN :> Otherwise, we reason like in cadelj.a to
obtain thaiN3 % and, againN _—_> .

(L3).b: o 2 og1- >0 - nl @ -0 and ¢’ % o1 - oo By definition,

o1 nil @1 > | 72
N=—=N —— N’ = N’ = ; moreover,N’

N’ = N’ and we can easily conclude.

N” || | :: nil. This implies that

vI’) (I | o2
(L4)a: o = () <l -opande” 2 oy ()1 <l -5 1" -y ThenN 2o N S0 O, N Z2,
thus, by rule RNope), N" = (WI)(N || | =2 {I’) || I :z nil) andN” = N || | : nil. Hence,

o) @

71 - . onl@/r
N=—N ——>N|!l:nl]!l:nl —

72
= , as needed.
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(L4).b: o-_é o1- (W)Y @I -opando” £ o - () Yy @1 - » 1" - 0o Then,

)1 <l 2 _
N N YN Z by rule (TS-Rev), it holds thatN” = N || I7 = nil. Thus,
— N el Cier &
N2 NN il @Y Z as needed.
(L5)a: o 2 o -1 <1 -opande” 2 o1 »1 - () I" < | -0, By definition,
(T_l ’ (VTS <I,> @I ” O'_2 . ’ n 1444 . 7’ 142 1444 .
N= N — N” = ; moreoverN' = (W)(N"”" || | :: {I')) andN” = N ||| :: n
. 71 @l o)) el 72 .
Thus, easilyN N2 eL,mwhe NEEN , as required.

A

(L5).b: o201l -opandoc” 201- 1 - »| - 0,. Similar to casel(5).a.

(L6).a: o =01 - (v|~) el -el” -0 anda-” £ 01 I (v|~) 4"y @1 - 0. By definition,
71 NI al @V . .
N = = N; L N> = N3 & Ny Z, . ; moreover,Ns = Nz || I’ :: nil = N4. Since

I” ¢ 1, we have that’ must be a node also |N2 and inNqy, i.e., N2 = Ny || IV :z nil and

l@r ohdy@l .
Ni = Nq || I ::nil. HenceN=>N1 ner the N, = N4=>,as required.

(L6).b: o =01 nil @I - »l" -opandc” 201 »1" - nil @I - o,. Similar to casel(6).a.

Now, the main theorem follows.

Theorem 5.4 (Soundness of w.rt. =) If N < MthenN =~ M.

OK
Proof: Let K be an oserver such thit|| K=— . By Lemma 5.2.2, there existssuch thalN —

7-OK
andK —= . By Definition 5.1, there exists’ < o such thatM — | By sufix closure of<
(that can be easily proved), we have that test <« test <o - test < test.BylLemmabs.3,

K é By Lemma 5.2.1M || K :> , as required by Definition 3.4. Thul, ~" M that, by
Proposition 3.5, implies thad ~ M. 1

5.2 Completeness w.r.t. May Testing

Now, we define theanonical observefor a taces, writtenI(o), as

(o) = C[test:: P]



5 TRACE EQUIVALENCE 25

where the actual observer procéd3sand contextC[-] enabling the observation are returned by
Ov(0) = < P; C[] >, which is inductively defined as follows

Oc(e)
oL(nil @I - o)

< out(test)@test.nil ; [-] >

< evalnih)@!.P; C[] >
whereO (o) = < P; C[] >

o(In@l -o) = <in("h@l.P; C[]>
whereO (o) = < P; C[] >

oY@l o) = <in(x@.(PX); C[] >
WhereOLU{p;(O') = < P; C[] >

<P;C[]Il:=znil > ifl¢L
O(>l -0) =
<P;C[]> otherwise

whereO (o) = < P; C[] >

_ <new(D.out("@\.P; C[]1 Il = nil > ifle¢L
oLl «l o) = _ .
< new(l).out(@I.P; C[] > otherwise
whereO (o) = < P; C[] >

L is the (finite) set of names extruded by the trace, i.e. those names created by the net that emitted
o and dfered as a datum in a visible location. We used the conventiomévgt).out(l")@! stands
for out(l”)@! whenevell = 0. The context has only to provide localities where

¢ the observed net can place datale (wherr is of the forme | - o)

« the observer process can place data that the observed net needs-(sloéthe form ¢1) I’ <
I - o).

However, the context should not provide a localitwhenevel’ € L. In this case, the observed net
already provide$’; indeed, ifl’ € L, thenl’” has been extruded by an actioff I’y @1 in o

The key property of the canonical observer dois that it always reports success when run in
parallel with a net thatferso, as stated by the following Proposition.

Proposition 5.5 (o) g .
Proof: The proof is by induction ofor| and easily follows by definition of canonical observerg.

Now, we distinguish the labet | generated by ruldTS-Our) from the same label generated
by rule (LTS-EvaL). We shall write & | the former and> | the latter. This is needed for technical
reasons (see the case)(in the proof of Lemma 5.7); the two labels are exactly the same. We start
by adapting Lemma 5.2.2 in order to exclude labels of the feri

Lemma5.6 If N || L(o) =X, , then there exists &’ such thatN = , (o) CAMLLN ando’ does
not contain labels of the forna I.

Proof: By Lemma5.2.2, we know that there exists a tra¢esuch thaiN U=> andLI(o) U—A> .
The proof now proceeds by induction on the number of labels of the farngfor a generid) in
o”’. The base step is trivial. For the inductive step, we havedtiat o1 - &1 - o, such that;
does not contain labels of the fore _. We consider two cases:
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e There are nointruded name$ in . Thu_s, o1 does not contain labels of the form
) 1 @17 . Letll(o) 2 Cltest = P] = C'[test & out(")@I.P] —= C'[test ::

PLIT ) == . By definition of canonical observers, it must be t@4t] = C’'[-] || | :: nil;
indeed, for every actioout atl in a canonical observer, a node with adddessalways pro-
vided, except whehis a name intruded by the observer (i.e., extruded by the trace), that is

: . i@
not the case here. Thud(o) 2222, Onthe other sidd\l 2N % NZREN , where

N’ = N”; thus,N 2272, . The thesis holds by induction a@r - o> that has one label of the
form & _ less thar”.

e There are intruded names ; and these arély,....Ik}. If | ¢ {l1,...,1k}, then the

proof is like in the case above; otherwise, lebe l;. Sincel; has been intruded, it
73 Vi) I < 17 . T2
must be thatli(o) = K L K| ool = Cltest :: out(")@l;.P],
whereoy = o3 - (i) (i) @17 - o4 andC[test = P] || I = (") Z, Now,
) () @17 il @l c o

N = N; % N, Z, N3 & Ng 2z, , forsomeN, = N || I; :: nil (this is always
possible because iN; namel; is restricted and can be used as address of a node, by using
law (RNopE)). Moreover,N3 = Ng; thus, since the node with addrésm K’ || |; :: nil cannot

a3 (Vi) li <17 o402

disappear during computations, it holds thiit-) >, i.e. (o) =2, , and
corresponding\N 222, Like before, we can apply induction &, - o> and conclude. j

The main Lemma to prove completeness of trace equivalence w.r.t. may testing is the following
one, stating thaitl(c) can report success only upon execution of a teacguch that” < o

’.OK ,
Lemma 5.7 Letll(o) = , Wheretest ¢ n(o”’) ando”’ does not contain labels of the forel.
Then,o’ < 0.

Proof: The proof is by induction ofvr|. The base step is trivial. For the inductive stepotdte
¢ - o’; let us reason on the possibilities for

(i) ¢ 2 nil @1 . By costruction,li(c) = C[test : evalnil)@I.P], where <P; C[]> =
Op(c””). The tracdl(o) G'—£> can be produced only in two ways:

o o2-0K
1.0 201 » | -0, whereC[Q] REN C’[0] andC’[test :: P] SR AN Thus, (o) £
o1:02-0

Cltest :: P] :K> ; by induction, this implies thafr; 02 < ¢”. Now, o =
p-0" >¢-T1-02>01-¢-02 = 0’, where the first inequality holds by prefix closure
of > (i.e., the inverse ok) while the second inequality holds by repeated applications
of law (L6). Indeed, sinc€[-] is just a parallel of nodes with no components,only
contains labels of the forrmil @ _ ; thus,o1 only contains labels of the form _ .

2. ¢ % oy - 0rp, whereC[0] 22l ¢/[0] andC[test =2 P] 22 | Thus,Ii(0”") £

-nil @1 -02-0K . . L
Cltest :: P] EERLE SN ; by induction, this implies thaf; - > 1 -2 < 0. Now,

by prefix closure, by repeated applications of 1dwg)((like in the previous case) and
by law (L3), we have thatr £ ¢-0”’ > ¢-o1- > | -0 >01->| -¢p- 02> 7102 2 0,
as required.

3By symmetry of denomination w.r.t. extruded names, weintdideda name received via rul&TS-Rcv), i.e. name
I"isintrudedincif o =o' - (W) I" <« | -o”.
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(i) ¢ = »1. By costruction]I(o) =2 C[test :: P] || | :: nil, where < P; C[-] > = Op(c”’). Now,

we have that” £ o1 - 02, WwhereC[test :: P] SEN C’[test :: Pl and(C’[test :: P] ||
2-OK 0,-0OK
| o il 2= . Now, II(o"") = C[test :: P] 1:2> , Whered, is the trace obtained

from o by removing all the labelsnil @ | from it and by possibly adding a label of the
form » 1. Indeed, since it is not necessarily the case @jat = ... || | :: nil, it can be
that some labelsnil @ | cannot be generated [y [test :: P’]; similarly, it could be
necessary to add a labell if, in the production ob,, C’[test :: P'] needd to place some
datgprocess. Hence, by induction, we have that: 072 < o”. We now have the desired
o> ¢-0'_1-072 > ¢-01-02 = 01 02. Notice that the second inequality has been obtained by
repeated applications of lawkX) and (2) (as many times as the number of labeli$ @ |
removed fromo; to obtaino?,) and by possibly applying law4.), (L2) and (3) (if a label

of the form > | has been introduced in). The last inequality relies on lavi.{).

(i) ¢ = () I’y @1 . By costruction, we have two subcases:

1. T = 0. Then,li(c) £ C[test = in(I")@!.P], where < P; C[-] > = Op(c”’). Now,

A

we have thav” £ o1 - I” < | - 09, whereC[test :: in(I")@I.P] SEN C'[test ::

/4 o0 01:02:0
in(N@.P] 5 C[test = P] 225 | Thus, (o) 22225, and, by induction,
o102 < o”. Again, by using prefix closure and lal®) (that can be used sinég is
only made up by labels of the form_),c > ¢-o1-02>01-¢- 02 2 0.

2.1 = {I'}. Then, (o) 2 C[test :: in(!x)@l.(P[XA'])], where <P; C[]> =
Oyy(c”). Now, we have thav’ = - () I’ < | -0-2, where C[test ::
in(10)@.(PM] 2> C'[test : m('x)@l el 22 Crltest s Py
nil % (indeed, by constructioltt, ¢ fn(C’[test :: in(!X)@I.(P[*I'])])). By an easy

inspection of the definition of canonical observers, it holds th@t”’) is structurally

equivalent to eithe€[test :: P] || I’ :: nil or C[test :: P] (according to whethes"”
. , 2-OK
contains labels of the forre I’ and _ < I’ or not). In the first casd](c”’) NSk AreiN

and the thesis follows by induction, prefix closure and applications of L&) (n the
01:05,-0K
second case, we proceed like in caggegbove, i.eIl(c”’) S whereo, is ob-

tained fromo, by removing actionsnil @ I’ and by possibly adding an actionl’ .
The proof is then similar, but uselsg) to placeg at its right place.

(iv) ¢ = (vﬁ I” « | . By costruction,lI(c) £ C[test :: nevv(l) out(@I.P] || I :: nil, where
<P; C[]> = Oy(c”). This case is the most tediouH(c) has a lot of possible evolu-
tions and, thusg”’ can be of several forms. However, by hypothesisdoes not contain
labels of the forms _; in particular, it does not contaim |. Hence, the actioout(l")@I
does not generate any visible action and foidd&s) to reduce t01(I~)(C[test SPHIE G A))
in order to report success. We consider only the case in whicll’}, that is the most com-
plicated. We have to keep into account whether and @fvest :: P] andl :: (I") interact,
and whether and hoW is extruded. We have 12 possibilities in total.

1. | :: (") is not involved in the generation of

(a) I’ is not extruded by[test :: P]: this case is the simplest, sintéo"’) é

By an easy induction and by usingl) we can conclude; indeed, notice tliat
fn(o’) and thus ¢l )o”’ = o”'.
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(b) I is extruded by’[test :: P]: in this case, we have that = o1-(vI") I’y @ 1" -0

o1 (") @ 1" 020K _ . ,
andL(o”’) > . By using induction and prefix closure, we have that

ox¢-o1- I «1” -Ga=01-(W') 1" «1” -T2 2 o/, where the second inequality
relies on law (1).

2. the first contribution of :: {I’) in ¢’ is with label nil @ |
(a) the datunx!’) is not used

(b)

(©)

(d)

i. I”is notextrudedin this caser’ = o1- nil @1 -0, andll(o”") & , where
o, is obtained fromr; like in case {{) above. By induction and prefix closure,
ox¢T1 0y »l¢Tr0, = pl Tro, =010l 0, =01 T2 0,
where the second inequality holds by lalabj, the third inequality holds by
law (L1) and becauskE does not appear in what follows, the fourth inequality
holds by law [2) and the fifth is obtained by usingZ), (L3) and (5) like in
case ii) above.

ii. I”is extruded:in this caseg” £ o1 - (M) 'Y @I o2 nil @1 - 03

o1 (I @1" -02:05-0K . . .
andII(o”) >, whereo; has been obtained fromg like in

(i) before. By induction, prefix closure and by following steps similar to case
2.(a).i, we can prove that > ¢-o1- 1" «1” -0'_2-0'_'3 o1l <«l” oy el 032

o’. The only diference with the previous inference is that th)(at the
beginning ofg is not thrown away but is captured By < I’ , as desirable.

Remark:itcould alsober’ £ o1- nil @1 -o2- (W) {I") @1 - o3. This case
ooy Iy @ 1" -04,-0OK

can be easily adapted, by considerli@r-") ik SN whereo|

has been obtained from like in (ii).

it also gfers the datum via a labéll’) (I’) @1 (that also extrudeB): in this case,
o 2 gpo il @1 - (1) (1) @1 - andLI(0”) 2228, wherer, andor,
have been obtained from, andos like in (ii) above. Theng > ¢ - o1 - U_é : cr_g =
> g1 0y 0h =01 »| -07-¢- T3 = o, where we have used lawsH) and
(L2), possibly iterated several times, and [dv3) if needed.
it also gfers the datum via a labe{l’y @ | butl’” has been previously extruded:
in thiscaseg” £ o1 nil @1 -o2- W)Y @I -03- {I') @I - 04 and
(") 7y OO UsﬁiOK» , where ther{s have been obtained from the corre-
sponding;s like in (i) above. The proof proceeds like in the previous cases, by us-
ing (L5), (L2) and (3). Again, like in case 2.(a).ii, the restriction &ns captured
by I” <« |I” , as required. Moreover, like in case 2.(a).ii, the proof is not radically
changed if we consider’ £ o1 - (V) {I") @1” -o2- nil @1 -o3- {I") @I - 4.
the datum(l’) is then passed tG[test :: P] with a communication

i. I is not extruded: in this case,c = o1 nl @I - o203 and

a ’ J
ooy 1" <l 050K

(o) >, whereo, ando; have been obtained froo, andos
like in (i) above. Theng > ¢-71-0 (I @1 0% > »1 -¢p-T10% (1) @l -0 >
o1-vl-oo-¢- (Y@ -o3>071-»| -0, 03 £ 07, where the second step
relies on law [5), the third step on lawd.@), (L5) and (3) used as needed,
and the fourth step relies on rule3). Notice that, sinc# is not extruded, it
must be thal’ ¢ fn(o3); thus, ¢1")o3 = o3.

Remark: if I’ is extruded after the communicatioorg will be of the form
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Loy@l”-..;henceggzis .- I <17 Now, W)oz = ...-() I <170
and the proof carries on in the same way.
ii. I’ has been previously extrudedn this case,oc” = o1- nil @1 - o2 -

oroy (I @1 oy 1" <l .0-OK

VYA @!1” - o3- 04 andl(o”) >, where the

ois have been obtained from the corresponding like in (i) above. The
proof is carried on similarly to the previous cases. The situation in which the
extrusion ofl” proceeds the labetil @1 is similar.

3. the first contribution of :: I’y in o’ iswith(vI’) (I’) @1 (that also extrude§): in this

o1-05-0K
caseg’ £ o1- (W) Iy @1 - o2 andli(c”) — , Whereo, has been obtained
from o, like in (ii). The thesis follows by induction, prefix closure, lal2] and by
possibly repeated applications of lav$], (L2) and (3).
4. the first contribution of :: {I’y in o iswith I’y @1 andl” has been previously extruded:

i i ’ A NV "o L ] o Tr (" @1” -02:045:0K
inthiscaseg” £ o1- (W) "y @17 -0 {I") @I -0z andli(c”) S

wherec’, has been obtained fromg like in (ii). The situation is like in the previous
case, but now the restriction ¢nremains associated 6 <« |’ , as needed.

5. the first contribution ofl :: (I’) to the production ot~ is by passing the datum to
C[test :: P] with a communication

(a) I’ is not extruded:this case is similar to 2.(d).i above, but it is simpler. Indeed,
o1 I <l .04-0OK
o’ £ o1 -0 andll(c”) ———2— . The situation does not radically change

if I is extruded after the communication (see the Remark at the end of case 2.(d).i
above).

(b) I” has been previously extrudettis case is similar to 2.(d).ii above. Indeed,=

’ ’ ’” . o "y @17 o2 I" < 'O’é-OK
o1- (W)Y @1 - o2 oz andlI(c”) ,

Finally, we can prove that trace equivalence is a sound proof technique for may testing (see
Theorem 5.4) that exactly captures it.

Theorem 5.8 (Completeness of w.rt. =) If N ~ MthenN < M.

. o . o-0OK
Proof: Leto be atrace oN, i.e. N = . By Proposition 5.5[1(0c)) —— ; thus, by Lemma 5.2.1,
oK OK
N || LI(c’) = . By Proposition 3.5 and Definition 3.4, it holds thdt|| II(c) = . By Lemma 5.6,

. a’ o’ 0K .
there existsr’ such thatM = , [I(0c) ——— ando¢’ does not contain labels of the form I.
By Lemma 5.7 (notice that, sinast is fresh, it holds thatest ¢ n(¢”)), o’ < o as required by
Definition 5.1; thusN =< M. I

Corollary 5.9 (Tractable Characterization of May Testing) < = ~.

6 Verifying a Distributed Protocol: The Dining Philosophers

We now use the proof techniques we have just presented to state and prove the properties of a
‘classical’ problem in distributed systems, namely théing Philosophers* In what follows,

“Historically, the problem was first formulated and solved by Dijkstra in 1965 and was used to motivate the use of
semaphores.
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we shall use bisimulation, that is finer but easier to prove. All the work can be done with trace
equivalence as well.

To have a more elegant implementation of the protocol and an easier verification, in this section
we shall use polyadic data, i.e. we shall consider data of the {orm ., 1,). In [21] we prove
that this feature does not radically improve the expressive power of the calculus. By using some
terminology fromLmnpa [26], we use the following extended syntaxabfram:

Tuples t = u | tto
Templates T = p | T, To
Actons a = out()@u | in(T)@u | evakP)@u | new(l)

The remaining productions are like in Table 1. Now, a tujpjecan be retrieved by means of a
templateT if they both have the same number of fields and corresponding fields match (i.e., a
bound variable matches any name, while two names match only if identical). In this case, we write
matcHT, t). Now, rules [TS-IN) and (TS-March) are joint together in rule

matcHT, t)

| = in(M@’.P 51 2 Py

Procesd[YT] is obtained fromP by replacing all the occurrences of variables bound inith the
corresponding name in A similar adaption is needed also for rulé&ky) and R-Marcu). We let

~p and=p be the bisimulation and the barbed congruence in the polyadic case. Itis trivial to prove
that~, = =; thus, in what follows, we are justified to usg.

The problem. The dining philosophers is a “classical” synchronisation problem; its luck derives
from the fact that it naturally models many synchronisation problems arising when allocating re-
sources in concurrefalistributed systems. The problem can be described as follows. Some, say
n, philosophers spend their lives alternating between thinking and eating. They are seated around
a circular table and there is a fork placed between each pair of neighbouring philosophers. Each
philosopher has access to the forks at his left and right; if a philosopher wants to eat, he has to ac-
quire both the forks near to him (this is possible only if none of his neighbours are using the forks);
when done eating, the philosopher puts both forks back down on the table and begins thinking. The
challenge in the dining philosophers problem is to design a protocol so that the philosophers do
not deadlock (i.e. the entire set of philosophers does not stop and wait indefinitely), and so that
no philosopher starves (i.e. each philosopher eventually gets his hands on a pair of forks). Addi-
tionally, the protocol should be affieient as possible — in other words, the time that philosophers
spend waiting to eat should be minimised.

Our solution. We now propose a protocol gKLam to solve the problem, in the same spirit as
Dijkstra’s solution. We shall associate each philosopher with a distinct locality taken from the set
{l1,...,In}. We also use a restricted localityo record in a tuple of length the allocation of the
forks (i.e. the status of each philosopher); more precisely, if-thecomponent of this tuple is

then thei-th philosopher is thinking, if it i thei-th philosopher is eating. The access to such a
tuple will allow the processes to act on resources allocation in mutual exclusion. Thé moltie

then host the following process (implementing the behaviour oi-thehilosopher):

rec X. think. in(T;)@l.out(t;) @l . eat. in(T/)@l.out(t)) @I.X
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where

Ti

ti

T/

t/

Intuitively, the firstin

upon completion of the eating phase and the protocol iterates.

>

II>

Il>

>

|
E
k
|

t,t, %3, ..., Xp-1, t
IX1, ..., X2, t,t, t, X2, ...
t, 1%, .., X2, t, t
e, t,X3,..., X-1, t
, Xi—2, t,e, t, Xj42,...

t, X2,.. , Xn-2, t, e
e, t,lys,..., Y1, t
'yl,.. !y._z,t,e,t,!yi+2,...

'yz,...,!yn_z, t,e
ttYs....¥n-1,t
Yi,.. . Yi-2, L L G i, ...
tY2,...,¥n-2,t, t

s X

,Xn

,!yn

’ yn

ifi=1
ifl<i<n
ifi=n
ifi=1
ifl<i<n
ifi=n
ifi=1
ifl<i<n
ifi=n
ifi=1
ifl<i<n
ifi=n
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action verifies that the neighbors of théh philosopher are not eating and
simoultaneously acquires the lock on the tuple; therotiteaction sets the status of th¢h philoso-
pher toe, while releasing the lock. Then, the followiirgandout actions release the resources used

For the sake of simplicity, we do not model ttienk phase, while theatphase is just anut
action over some (fresh) locality Hence, if the system starts with all the philosophers in a thinking
state, the net implementing the system is

N
Pi

>

>

oD(I ¢t

Ll _f[l P
rec X.in(Ti)@l.out(t;) @l.out(l;)@I".in(T)@I.out(t)) @I.X

Soundness of our solution. We shall now verify the correctness of our protocol, namely that (1)

no deadlock nor starvation ever occur, (2) resources are properly used (namely, no neighboring
philosophers eat at the same time) and (3) the protocol enables the highest level of parallelism (i.e.
itis possible for 5] philosophers to eat together).

1. We shall prove that

for eachi =
{(N’,

1,...
N T

) -

NI

NI

nil= N}u

nil ~p NJI1I":
,n. Equation (1) can be proved by showing that the relatm"lsé
Id are weak bisimulations (up-te); this can

(1)

be done easily. This means that computations fidmran never get stuck (hence deadlock
will never occur) and that each philosopher can eat an unbounded number of times (hence
starvation cannot occur).

Deadlock freedom: To prove it, we proceed by contradiction; hence, let us suppose that
there exists a computation frolhleading to deadlock. Since the computation is finite,
we can find an integek which is an upper bound to the number of steps performed
by N before reaching the deadlock. But then, we can itekatel times Equation (1)

and (the polyadic case of) Theorem 4.7 to obtain thdt I’ :: n

{I;j). This equivalence is however contradicted by letthd| I" ::
computation leading to deadlock. Indeed, sihcg I ::

N || kﬁl I/ ..
~p e
nil to follow the
nil performs at mosk steps

in such computation, it is impossible for it to produce 1 data inl’ (recall thatl” is

k+1
fresh forN); on the other hand, no computation frain|| ,ﬁl I
J:

;) will ever remove

data froml’ (becausé’ has been chosen fresh fidl). Thus, the resulting nets exhibit
different data i’ and cannot be equivalent.
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Starvation freedom: The proof is similar. Indeed, if there exists a computation fidm
starving philosopher by letting him to eat at mosk times, then such a computation

k+1
contradictsN || 1" :z nil ~, NI IT 1" 2 (hp).
j=1

2. Let!” be a fresh locality. We define

M 2 it 0 ||_1_%1|i P
Cll = 1" il | 0,1)[]
D] = 17 anil | L)1 in(e,e, !X, ..., %) @l.out)@!"”

| in(!xg,e,e,'%g,..., %) @.out)@" | ...

| in(e,!X2,..., %1, €)@l.out)@!" )
Notice thatN = (vI)M and henceC[M] 2 I” :: nil || (vI")N. We have restricted nodé
because we are not interested in observing who is eating (and because this simplifies the
formulation of Equation (2) below); we later show that this fact implies thahust access
resources properly. We want to prove that

CIM] ~p D[M] (2)
i.e. D[M] will never produce data dt’ (sinceC[M] cannot). Intuitively, D[M] can pro-
duce a datum dt’ if it happens that two adiacent philosophers eat simoultaneously; hence
Equation (2) implies that no resource is ever misused. The above equation can be proved
by showing that the relatiolk, = { (C[M’], D[M’]) : C[M] = C[M’] }is a bisimulation;
again, this is an easy task.

Now, suppose that there exists a computation fidwmisusing the resources; this means

thatN = ... 25 N’ andN’ is a net where two adjacent philosophers are eating simoultane-

ously. ThusN” = (W)(1 :: (...,e,e,...) || ...) where the twae are adjacent modulo. But
thenD[M] BN % D[MTwhereN” = (V)M’, o = qj if I" is not the target of;, and
T @l

a; = 7 otherwise. HenceD[M’] 5 5 ==, thus contradicting Equation (2).

3. The easiest way to prove thid}| philosophers can eat simultaneously is to show a compu-
tation fromN leading to a tuple i with exactly| 5] items of kinde, while respecting the
correct use of resources. The wanted reduction is obtained by letting the even philosophers
accessing in turn the status tuple. This is always possible since an even philosopher is always
surrounded (modula) by two, not eating, odd philosophers. Hence we have that

N 55 1itett... .t out()@" in(T)@.outt,)@l.P; || 'fnz P,

1= n

55 li(tetett,...,t) |z out(l)@.in(T,)@.out(t,)@.P; |
i#2,4
la 12 0ut(le)@1"in(T;)@1.out(L)@I.Pa | TT i :: P
=

..... n

T T i even . i odd
- = li(tete,..)[ II li:out(li)@in(T/)@l.out(t)@I.P; || 11 I::P;
n =

i=1,..., i=1,..,n

7 Equational Laws and the Impact of Richer Contexts

In this section, we want to discuss some equational laws that can be easily proved by exploiting
both bisimulation and trace equivalence. We concentrate on bisimulation that is finer (by virtue
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of Proposition 3.5 and Theorems 4.8 and 5.8). The first law is inspired from the asynchronous
n-calculus [4]
Iz rec Xin(!xX)@l.out(x)@I.X =~ I’ :z nil

and states that (repeatedly) accessing a datum and putting it back in its original location is ob-
servationally equivalent to performing no operation. Of course, this heavily exploits the fact that
communication itKram is asynchronous. This law also motivates the choice to omit édmm
the X-KLam actionread. In fact, actiorread is relevant, e.g., for security reasons (removing a da-
tum while accessing it via ain requires a dierent capability than simply accessing it vieead)
that are ignored in this paper.

We have also the following four significant laws (the last one can be easily derived from the
second and the third one):

[ out(@V. Pl znil =~ 1TzP1I ") 3
[:evalQa@l'.P||l znil  ~ T:zP|I":Q 4

[2PQIV znil =~ TPl Q (5)
[:evalQ@l'.PJ|l"znil =~ [:PQIJI :nil (6)

Laws 3 and 4 state that it is impossible to know when data and processes have been allocated — either
at the outset or during computations. Law 5 states that, once the net is fixed, the actual distribution
of processes is irrelevant, while law 6 states that remotely executing a process is observationally
equivalent to executing the process locally. At a first sight, these laws could be quite surprising and
seem to contradict the design principles at the basi®ofim. However, they can be explained by
observing the net at a very high level, namely at the level of the user applications. Indeed, we are
observing the functionalities a neffers to a terminal user. Therefore, the allocation of processes
cannot be observed (law 5) and the advantages of exploiting mobile processesflieigncg,
reduced network load, support for disconnected operations) cannot be perceived at all (law 6).

In many circumstances this level of abstraction is exactly what we need. For example, when we
studied the ‘Dining philosophers’, we were interested in the overall behaviour of the system and in
the properties it enjoyed; thus, we could ignore the implementation details and take into account
only the functional aspects of the protocol. If we want more details on the distributed environment
underlying acKram application, we have to refine the observation level. Consequently, to study
lower-level aspects like, e.g., routing problems or failures, we have to adapt the language and the
semantic theories we developed in this paper. To this aim, we have studied three vari&ntawf
where () communication can only take place locally) failures (of both components and nodes)
can occur, andi{) dynamically evolving connections between nodes are explicitly modelled. Later
on, we shall give some hints on the first two variants and leave the more elaborated treatment of the
third scenario for a companion paper [20]. Predictably, laws 5 and 6 do not hold in these lower-level
settings.

Local Communications. We start by modifying the syntax of Table 1 in order to forbid remote
executions of actionim andout. The productions for process actions now become

a = in(p) | ouu) | evalQ@u | newl)
Rules R-Out), (R-In) and R-Marcu) are modified accordingly to become
(R-Our) [:out().P +— 1P

(R-IN) L2in(X).PIDY  — 1PN
(R-Marcu) | :in(l).PIlI"y +— 1P
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Let = and =~ be the barbed congruence and the may testing in the resulting calculus. We now
show that the proof techniques developed in Sections 4 and 5 still hold in this more localised frame-
work. To this aim, we need to modify the LTS of Table 5; now, ruleES-Our), (LTS-IN) and
(LTS-Marcu) become

(LTS-0ur) |2 out().P =515 PI(IYy
(LTS-In) L in(x).P =5 15 P
(LTS-Marcr) | ::in(").P L1 p

By letting ~; andx=, be the bisimulation and testing equivalences defined like in Sections 4 and 5 on
top of this modified LTS, we can prove the analogous of our main results.

Theorem 7.1 = = C >4 = x.

Proof: The proofs of the three claims can be easily adapted from those of Theorems 4.8, 4.12, 5.4
and 5.8, and by exploiting Proposition 3.5. I

It is very easy to check that
[Pl anil & lonil |l P [eva(Q@I'.P|I" znil & 1:PQII il

This is reasonable because, since communications are local, by moving a process we also change
its execution environment. Thus, at the very least, its observable behaviour will change according
to the node where it runs. Notice that, in order to disprove laws 5 and 6 we have used may testing.
Indeed, because of Theorem 74 implies#.

Failures. Now, we consider another setting and enrith.aim with a mechanism for modelling
various forms of failures. This is achieved by adding the following rules to the definition of the
reduction relation and of the LTS:

(R-Raw) |:C+—0 (LTS-Raw) |:C 50

These rules model corruption of datagssage omissipif C = (di)| ...|{dn), node {ail-silent)
failure if | :: C collects all the components located and abnormal termination of some processes
running atl otherwise. In this way, we model failures as disappearance of a resource (a datum, a
process or a whole node). This is a simple, but realistic, way of representing failures, specifically
fail-silent and message omission, in a global computing scenario [12]. Indeed, while the presence of
datgnodes can be ascertained, their absence cannot because in such a scenario there is no practical
upper bound to communication delays. Thus, failures cannot be distinguished from long delays and
should be modelled as totally asynchronous and undetectable events.

Again, it is easy to prove that laws 5 and 6 givendBiam do not hold anymore in this more
concrete setting. Indeed, the failurelbfcan easily modify the overall behaviour of the equated
nets. We now examine what happens to the characterization of barbed congruence and may testing
in this new framework. The definition of the bisimulation equivalence does not need to be modified
to exactly capture barbed congruence. Indeed, the recursive closure of both barbed congruence and
bisimulation already forces the corruption of the same data and the failure of the same nodes to
take place at the same time; as regards process abnormal termination, it will be the evolution of the
involved nets that will fect the equivalence. About trace equivalence, the characterization breaks
down: trace equivalence is only a sound (but not complete) proof technique for may testing. The
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problem is that Lemmas 5.6 and 5.7 do not hold anymore in the lower-level setting. This does not
mean that trace equivalence is strictly finer than may testing, even if we believe this; it only means
that the proof of Theorem 5.8 must be carefully re-examined. A more precise statement on this
aspect is left for future work.

If we let ~¢, =, < and=~; denote labelled bisimilarity, barbed congruence, trace equivalence
and may testing for the calculus with failures, we have

Theorem 7.2 ~; = = and =i C ~¢.

Proof: The proof is formally identical to those of Theorems 4.8, 4.12 and 5.4, but nestep or
a reduction can be also generated by applying il&¢FaiL) and R-FarL) respectively. I

8 Conclusions and Related Work

We have presented some semantic theoriesiokmv, a process calculus with process distribution,
process mobility, remote operations and asynchronous communication through distributed reposito-
ries. This combination of design choices has already proved to be valuable from an implementative
and applicative point of view. The semantic theories we introduced in this paper have been defined
in a uniform fashion [10]: first, we defined some user basic observables for a global computing
setting; then, we closed them under all possible contextgpameductions, thus obtaining two
touchstone equivalences (namélgrbed congruencandmay testing finally, we gave tractable
characterisations of these equivalences by mearebefled bisimulatiorandtrace equivalence

We have also discussed if and how these theories change when exteliding with lower-level
mechanisms like modelling of failures and implementing remote communications via migrations
and local exchanges.

Future work. Possible developments of this work include the study of abstractions, e.g. adminis-
trative domains and security policies, that deternviinieial networks on top of theféective one. To

this aim, dynamically evolving type environments could be exploited to constraint the behaviours
of processes and the observations of an environment. Some work in this direction has been done in
[28].

Finally, it would also be interesting to analyzéeency issues to better clarify, e.g., the advan-
tages of mobile code and process distribution. A possible application of laws 5 and 6 in Section 7
is to find out possible rearrangements of the processes over a given net that minimize the number
of remote operations. In fact, it is reasonable to assume that local operations are cheaper and faster
than remote ones. Thus, we can re-locate the parallel components or spawn some of the processes
running at some locality to improve the overall net behaviour.

Related work. We conclude by reviewing related work on observational equivalences for calculi
with process distribution and mobility (many of them are surveyed in [15]). In the nineties, many
CCsS-like process calculi have been enriched with localities to explicitly describe the distribution of
processes. The aim was mainly to provide these calculi with non interleaving semantics or, at least,
to differentiate processes’ parallel components (thus obtaining more inspective semantics than the
interleaving ones). This line of research is far from the one in wbkabawm falls, where localities

are used as a mean to make processes network aware thus enabling them to refer to the network
locations as target of remote communication or as destination of migrations. Localities are not only
considered as units of distribution but, according to the case, as units of mobility, of communication,
of failure or of security.
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[39] and [3] extend, resp., CCS anmecalculus with process distribution and mobility. In both
cases, processes run over the nodes of an explicit, flat and dynamically evolving net architecture.
Nodes can fail thus causing loss of all hosted processes. There are explicit operations to kill nodes
and to query the status of a node. Failures can be detected, which is suitable for distributed com-
puting but clashes with the assumptions underlying global computing. In both papers, a labelled
bisimulation (akin to the bisimulation in the CCS amatalculus) is given to capture a standardly
defined barbed congruence.

Another distributed version of thecalculus is presented in [28]; the resulting calculus contains
primitives for code movement and creation of new localitieannels in a net with a flat architec-
ture. Over the LTS defining the semantics of the calculus, a typed bisimulation (with a tractable
formulation) is defined that exactly capture typed barbed equivalence. The use of types illustrates
the importance of having the rights to observe a given behaviour: indeféekedi typings (i.e.
observation rights) generatefidirent bisimulations, that are finer as long as the typing is less re-
strictive.

In the Distributed Join calculus [24], located mobile processes are hierarchically structured and
form a tree-like structure evolving during the computation. Entire subtrees, not only single pro-
cesses, can move). Technically, nets are flat collections of named nodes, where the name of a node
indicates the nesting path of the node; e.g., a node whose ndme- isly.| represents a node re-
ferrable to via the unique nam@nd that is contained ily, that is a node contained i1 and so
on. Communication in DJoin takes place in two steps: firstly, the sending process sends a message
on a channel; then, the ether (i.e. the environment containing all the nodes) delivers the message
to the (unique) process that can receive on that channel. The fact that in the whole net there is a
unique process capable to receive at a given channel makes DJoin communication somehow similar
to cKram one, in that DJoin channels have a role similar to thatkafam localities. Failures are
modelled by tagging locality names: e.g. the (compound) namlt?. --- .| states that is a node
contained in a failed node and, thus] itself is failed. TheQ atl; has been caused by execution
of the primitive halt by a process running &t Failures can be detected by using the primitive
fail. Failed nodes cannot host running computations but can receiveatigaublocations that,
however, once arrived in the failed node, become definitely stuck. Some interesting laws and prop-
erties are proved using a contextual barbed equivalence, but no tractable characterization of the
equivalence is given and it is not even obvious how to extend the characterization of barbed bisimu-
lation for the (non-distributed) Join calculus introduced in [25] to account for distribution and agent
mobility.

The Ambient calculus [13] is an elegant notation to model hierarchically structured distributed
applications. Though the definition of its reduction semantics is very simple, the formulation of
a reasonable, possibly tractable, observational equivalence is a very hard task. The calculus is
centered around the notion of connections between ambients, that are containers of processes and
data. Each primitive can be executed only if the ambient hierarchy is structured in a precise way;
e.g., an ambient can enter an ambientonly if nandmare sibling, i.e. they are both contained in
the same ambient. This fact greatly complicates the definition of a tractable equivalence. Recently,
in [31], a bisimulation capturing Ambient’s barbed congruence has been defined. This has been
done by structuring the syntax into two levels, namely processes and nets (where the latter ones
are particular cases of the former ones), and by exploiting an involved LTS (using tfererdi
kinds of labels some of which containing process contexts). However, the defined bisimulation is
not standard and fliers from a quantification over all the possible processes (to fill in the ‘holes’
generated by the operational semantics).

Similar bisimulations have also been developed for calculi derived from Ambient, like, e.qg.,
Safe Ambients [30], Boxed Ambients [11], the Seal Calculus [14] and the calculus of Mobile Re-
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sources [27]. Moreover, in the last three papers, bisimulation is only a sound but not complete proof
technique for barbed congruence.

To conclude, we want to remark that, to the best of our knowledge, no characterization of may

testing in terms of trace equivalence has even been given for an asynchronous, distributed language
with process mobility. In [42], a theory for may testing (and the corresponding characterization)

is developed for the Actors Model [1]. However, the work is done by reducing Actors to a typed
asynchronous-calculus and the trace-based characterisation follows [9].
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