
Basic Observables for a Calculus for Global Computing

Rocco De Nicola Daniele Gorla Rosario Pugliese
Dipartimento di Sistemi e Informatica, Università di Firenze
email : {denicola, gorla, pugliese}@dsi.unifi.it

December 1, 2004

Abstract

We discuss a basic process calculus useful for modelling applications over global comput-
ing systems and present the associated semantic theories as determined by some basic notions
of observation. The main features of the calculus are explicit distribution, remote operations,
process mobility and asynchronous communication through distributed data spaces. We intro-
duce some natural notions of extensional observations and study their closure under operational
reductions and/or language contexts to obtainbarbed congruenceandmay testing. For these
equivalences, we provide alternative tractable characterizations as labelled bisimulation and
trace equivalence. We discuss some of the induced equational laws and relate them to design
choices of the calculus. In particular, we show that some of these laws do not hold any longer
if the language is rendered less abstract by introducing (asynchronous and undetectable) fail-
ures or by implementing remote communications via process migrations and local exchanges.
In both cases, we also investigate the adaptation of the tractable characterizations of barbed
congruence and may testing to the lower-level scenarios.

Contents

1 Introduction 2

2 The Process LanguageK 4
2.1 Syntax . 4
2.2 Operational Semantics . 5

3 Touchstone Equivalences 7

4 Bisimulation Equivalence 9
4.1 Soundness w.r.t. Barbed Congruence . 12
4.2 Completeness w.r.t. Barbed Congruence . 17

5 Trace Equivalence 19
5.1 Soundness w.r.t. May Testing . 21
5.2 Completeness w.r.t. May Testing . 24

6 Verifying a Distributed Protocol: The Dining Philosophers 29

7 Equational Laws and the Impact of Richer Contexts 32

8 Conclusions and Related Work 35

1

1 INTRODUCTION 2

1 Introduction

Programming computational infrastructures available globally for offering uniform services has
become one of the main issues in Computer Science. The challenges come from the variable
guarantees for communication, co-operation and mobility, resource usage, security policies and
mechanisms, etc. that have to be taken into account. A key issue is the definition of innovative
theories, computational paradigms, linguistic mechanisms and implementation techniques for the
design, realisation, deployment and management of global computational environments and their
application.

On the foundational side, the demand is on the development of tools and techniques to build
safer and trustworthy global systems, to analyse their behaviour, and to demonstrate their confor-
mance to given specifications. Indeed, theoretical models and calculi can provide a sound basis
for building systems which are “sound by construction” and which behave in a predictable and
analysable manner. The crux is to identify what abstractions are more appropriate for programming
global computers and to supply effective tools to support development and certification of global
computing applications. This paper should be considered as a contribution to this line of research.

A distinguishing feature of applications over so-called “global computers” is the necessity of
dealing with dynamic and unpredictable changes of their network environment, due to unavailabil-
ity of network connectivity, bandwidth fluctuations, lack of resources, failure of nodes, network
reconfigurations, etc.. These issues have to be considered together with the more traditional ones of
distributed applications, like heterogeneity (of operating systems and application software), scala-
bility (huge number of users and nodes) and autonomy (resources managed by different adminis-
tration domains). Indeed, global computers are fostering a new style of distributed programming
whose key principle isnetwork awareness, i.e. applications have information about the network (lo-
cation, latency, congestion, etc.) and can adapt to its variations. Moreover, applications should also
supportdisconnected operations[37], that permit software components to be remotely executed
even if their owner is not connected.

In our view, a language for global computing should be equipped with primitives that support:

network awareness, i.e. locations can be explicitly referenced and operations can be remotely
invoked;

disconnected operations,i.e. code can be moved from one location to the other and remotely
executed;

flexible communication mechanisms,like distributed repositories [18, 17, 23] storing content ad-
dressable data;

remote operations, like asynchronous remote communications.

Semantic theories, needed for stating and proving observable properties, should reflect all the above
listed distinctive features of global systems at user’s application level, but they should ignore issues
such as routing or network topology, because they are hardly observable at the user level.

Several foundational languages, presented as process calculi or strongly based on them, have
been developed that have improved the formal understanding of the complex mechanisms under-
lying global computers. We want to mention the Ambient calculus [13], Dπ [28], DJoin [24] and
Nomadic Pict [41]. They are equipped with primitives to represent at various abstraction levels
the execution contexts of the net where applications roam and run, they provide mechanisms for
coordinating and monitoring the use of resources, and they support the specification and the imple-
mentation of security policies. However, if one contrasts them with the above list of distinguishing

1 INTRODUCTION 3

features of languages for global computers, one realizes that all of them fall short for at least one of
the targets.

Here we want to develop the semantic theory of an alternative model that takes its origin from
two formalisms with opposite objectives, namely the programming languageX-K [6], a full
fledged programming language based onK [19], and theπ-calculus [33], the generally recog-
nized minimal common denominator of calculi for mobility. The resulting model has been called
K (coreK)1. It can be thought of as a variant of theπ-calculus with process distribution
and mobility, remote operations and asynchronous communication through distributed repositories.
Given the direct correspondence ofK with X-K, we believe that the tractable behavioural
equivalences we develop in this paper provide powerful tools to write sound programs for global
computers. First, programs written inX-K are mapped down toK; here they are verified,
by using behavioural equivalences to formalize and prove properties; finally, they can run on an
actual global computer, like the Internet, by exploiting their Java-based translation [7].

We develop the semantic theory of the proposed language by defining behavioural equivalences
over terms as the maximal congruences induced by some basicobservablesthat are dictated by the
relevant features of global computers. The approach can be summarized as follows:

1. Define a set of observables (values, normal forms, actual communications, . . .) to which a
term can evaluate by means of successive reductions.

2. Define a basic equivalence over terms by stating that two terms are equivalent if and only if
they exhibit the same set of basic observables.

3. Consider the largest congruence over the language induced by the basic equivalence or by its
co-inductive closure.

A similar approach has already been used to study models of concurrent systems (e.g., CCS [34, 10]
andπ-calculus [40, 4]). Obviously, the designation of basic observables is critical. Thus, we draw
inspiration from everyday experience: a user can observe the behaviour of a global computer (at the
application level) by testing

i. whether a specific site is up and running (i.e., it provides some data of any kind),

ii . whether a specific information is present in (at least) a site, or

iii . whether a specific information is present in a specific site.

Other calculi for global computers rely on (barbed) congruences induced by similar observables:
for example, Ambient [13] uses a barb that is somehow related toi. above, while the barbs in
Dπ-calculus [28] are strongly related toiii . .

A question that naturally arises is whether these observables yield ‘interesting’ congruences.
The three basic observables, together with the discriminating power provided byK contexts,
all yield the same congruence, when used similarly. This is for us already an indication of the
robustness of the resulting semantic theories. Moreover, as we will show, the observables are still
sufficiently powerful to give rise to interesting semantic theories also when considering lower-level
features like, e.g., failures. Due to its intuitive appeal, in the rest of this paper we shall use only the
first kind of observable.

A major drawback of the approach relying on basic observables and context closures is that
the resulting congruences are defined via universal quantification over all language contexts, and

1As a programming notation,K was presented in [5]; here, we turn it into a calculus, by equipping it with an
LTS-based operational semantics and a few behavioural equivalences.

2 THE PROCESS LANGUAGECKLAIM 4

Nets: N ::= 0
∣∣∣ l :: C

∣∣∣ N1 ‖ N2

∣∣∣ (νl)N

Components: C ::= 〈l〉
∣∣∣ P

∣∣∣ C1 | C2

Processes: P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ X
∣∣∣ recX.P

Actions: a ::= in(p)@u
∣∣∣ out(u2)@u1

∣∣∣ eval(P)@u
∣∣∣ new(l)

Input Parameters: p ::= u
∣∣∣ ! x

Table 1:K Syntax

this makes their checking very hard. It is then important to devise proof techniques that avoid such
quantification. We shall define a labelled transition system (with labels indicating the performed
action) and exploit the labels to avoid quantification over contexts. We shall present tractable char-
acterizations of two ‘touchstone’ congruences, namelybarbed congruenceandmay testing, in terms
of (non-standard) labelledbisimilarity andtraceequivalence, respectively. In doing this, we have
to face the problems raised by the presence of explicit localities and by the fact thatK is
asynchronous (both in the communication and in the mobility paradigm) and higher-order (because
processes can migrate).

The rest of the paper is organized as follows. In Section 2 we presentK’s syntax and
reduction-based semantics. In Section 3 we define barbed congruence and may testing, while in
Sections 4 and 5 we present their alternative characterizations. In Section 7 we discuss some of the
equations induced by the semantic theories and show that some of them break down when rendering
the language less abstract by implementing remote communications via process migrations and
local exchanges or by introducing (asynchronous and undetectable) failures. Finally, in Section 8,
we discuss related work.

2 The Process LanguageK

In this section, we present the syntax ofK and its operational semantics based on a structural
congruence and a labelled transition system (LTS).

2.1 Syntax

The syntax of K is reported in Table 1. A countable setN of names
l, l′, . . . ,u, . . . , x, y, . . . ,X,Y, . . . is assumed. Names provide the abstract counterpart of the set of
communicableobjects and can be used as localities, basic variables or process variables: we do not
distinguish between these three kinds of objects. Notationally, we prefer lettersl, l′, . . . when we
want to stress the use of a name as a locality,x, y, . . . when we want to stress the use of a name as a
basic variable, andX,Y, . . . when we want to stress the use of a name as a process variable. We will
useu for basic variables and localities.

Processes, ranged over byP,Q,R, . . ., are theK active computational units and may be
executed concurrently either at the same locality or at different localities. They are built up from
the terminated processnil and from the basic actions by using prefixing, parallel composition and
recursion.Actionspermit removing/adding data from/to node repositories, activating new threads
of execution and creating new nodes. Actionnew is not indexed with an address because it always
acts locally; all the other actions explicitly indicate the (possibly remote) locality where they will
take effect. Notice thatin(l)@l′ evolves only if datum〈l〉 is present inl′; indeed,in(l)@l′ is a form
of name matching operatorderived from theL [26] pattern-matching.

2 THE PROCESS LANGUAGECKLAIM 5

a fn() bn()

in(! x)@u {u} {x}
in(u2)@u1 {u1,u2} ∅
out(u2)@u1 {u1,u2} ∅
eval(P)@u fn(P) ∪ {u} bn(P)

new(l) ∅ {l}

N fn() bn()

nil ∅ ∅
l :: C {l} ∪ fn(C) bn(C)

N1 ‖ N2 fn(N1) ∪ fn(N2) bn(N1) ∪ bn(N2)
(νl)N fn(N) − {l} bn(N) ∪ {l}

C fn() bn()

nil ∅ ∅
〈l〉 {l} ∅
a.P (fn(P) − bn(a)) ∪ fn(a) bn(P) ∪ bn(a)

P1 | P2 fn(P1) ∪ fn(P2) bn(P1) ∪ bn(P2)
X {X} ∅

recX.P fn(P) − {X} bn(P) ∪ {X}
Table 2: Free and bound names

Nets, ranged over byN,M,H,K, . . ., are finite collections of nodes. Anodeis a pair l :: C,
where localityl is the address of the node andC is the (parallel) component located atl. Compo-
nents, ranged over byC,D, . . ., can be either processes or data, denoted by〈l〉. In the net (νl)N, the
scope of the namel is restricted toN; the intended effect is that if one considers the netN1 ‖ (νl)N2

then locality l of N2 cannot be immediately referred to from withinN1 (this is the powerfulπ-
calculus’ mechanism for restricted names).

Namesoccurring inK processes and nets can bebound. More precisely, prefixin(!x)@u.P
bindsx in P; this prefix is similar to theλ-abstraction of theλ-calculus. Prefixnew(l).P bindsl in
P, and, similarly, net restriction (νl)N binds l in N. Finally, recX.P bindsX in P. A name that is
not bound is calledfree. The setsfn(·) andbn(·) (respectively, of free and bound names of a term)
are defined accordingly (their definitions are shown in Table 2). The setn(·) of names of a term is
the union of its sets of free and bound names. As usual, we say that two terms arealpha-equivalent,
written ≡α, if one can be obtained from the other by renaming bound names. We shall say that a
nameu is fresh for if u < n(). In the sequel, we shall work with terms whose bound names are
all distinct and different from the free ones.

Notation 2.1 We write A , W to mean thatA is of the formW; this notation is used to assign a
symbolic nameA to the termW. We shall use notatioñ· to denote tuples of objects (e.g.̃l is a
tuple of names); this will be sometimes written asx̃i∈I , for an appropriate index-setI . Moreover, if
l̃ = (l1, ..., ln), we shall assume thatl i , l j for i , j. If x̃ = (x1, . . . , xn) andỹ = (y1, . . . , ym) then
x̃, ỹ will denote the tuple of pairwise distinct elements (x1, . . . , xn, y1, . . . , ym). When convenient,
we shall regard a tuple simply as a set (thus we can write e.g.l̃ ⊆ L to mean that all components
of l̃ are inL). We shall sometimes writein()@l, out()@l and〈〉 to mean that the argument of the
actions or the datum are irrelevant. Finally, we omit trailing occurrences of processnil and write
n
Π
j=1

Wj for the parallel composition (both ‘|’ and ‘‖’) of terms (components or nets, resp.)Wj .

2.2 Operational Semantics

K operational semantics is given in terms of a structural congruence and a reduction relation.
Thestructural congruence, ≡, identifies nets which intuitively represent the same net. It is defined
as the least congruence relation over nets that satisfies the laws in Table 3. Most of the laws are

2 THE PROCESS LANGUAGECKLAIM 6

(A) N ≡ N′ if N ≡α N′

(PZ) N ‖ 0 ≡ N

(PC) N1 ‖ N2 ≡ N2 ‖ N1

(PA) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RC) (νl1)(νl2)N ≡ (νl2)(νl1)N

(E) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l < fn(N1)

(A) l :: C ≡ l :: (C|nil)

(R) l :: recX.P ≡ l :: P[recX.P/X]

(RN) (νl)N ≡ (νl)(N ‖ l :: nil)

(C) l :: C1|C2 ≡ l :: C1 ‖ l :: C2

Table 3: Nets Structural Congruence

taken from theπ-calculus (see, e.g., [38]) with law (A), that is the equivalent of law (PZ)
for ‘ |’, and law (R), that freely folds/unfolds recursive definitions. Additionally, we have law
(RN), saying that any restricted name can be used as the address of a node2, and law (C),
that transforms a parallel between co-located components into a parallel between nodes. Notice
that commutativity and associativity of ‘|’ can be obtained by (PC), (PA) and (C). In the
sequel, by exploiting Notation 2.1 and law (RC), we shall write (ν̃l)N to denote a net with a
(possible empty) set̃l of restricted localities.

In what follows, we shall only consider nets where each bound name is associated to a node; by
virtue of rule (RN) this is always possible.

The reduction relation is given in Table 4. In rules (R-O) and (R-E), existence of the
node target of the action is necessary to place the spawned component. Notice that existence of the
target node can only be checked at run-time. Indeed, an approach like [28] does not fit well global
computing setting because it relies on a typing mechanism that would require the knowledge of the
whole net. Rules (R-I) and (R-M) require existence of a matching datum in the target node.
Rule (R-M) says that actionin(l2)@l1 consumes exactly the datum〈l2〉 at l1. Rule (R-I) says
that actionin(! x)@l1 can consume any datuml2 at l1; l2 will then replace the free occurrences of
x in the continuation of the process performing the action. Rule (R-N) says that execution of
actionnew(l′) simply adds a restriction overl′ to the net; from then on, a new node with localityl′

can be allocated/deallocated by using law (RN).
K adopts aL-like [26] communication mechanism: communication is asynchronous

and data are anonymous. Notice that, even if there exist prefixes for placing data to nodes, no
synchronization takes place between (sending and receiving) processes. On the contrary, a sort of
synchronization takes place between a sending process and its target node (see rules (R-O) and
(R-E)). A similar synchronization takes place between the node hosting a datum and the process
looking for it (see rules (R-I) and (R-M)).

2Restricted names can be thought of as private network addresses, whose corresponding nodes can be activated when
needed, and successively deactivated, by the owners of the resource (i.e. the nodes included in the scope of the restriction).
If names would represent not only localities but also other communicable objects, the law should be slightly modified for
it to deal only with bound locality names.

3 TOUCHSTONE EQUIVALENCES 7

(R-O)
l :: out(l2)@l1.P ‖ l1 :: nil 7−→ l :: P ‖ l1 :: 〈l2〉
(R-E)
l :: eval(P2)@l1.P1 ‖ l1 :: nil 7−→ l :: P1 ‖ l1 :: P2

(R-I)
l :: in(!x)@l1.P ‖ l1 :: 〈l2〉 7−→ l :: P[l2/x] ‖ l1 :: nil

(R-M)
l :: in(l2)@l1.P ‖ l1 :: 〈l2〉 7−→ l :: P ‖ l1 :: nil

(R-N)
l :: new(l′).P 7−→ (νl′)(l :: P ‖ l′ :: nil)

(R-P)
N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-R)
N 7−→ N′

(νl)N 7−→ (νl)N′

(R-S)
N ≡ M 7−→ M′ ≡ N′

N 7−→ N′

Table 4:K Operational Semantics

3 Touchstone Equivalences

In this section we present (weak) equivalences yielding sensible semantic theories forK. The
approach we follow relies on the definition of anobservation(also calledbarb) that intuitively for-
malises the interactions a process can be engaged in. We use observables to define equivalences that
equate those nets that cannot be taken apart by any basic observation (i) during their computations,
or (ii) in any net context, or (iii) during their computations in any net context. Notationally, we shall
use |=⇒ to denote the reflexive and transitive closure of7−→.

Definition 3.1 (Barbs and Net Contexts)
PredicateN ↓ l holds true if and only ifN ≡ (ν̃l)(N′ ‖ l :: 〈l′〉) for somẽl, N′ andl′ such that

l < l̃.
PredicateN ⇓ l holds true if and only ifN |=⇒ N′ for someN′ such thatN′ ↓ l.
A net contextC[·] is a K net with an occurrence of a hole[·] to be filled in with any net.

Formally,
C[·] ::= [·]

∣∣∣ N ‖ C[·]
∣∣∣ (νl)C[·]

We have chosen the basic observables by taking inspiration from the corresponding ones of the
asynchronousπ-calculus [4]. One may wonder if our choice is “correct” and argue that there are
other alternative notions of basic observables that seem quite natural, as we have discussed in the
Introduction. A first alternative could be to consider as equivalent two nets if they make available
the same set of data, possibly in different nodes. A second alternative could be to consider as
equivalent two nets if they have exactly the same data at the same localities. Later on, we shall
prove that the congruences induced by these alternative observables do coincide. This means that
our results are quite independent from the observable chosen and vindicates our choice. Moreover,
notice that, by using other kinds of observation predicates, more sophisticated equivalences should
come into the picture. For example, in [10] it is shown howmust testingand fair testingcan be
obtained in CCS by only changing the basic observable.

Now, we say that a binary relation< between nets is

• barb preserving, if N<M andN ⇓ l imply M ⇓ l;

• reduction closed, if N< M andN 7−→ N′ imply M |=⇒ M′ andN′ < M′;

• context closed, if N< M impliesC[N] < C[M] for every contextC[·].

3 TOUCHSTONE EQUIVALENCES 8

Our touchstone equivalences should at the very least relate nets with the same observable behaviour;
thus, they must be barb preserving. However, an equivalence defined only in terms of this property
can be hardly considered a ‘touchstone’: indeed, the set of barbs changes during computations (usu-
ally, it shrinks) or when interacting with an external environment (usually, it widens). Moreover,
for the sake of compositionality, our touchstone equivalences should also be congruences. These
requirements lead us to the following definitions.

Definition 3.2 (May testing) ' is the largest symmetric, barb preserving and context closed rela-
tion between nets.

Definition 3.3 (Barbed congruence)� is the largest symmetric, barb preserving, reduction and
context closed relation between nets.

We want to remark that the above definition of barbed congruence is the standard one, see [29, 38].
May testing is, instead, usually defined in terms ofobservers, experimentsand possiblesuccesses
of experiment[22]. However, if we let'′ denote the equivalence onK nets defined a là [22],
we can prove that the two definitions do coincide. Moreover, the inclusions between our touchstone
equivalences reflect the inclusions that hold in theπ-calculus. To define may testing like in [22], we
let test be a fresh and reserved name used to reportsuccessof anexperiment(i.e. a computation)
of a net and anobserver. The latter is a net containing (i) a node whose address istest that can only
host the datum〈test〉, and (ii) processes that may emit the datum〈test〉 attest. A computation

reports success if, along its execution, a datum〈test〉 at nodetest appears; this is written
OK
===⇒ .

Definition 3.4 N '′ M if, for any observerK, it holds thatN ‖ K
OK
===⇒ if and only ifM ‖ K

OK
===⇒ .

Proposition 3.5 � ⊂ ' = '′.

Proof: That � is a sub-relation of' trivially follows from their definitions. The inclusion is strict
because the latter equivalence abstracts from the branching structure of the equated nets, while the
former one does not (because of reduction closure). This is standard in process calculi, e.g., in CCS
andπ-calculus.

We start proving that' ⊆ '′ . Let N ' M and pick up any observerK such thatN ‖ K
OK
===⇒ .

Then, by contextuality,N ‖ K ' M ‖ K and, by barb preservation,N ‖ K ⇓ test (that comes from

N ‖ K
OK
===⇒) implies thatM ‖ K ⇓ test. Sincetest is a name occuring only inK (by definition

of observers), it must beM ‖ K
OK
===⇒ , as required.

Viceversa, we need to prove that'′ is barb preserving and context closed. LetN '′ M.

Barb preservation. Let N ⇓ l and considerK , test :: in(!x)@l.out(test)@test. Then,

N ‖ K
OK
===⇒ that, by hypothesis, impliesM ‖ K

OK
===⇒ . Now, because of freshness oftest,

this is possible only ifM ⇓ l.

Context closure. The proof is by induction on the structure of the contextC[·]. The base case is
trivial. For the inductive case, we have two possibilities:

• C[·] , D[·] ‖ H. By induction,D[N] '′ D[M]; we pick up an observerK and

prove thatC[N] ‖ K
OK
===⇒ impliesC[M] ‖ K

OK
===⇒ (by symmetry, this suffices). We

now consider the observerH ‖ K; by Definition 3.4, by induction and by the fact that

D[N] ‖ (H ‖ K)
OK
===⇒ we have thatD[M] ‖ (H ‖ K)

OK
===⇒ . The thesis easily follows by

rule (PA) and because≡ ⊆ '′.

4 BISIMULATION EQUIVALENCE 9

• C[·] , (νl)D[·]. By induction,D[N] '′ D[M]; we pick up an observerK and we prove

thatC[N] ‖ K
OK
===⇒ impliesC[M] ‖ K

OK
===⇒ . Sincel is bound, we can assume, up-to

alpha-equivalence, thatl < fn(K); in particular,l , test. Now, C[N] ‖ K
OK
===⇒ if

and only ifD[N] ‖ K
OK
===⇒ (and similarly when replacingN with M). This suffices to

conclude.

The problem beyond barbed congruence and may testing is that context closure makes them
hardly tractable, because of the universal quantification over all net contexts. In the following
sections, we shall provide two tractable characterisations of these equivalences, as abisimulation
and as atraceequivalence.

Before doing this, we show that we can change observables without changing the congruences
they induce; this proves the robustness of our touchstone equivalences and supports our choice. We
shall give the explicit proof only for barbed congruence, but the same arguments hold also for may
testing. Recalling from the Introduction, other two reasonable observables in a global computing
framework can be existence of a specific (visible) datum in some node of a net, or existence of a
specific (visible) datum in a specific node of a net.

Definition 3.6 (Alternative Reduction Barbed Congruences)Let �1 and �2 be the reduction
barbed congruences obtained by replacing the observable of Definition 3.1, respectively, with the
following ones:

1. N ↓ 〈l〉 iff N ≡ (ν̃l)(N′ ‖ l′ :: 〈l〉) for somẽl such that{l, l′} ∩ l̃ = ∅
2. N ↓l1 〈l2〉 iff N ≡ (ν̃l)(N′ ‖ l1 :: 〈l2〉) for somẽl such that{l1, l2} ∩ l̃ = ∅

We now prove that, thanks to contextuality,�, �1 and�2 do coincide.

Proposition 3.7 �1 = �2 = �.

Proof: Notice that we only need to consider barb preservation. Indeed, reduction closure and
contextuality are ensured by definition by all the reduction barbed congruences we are considering.

�2 ⊆ �1. Let N �2 M. Suppose thatN ⇓ 〈l〉. This implies that∃ l′ : N ⇓l′ 〈l〉. Hence, by
hypothesis,M ⇓l′ 〈l〉 that, by definition, impliesM ⇓ 〈l〉.

�1 ⊆ �. Let N �1 M andN ⇓ l. ThenM ⇓ l, otherwise the context [·] ‖ l′ :: in(!x)@l.out(l′)@l′

(for l′ fresh) would break�1.

� ⊆ �2. Let N � M andN ⇓l1 〈l2〉. This means thatN =⇒ (ν̃l)(N′ ‖ l1 :: 〈l2〉) for {l1, l2} ∩ l̃ = ∅.
It must hold thatM ⇓l1 〈l2〉 otherwise the context [·] ‖ l′ :: in(l2)@l1.out()@l′ (for l′ fresh)
would distinguishN andM (according to�).

4 Bisimulation Equivalence

To coinductively capture barbed congruence, we introduce a labeled transition system (LTS) to
make apparent the action a net is willing to perform in order to evolve. For the sake of presentation,
we introduce the syntactic category ofinert components

I ::= nil
∣∣∣ 〈l〉

4 BISIMULATION EQUIVALENCE 10

(LTS-O) (LTS-E)

l :: out(l2)@l1.P
. l1−−−→ l :: P ‖ l1 :: 〈l2〉 l :: eval(Q)@l1.P

. l1−−−→ l :: P ‖ l1 :: Q

(LTS-I) (LTS-M)

l :: in(! x)@l1.P
l2 / l1−−−−−→ l :: P[l2/x] ‖ l1 :: nil l :: in(l2)@l1.P

l2 / l1−−−−−→ l :: P ‖ l1 :: nil

(LTS-N) (LTS-E)

l :: new(l′).P
τ−→ (νl′)(l :: P ‖ l′ :: nil) l :: I

I @ l−−−−→ l :: nil

(LTS-S)

N1
. l−−→ N′1 N2

nil @ l−−−−−−→ N′2
N1 ‖ N2

τ−→ N′1 ‖ N′2

(LTS-C)

N1
l2 / l1−−−−−→ N′1 N2

〈l2〉 @ l1−−−−−−−→ N′2
N1 ‖ N2

τ−→ N′1 ‖ N′2

(LTS-R)

N
α−→ N′ l < n(α)

(νl)N
α−→ (νl)N′

(LTS-O)

N
〈l′〉 @ l−−−−−−→ N′ l′ , l

(νl′)N
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′

(LTS-P)

N1
α−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α−→ N2 ‖ N

(LTS-S)

N ≡ N1 N1
α−→ N2 N2 ≡ N′

N
α−→ N′

Table 5: A Labelled Transition System

for grouping those components that are unable to perform any basic operation. Thelabelled transi-

tion relation,
α−→ , is defined as the least relation over nets induced by the inference rules in Table 5.

Transition labels take the form

χ ::= τ
∣∣∣ (ν̃l) I @ l α ::= χ

∣∣∣ . l1
∣∣∣ l2 / l1

We will write bn(α) for l̃ if α = (ν̃l) I @ l and for∅, otherwise;fn(α) is defined accordingly.
Moreover, from the definition of the LTS, it easily follows that, whenα is of the form (ν̃l) 〈l′〉@ l,
we can have either̃l = ∅ (hencel′ is not bound in the net executingα), or l̃ = {l′}.

Let us now briefly comment on some rules of the LTS; most of them are adapted from the
π-calculus [38]. Rule (LTS-E) signals existence of nodes (labelnil @ l) or of data (label
〈l2〉 @ l1). Rules (LTS-O) and (LTS-E) express the intention of spawning a component and
require the existence of the target node to complete successfully (rule (LTS-S)). Similarly, rules
(LTS-I) (given in an early style) and (LTS-M) express the intention of performing an input;
this input is actually performed (rule (LTS-C)) only if the chosen datum is present in the target
node. Notice that, in the right hand side of rules (LTS-I) and (LTS-M), existence of the node
target of thein can be assumed: indeed, ifl1 provides datum〈l2〉, this implies thatl1 does exist.
Rule (LTS-O) signals extrusion of bound names; as in some presentation of theπ-calculus, this
rule is used to investigate the capability of processes to export bound names, rather than to extend
the scope of bound names. To this last aim, law (E) is used; in fact, in rule (LTS-C) labels
do not carry any restriction on names, whose scope must have been previously extended. Rules
(LTS-R), (LTS-P) and (LTS-S) are standard. The structural congruence≡ involved in
rule (LTS-S) is the one in Section 2.

Notation 4.1We shall writeN
α−→ to mean that there exists a netN′ such thatN

α−→ N′. Alternatively,
we could say thatN can perform aα-step. Moreover, we shall usually denote relation composition

4 BISIMULATION EQUIVALENCE 11

by juxtaposition; thus, e.g.,N
α−→α′−→ M means that there exists a netN′ such thatN

α−→ N′
α′−→ M. We

shall use the convention that putting a bar over a relation means that such a relation does not hold

(e.g. N 6α−→ N′ means thatN cannot reduce toN′ performingα). As usual, we let=⇒ to stand for
τ−→∗, α

=⇒ to stand for=⇒ α−→ =⇒ , and
α̂
=⇒ to stand for=⇒ , if α = τ, and for

α
=⇒ , otherwise.

The LTS we have just defined is ‘correct’ w.r.t. the operational semantics ofK, as stated by
the following Proposition. Notice that7−→ is the actual semantics ofK; the LTS of Table 5 can
be thought of as a technical device deployed to give a tractable formulation of barbed congruence.

Proposition 4.2 N 7−→ M if and only ifN
τ−→ M.

Proof: Both the directions are proved by an easy induction on the inference of the judgements.

Now, we prove some relationships between transitions of the LTS and the syntactical form of the
net performing them.

Proposition 4.3 The following facts hold:

1. N
nil @ l−−−−−−→ N′ if and only ifN ≡ N′′ ‖ l :: nil ; moreover,N′′ ≡ N′ ≡ N.

2. N
〈l′〉 @ l−−−−−−→ N′ if and only ifN ≡ N′′ ‖ l :: 〈l′〉; moreover,N′ ≡ N′′ ‖ l :: nil .

3. N
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′ if and only ifN ≡ (νl′)(N′′ ‖ l :: 〈l′〉) for l , l′; moreover,N′ ≡ N′′ ‖ l :: nil .

Proof: In all statements, the ‘if’ part is straightforward, by using (LTS-E) and
(LTS-S)/(LTS-P)/(LTS-O)/(LTS-R). For the converse, we explicitly consider the case

N
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′ (the other cases are similar). The proof now proceeds by induction on the length

of the inference of this reduction.

Base: the derivation is inferred using just two rules; such rules can only be (LTS-E) and

(LTS-O). Thus,N , (νl′)(l :: 〈l′〉), for l′ , l, and l :: 〈l′〉 〈l′〉 @ l−−−−−−→ l :: nil . We triv-
ially conclude.

Induction: we reason by case analysis on the last rule applied:

(LTS-R) In this case,N , (νl′′)N1 andl′′ < {l, l′}. Hence,N1
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′1; by induction,

N1 ≡ (νl′)(N2 ‖ l :: 〈l′〉) andN′1 ≡ N2 ‖ l :: nil for l , l′. Hence,N ≡ (νl′′, l′)(N2 ‖ l ::
〈l′〉) ≡ (νl′)((νl′′)N2 ‖ l :: 〈l′〉) andN′ ≡ (νl′′)N2 ‖ l :: nil .

(LTS-P) In this case,N , N1 ‖ N2, N1
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′1 and l′ < fn(N2). The thesis easily

follows from the inductive hypothesis.

(LTS-S) In this case,N ≡ N1, N1
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′1 andN′1 ≡ N′. The thesis follows by

induction and by transitivity of≡.

We now characterize barbed congruence by using the labels of the LTS instead of the universal
quantification over all contexts. In this way, we obtain an alternative characterization of� in terms
of a labelledbisimilarity.

Definition 4.4 (Bisimilarity) A symmetric relation< betweenK nets is a(weak) bisimula-
tion if for eachN< M it holds that:

4 BISIMULATION EQUIVALENCE 12

1. if N
χ−→ N′ then, for someM′, M

χ̂
=⇒ M′ andN′ < M′;

2. if N
. l−−→ N′ then, for someM′, M ‖ l :: nil =⇒ M′ andN′ < M′;

3. if N
l2 / l1−−−−−→ N′ then, for someM′, M ‖ l1 :: 〈l2〉 =⇒ M′ andN′ < M′.

Bisimilarity, ≈, is the largest bisimulation.

Our bisimulation is somehow inspired by that in [36]. The key idea is that, since sending

operations are asynchronous, the evolutionN
. l−−→ N′ can be simulated by a netM (in a context

where localityl is present) through execution of some internal actions that lead toM′. Indeed,
since we want our bisimulation to be a congruence, a context that provides the target locality of the
sending action must not tell apartN andM. Hence, forN ‖ l :: nil to be simulable byM ‖ l :: nil , it
must hold that, upon transitions,N′ be simulable byM′. Similar considerations hold also for input
actions (third item of Definition 4.4), but the context now is [·] ‖ l1 :: 〈l2〉.

The LTS we developed does not use labels containing processes. Thus, the bisimulation we
have just defined is clearly tractable and we strongly conjecture that it is decidable, under proper
assumptions: techniques similar to those in [35] could be used here.

4.1 Soundness w.r.t. Barbed Congruence

The key result of this subsection is Lemma 4.7 that will easily allow us to conclude that bisimilarity
is a sound proof technique for barbed congruence. To prove this result, we need some technical
tools. First of all, we introduce the notion ofbisimulation up-to structural congruence: it is defined
as a labelled bisimulation except for the fact that the< in the consequents of Definition 4.4 is
replaced by the relation≡ < ≡. Lemma 4.5 shows that a bisimulation up-to≡ is a bisimulation.
Then, Lemma 4.6 characterizes all the possible executions of the netC[N] in terms of the evolutions
of N andC[·] separately.

Lemma 4.5 If N ≈ M then for any netsN′ and M′ such thatN ≡ N′ and M ≡ M′ it holds that
N′ ≈ M′.

Proof: Let < , { (N1,N2) : Ni ≡ N′i and N′1 ≈ N′2 }. We shall prove that< is a labelled

bisimulation. LetN1
α−→ M1; by (LTS-S) we have thatN′1 ≡ N1

α−→ M1. We only consider

the case forα = χ; the other cases are similar. By hypothesis,N′2
χ̂−→ M2 for someM2 such that

M1 ≈ M2. Then,N2 ≡ N′2
χ̂
=⇒ M2 and (M1,M2) ∈ < because of reflexivity of≡.

Lemma 4.6 C[N]
α−→ N̄ if and only if one of the following conditions hold:

1. N
α−→ N′ with n(α) ∩ bn(C[·]) = ∅, or

2. C[0]
α−→ C′ [0], or

3. N
α′−→ N′ with α = (νl)α′, C[·] , C1[(νl)C2[·]] and fn(α) ∩ bn(C1[·],C2[·]) = ∅, or

4. C[·] , C1[C2[·] ‖ H] with H
nil @ l−−−−−−→ H′, N

. l−−→ N′ andl < bn(C2[·]), or

5. C[·] , C1[C2[·] ‖ H] with H
. l−−→ H′, N

nil @ l−−−−−−→ N′ andl < bn(C2[·]), or

6. C[·] , C1[C2[·] ‖ H] with H
(ν̃l) 〈l2〉 @ l1−−−−−−−−−−→ H′, N

l2 / l1−−−−−→ N′ and{l1, l2} ∩ bn(C2[·]) = ∅, or

4 BISIMULATION EQUIVALENCE 13

7. C[·] , C1[C2[·] ‖ H] with H
l2 / l1−−−−−→ H′, N

(ν̃l) 〈l2〉 @ l1−−−−−−−−−−→ N′ andl1 < bn(C2[·])
Moreover, the resulting net̄N is, respectively, structurally equivalent toC[N′], or C′ [N], or
C1[C2[N′]] , or C[N′], or C1[C2[N] ‖ H′], or C1[(ν̃l)C2[N′ ‖ H′]] (cases 6 and 7.). Finally,α = τ

in cases 4., 5., 6., and 7. .

Proof: The “if” part is trivial, by using the LTS of Table 5 and by observing thatM
α−→ M′ with

n(α) ∩ bn(D[·]) = ∅ impliesD[M]
α−→ D[M′]. The “only if” part is proved by induction on the

length of the inference of
α−→ . In the base case (length 1), it must beC[·] , [·]; hence, obviously

C[N] , N
α−→ N′ , C[N′] (and hence we fall in case 1. of this Lemma). For the inductive step, we

reason by case analysis on the last rule applied in the inference:

(LTS-R). In this case, it must be
D[N]

α−→ N̄′ l < n(α)

C[N] , (νl)D[N]
α−→ (νl)N̄′

We can now apply induction and reason by analysis on the used case of this lemma.

1. N
α−→ N′, n(α) ∩ bn(D[·]) = ∅ andN̄′ ≡ D[N′]. Hence, we still fall in case 1. by using

the contextC[·] , (νl)D[·].
2. D[0]

α−→ D′ [0] and N̄′ ≡ D′ [N]. Hence, we still fall in case 2. with contextsC[·] ,
(νl)D[·] andC′ [·] , (νl)D′ [·].

3. N
α′−→ N′, α , (νl′)α′,D[·] , D1[(νl′)D2[·]] andn(α)∩bn(D1[·],D2[·]) = ∅; moreover,

N̄′ ≡ D1[D2[N′]]. Hence, we still fall in case 3. by using the contextsC1[·] , (νl)D1[·]
andC2[·] , D2[·].

4. D[·] , D1[D2[·] ‖ H] with H
nil @ l−−−−−−→ H′, N

. l−−→ N′ and l < bn(D2[·]); moreover,
D[N]

τ−→ D[N′]. Hence we still fall in case 4. by using the contextsC1[·] , (νl)D1[·]
andC2[·] , D2[·].

5. 6. and 7. are similar.

(LTS-O). In this case, it must be

D[N]
〈l2〉 @ l1−−−−−−−→ N̄ l2 , l1

C[N] , (νl2)D[N]
(νl2) 〈l2〉 @ l1−−−−−−−−−−→ N̄

We can now apply induction and reason by analysis on the used case of this lemma; we have
to consider only the first two cases.

1. N
〈l2〉 @ l1−−−−−−−→ N′, {l1, l2} ∩ bn(D[·]) = ∅ andN̄ , D[N′]. Hence, we fall in case 3. by

using the contextsC1[·] , [·] andC2[·] , D[·].
2. D[0]

〈l2〉 @ l1−−−−−−−→ D′ [0] and N̄ , D′ [N]. Hence, we still fall in case 2. with contexts
C[·] , (νl2)D[·] andC′ [·] , D′ [·].

(LTS-P). In this case, one of the following inferences should hold:

K
α−→ K′ bn(α) ∩ n(D[N]) = ∅

C[N] , D[N] ‖ K
α−→D[N] ‖ K′

or
D[N]

α−→ N̄′ bn(α) ∩ n(K) = ∅
C[N] , D[N] ‖ K

α−→ N̄′ ‖ K

4 BISIMULATION EQUIVALENCE 14

By using the first inference, we fall in case 2. with resulting contextC′ [·] , D[·] ‖ K′. By
using the second inference, we can apply inductive arguments similar to those used in the
(LTS-R) case, but now the contextC[·] we consider isD[·] ‖ K instead of (νl)D[·].

(LTS-S). In this case, one of the following inferences should hold:

K
. l−−→ K′ D[N]

nil @ l−−−−−−→D[N]

C[N] , D[N] ‖ K
τ−→D[N] ‖ K′

or
K

nil @ l−−−−−−→ K D[N]
. l−−→ N̄′

C[N] , D[N] ‖ K
τ−→ N̄′ ‖ K

To apply induction, notice that we only have to consider the first two cases of this lemma,
since the actions fired byD[N] are different fromτ and have no restricted names. For the
first reduction, we have the following cases.

1. N
nil @ l−−−−−−→ N andl < bn(D[·]). Hence, we fall in case 5. by usingC1[·] , [·], C2[·] ,

D[·] andH , K.

2. D[0]
nil @ l−−−−−−→ D[0]; hence, we still fall in case 2. with resulting contextC′ [·] , D[·] ‖

K′ ‖ l :: C.

For the second reduction, we have similar cases; we just list the differences.

1. N̄′ , D[N′] and we fall into case 4. .

2. N̄′ , D′ [N] and the resulting context isC′ [·] , D′ [·] ‖ K.

(LTS-C). In this case, one of the following inferences should hold:

D[N]
l2 / l1−−−−−→ N̄′ K

〈l2〉 @ l1−−−−−−−→ K′

C[N] , D[N] ‖ K
τ−→ N̄′ ‖ K′

or K
l2 / l1−−−−−→ K′ D[N]

〈l2〉 @ l1−−−−−−−→ N̄′

C[N] , D[N] ‖ K
τ−→ N̄′ ‖ K′

Like before, we just have two possible inductive cases for each reduction (namely, the first
two of this lemma). For the first reduction we have the following cases.

1. N
l2 / l1−−−−−→ N′, {l1, l2}∩bn(D[·]) = ∅ andN̄′ , D[N′]. Hence, we fall in case 6. by using

C1[·] , [·], C2[·] , D[·] andH , K.

2. D[0]
l2 / l1−−−−−→ D′ [0] and N̄′ , D′ [N]. Hence, we still fall in case 2. with resulting

contextC′ [·] , D′ [·] ‖ K′.

For the second reduction, we have similar cases. The only difference is that case 1. in the
induction leads to case 7. in the conclusion.

(LTS-S). In this case, it must be

C[N] ≡ M1
α−→ M2 ≡ N̄

C[N]
α−→ N̄

We now proceed by induction on the structure of contextC[·]. The base case (forC[·] , [·])
trivially falls in case 1. of this Lemma. For the inductive case, let us reason by case analysis
on according to the structure ofC[·]:
C[·] , (νl)D[·]. We furtherly identify three sub-cases:

4 BISIMULATION EQUIVALENCE 15

• if M1 , (νl)M andl ∈ bn(α), for someM ≡ D[N], then we can apply the structural

induction toD[N]
α′−→ M′, for someM′ ≡ M2 andα = (νl)α′, and fall in one of

the first two cases of this Lemma. By using rule (LTS-O), we can conclude that

C[N]
α−→ N̄ falls in cases 2. or 3. of this Lemma.

• if M1 , (νl)M andl < bn(α), for someM ≡ D[N], then we can apply the structural

induction toD[N]
α−→ M′, for someM′ such thatM2 ≡ (νl)M′, falling in one of the

cases of this Lemma. Then, by using (LTS-R), we can conclude thatC[N]
α−→ N̄

falls in the same case of this Lemma.

• otherwise, we can prove thatC[N] ≡ M′1
α−→ M2 such thatM′1 , (νl)M by using

a no longer inference (but possibly using more structural laws). Hence, we can
reduce this case to the previous one.

C[·] , D[·] ‖ K. Because of the structure ofC[·], it can be one of the following cases:

• K
α−→ K′ andN̄ ≡ D[N] ‖ K′. In this case, we are trivially in case 2. of this Lemma.

• D[N]
α−→ N̄′ andN̄ ≡ N̄′ ‖ K. In this case, we use the structural induction.

• If α = τ then other four cases are possible:

– D[N]
. l−−→ N̄′, K

nil @ l−−−−−−→ K andN̄ ≡ N̄′ ‖ K. By structural induction, it can be

that eitherN
. l−−→ N′, orD[0]

. l−−→D′ [0]. In both cases is easy to conclude.

– D[N]
(ν̃l) 〈l2〉 @ l1−−−−−−−−−−→ N̄′, K

l2 / l1−−−−−→ K′ andN̄ ≡ (ν̃l)(N̄′ ‖ K′). This case is similar
to the previous one.

– D[N]
nil @ l−−−−−−→ D[N], K

. l−−→ K′ andN̄ ≡ D[N] ‖ K′. By structural induction,
it can be one of the first two cases of this Lemma and we can easily conclude.

– D[N]
l2 / l1−−−−−→ N̄′, K

(ν̃l) 〈l2〉 @ l1−−−−−−−−−−→ K′ andN̄ ≡ (ν̃l)(N̄′ ‖ K′). This case is similar
to the previous one.

Lemma 4.7 ≈ is a congruence relation.

Proof:
We start by proving that≈ is substitutive w.r.t. to the net contextsC[·], namely thatN ≈ M

impliesC[N] ≈ C[M] for eachC[·]. To this aim, we prove that

< , { (C[N],C[M]) : N ≈ M }

is a bisimulation up-to≡. LetC[N]
α−→ N̄; according to Lemma 4.6 we have to examine seven cases.

1. N
α−→ N′ for n(α) ∩ bn(C[·]) = ∅; we reason by case analysis onα.

α = χ. By hypothesis of bisimilarity, M
χ̂
=⇒ M′ and N′ ≈ M′. Hence, trivially,

C[M]
χ̂
=⇒ C[M′] and, by definition of<, it holds thatC[N′] < C[M′].

α = . l . By hypothesis of bisimilarity,M ‖ l :: nil =⇒ M′ andN′ ≈ M′. Sincel < bn(C[·]),
we have thatC[M] ‖ l :: nil ≡ C[M ‖ l :: nil] =⇒ C[M′] andC[N′] < C[M′] up-to
structural equivalence.

α = l2 / l1 . By hypothesis,{l1, l2}∩bn(C[·]) = ∅; thus,C[M] ‖ l1 :: 〈l2〉 ≡ C[M ‖ l1 :: 〈l2〉].
By hypothesis of bisimilarity,M ‖ l1 :: 〈l2〉 =⇒ M′ andN′ ≈ M′. Thus,C[M] ‖ l1 ::
〈l2〉 =⇒ C[M′] andC[N′] < C[M′] up-to≡.

4 BISIMULATION EQUIVALENCE 16

2. C[0]
α−→ C′ [0]; trivially, C[M]

α−→ C′ [M]. Moreover, by definition of<, we have that

• if α = χ thenC′ [N] < C′ [M].

• if α = . l , thenC[M] ‖ l :: nil =⇒ C′ [M] andC′ [N] < C′ [M].

• if α = l2 / l1 , thenC[M] ‖ l :: 〈l2〉 =⇒ C′ [M] andC′ [N] < C′ [M]

3. N
〈l2〉 @ l1−−−−−−−→ N′, C[·] , C1[(νl2)C2[·]], for l1 < bn(C1[·],C2[·]), and N̄ ,

C1[C2[N′]]. By hypothesis of bisimilarity,M
〈l2〉 @ l1

========⇒ M′ and N′ ≈ M′. Thus,

C[M]
(νl2) 〈l2〉 @ l1
===========⇒ C1[C2[M′]]. The thesis easily follows.

4. By hypothesis,C[·] , C1[C2[·] ‖ H] with H
nil @ l−−−−−−→ H′, N

. l−−→ N′, for l < bn(C2[·]), and
N̄ ≡ C[N′]. By Proposition 4.3,H ≡ H′ ≡ H ‖ l :: nil ; thus,C[M] ≡ C[M ‖ l :: nil].
By hypothesis of bisimilarity,M ‖ l :: nil =⇒ M′ andN′ ≈ M′. Hence,C[M] =⇒ C[M′] and
N̄< M′ up-to≡.

5. C[·] , C1[C2[·] ‖ H] with H
. l−−→ H′, N

nil @ l−−−−−−→ N′ and l < bn(C2[·]). By hypothesis of

bisimilarity, M
nil @ l

=======⇒ M andN′ ≈ M′. Hence,C[M] =⇒C1[C2[M] ‖ H′]. The thesis easily
follows.

6. C[·] , C1[C2[·] ‖ H] with H
(ν̃l) 〈l2〉 @ l1−−−−−−−−−−→ H′, N

l2 / l1−−−−−→ N′, for {l1, l2} ∩ bn(C2[·]) = ∅, and
N̄ ≡ C1[(ν̃l)(C2[N′] ‖ H′)]. By Proposition 4.3,H ≡ (ν̃l)(H′′ ‖ l1 :: 〈l2〉) andH′ ≡ H′′ ‖ l1 ::
nil ; thus,C[M] ≡ C1[(ν̃l)(C2[M ‖ l1 :: 〈l2〉] ‖ H′′)]. By hypothesis of bisimilarity,M ‖ l1 ::
〈l2〉 =⇒ M′ andN′ ≈ M′. HenceC[M] =⇒ C1[(ν̃l)(C2[M′] ‖ H′′)] and N̄ < C1[(ν̃l)(C2[M′] ‖
H′)] up-to≡.

7. C[·] , C1[C2[·] ‖ H] with H
l2 / l1−−−−−→ H′, N

(ν̃l) 〈l2〉 @ l1−−−−−−−−−−→ N′, for {l1, l2} ∩ bn(C2[·]) = ∅, and

N̄ ≡ C1[(ν̃l)(C2[N′] ‖ H′)]. By hypothesis of bisimilarity,M
(ν̃l) 〈l2〉 @ l1
==========⇒ M′ andN′ ≈ M′.

Hence,C[M] =⇒ C1[(ν̃l)C2[M′ ‖ H′]] and N̄< C1[(ν̃l)(C2[M′] ‖ H′)] up-to≡.

We are left with proving that≈ is an equivalence relation. Reflexivity and symmetry follow by
definition. To prove transitivity, we consider the relation< , { (N1,N2) : N1 ≈≈ N2} and prove

that it is a bisimulation. LetN1 ≈ M ≈ N2, N1
α−→ N′1 and let us reason by case analysis onα:

α = χ. In this case,M
χ̂
=⇒ M′ for someM′ such thatN′1 ≈ M′. If M′ ≡ M, then we conclude up-to

≡. Otherwise, it must be thatN2
χ̂
=⇒ N′2 andM′ ≈ N′2; henceN′1 ≈≈ N′2 andN′1< N′2.

α = . l . By hypothesis,M ‖ l :: nil =⇒ M′ and N′1 ≈ M′. By context closure, we have that
M ‖ l :: nil ≈ N2 ‖ l :: nil ; hence,N2 ‖ l :: nil =⇒ N′2 andM′ ≈ N′2. It is easy to conclude that
N′1< N′2.

α = l2 / l1 . Similarly, M ‖ l1 :: 〈l2〉 =⇒ M′ andN′1 ≈ M′. Moreover,N2 ‖ l1 :: 〈l2〉 =⇒ N′2 and
M′ ≈ N′2, that impliesN′1< N′2.

Theorem 4.8 (Soundness of≈ w.r.t. �) If N ≈ M thenN � M.

Proof: We shall now prove that≈ is barb preserving, reduction closed and contextual. By defini-
tion, this implies that≈ ⊆ �.

4 BISIMULATION EQUIVALENCE 17

• If N ⇓ l then N
(ν̃l) 〈l′〉 @ l
=========⇒ , for somel′ and l̃ such thatl < l̃; hence, by hypothesis of

bisimilarity, M
(ν̃l) 〈l′〉 @ l
=========⇒ and thusM ⇓ l (these implications rely on Proposition 4.3 and

Definition 4.4).

• By Proposition 4.2,N 7−→ N′ implies thatN
τ−→ N′; this, in turn, implies, by hypothesis of

bisimilarity, thatM =⇒ M′ (and, again, by Proposition 4.2 this meansM |=⇒ M′) andN′ ≈ M′.

• By Lemma 4.7, for all net contextC[·], it holds thatC[N] ≈ C[M].

4.2 Completeness w.r.t. Barbed Congruence

We now want to prove the converse, namely that all barbed congruent processes are also bisimilar.
To this aim, we need three technical results. The first one gives some simple equations that hold true
w.r.t. barbed congruence. The second result gives an alternative characterization of the contextuality
property of Definition 3.3. The third result states that we can throw away fresh localities hosting
restricted data without breaking barbed congruence.

Proposition 4.9 The following facts hold:

1. (νl′)(l :: in(!x)@l′.P ‖ l′ :: 〈d〉) � (νl′)(l :: P[d/x])

2. l :: out(l′′)@l′.P ‖ l′ :: nil � l :: P ‖ l′ :: 〈l′′〉
3. l :: eval(Q)@l′.P ‖ l′ :: nil � l :: P ‖ l′ :: Q

4. (νl)N � N wheneverl < fn(N)

Proof: The first three equations can be easily proved by providing a proper bisimulation containing
each of them; this fact, together with Theorem 4.8, proves part (1)/(2)/(3). The last equation is
proved by first observing that≡ ⊆ � (this can be easily proved). Then, (νl)N ≡ (νl)(N ‖ l :: nil) ≡
N ‖ (νl)(l :: nil) � N ‖ 0 ≡ N (indeed, (νl)(l :: nil) � 0, as it can be easily verified). Thus, by
inclusion of≡ in � and by transitivity of�, the claim holds.

Lemma 4.10 A relation < is contextual if and only if

1. N< M implies thatN ‖ l :: P< M ‖ l :: P for any namel and processP, and

2. N< M implies that(νl)N< (νl)M for any namel

Proof: It is trivial to prove that contextuality implies points (1) and (2) of this Lemma. For the
converse, let us assumeN < M and pick up a contextC[·]. We now proceed by induction on the
structure ofC[·]. The base case is trivial. For the inductive case, we have two possibilities:

1. C[·] , D[·] ‖ K. By induction, we have thatD[N] < D[M]. We now proceed by induction
on the structure ofK. The base case is trivial, up-to≡. For the inductive case, it can be
either K , l :: P ‖ K′ or K , (νl)K′. In the first case, by point (1) of this Lemma, it
holds thatD[N] ‖ l :: P < D[M] ‖ l :: P; then, by second induction, we can conclude
C[N] < C[M]. In the second case, we can always assume thatl is fresh forD[·], N and
M (this is always possible, up-to alpha-equivalence). By second induction, we have that
D[N] ‖ K′ <D[M] ‖ K′ and, by point (2) of this Lemma, we can conclude up-to≡.

2. C[·] , (νl)D[·]. By induction we have thatD[N] <D[M]; thus, by point (2) of this Lemma,
it holds that (νl)D[N] < (νl)D[M], i.e. C[N] < C[M].

Lemma 4.11 If (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) andl f is fresh forN andM, thenN � M.

4 BISIMULATION EQUIVALENCE 18

Proof: It suffices to prove that

< , { (N,M) : l f < n(N,M) ∧ (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) }

is barb preserving, reduction closed and contextual. LetN< M.

Barb preservation. Let N ⇓ l′ for l′ , l. Then, it trivially holds that (νl)(N ‖ l f :: 〈l〉) ⇓ l′,
(νl)(M ‖ l f :: 〈l〉) ⇓ l′ andM ⇓ l′ (indeed,l′ , l f because of freshness ofl f).

Now, letN ⇓ l. The argument above does not hold because (νl)(N ‖ l f :: 〈l〉) 6⇓ l. However,
we can consider the contextC[·] , [·] ‖ l′f :: in(!x)@l f .in(!y)@x.out()@l′f , wherel′f is fresh.
Now,C[(νl)(N ‖ l f :: 〈l〉)] ⇓ l′f ; hence, by hypothesis,C[(νl)(M ‖ l f :: 〈l〉)] ⇓ l′f . Because of
freshness ofl f andl′f , it must be thatM ⇓ l.

Reduction closure. Let N 7−→ N′; thus, (νl)(N ‖ l f :: 〈l〉) 7−→ (νl)(N′ ‖ l f :: 〈l〉). By hypothesis,
this fact implies that (νl)(M ‖ l f :: 〈l〉) |=⇒ M̄ such that (νl)(N′ ‖ l f :: 〈l〉) � M̄. Since
l f < n(M), l f :: 〈l〉 is not involved in the transition; thus it follows thatM |=⇒ M′ and
M̄ ≡ (νl)(M′ ‖ l f :: 〈l〉). Thus, the claim is proved up-to≡.

Contextuality. According to Lemma 4.10, we have to prove just two cases.

1. For anyl′ andP, it holds thatN ‖ l′ :: P< M ‖ l′ :: P.

Let us first assume thatl < fn(l′ :: P). In this case, it is easy to conclude because
(νl)(N ‖ l f :: 〈l〉) ‖ l′ :: P ≡ (νl)(N ‖ l′ :: P ‖ l f :: 〈l〉) (and similarly when replacingN
with M), by transitivity of � and because≡ ⊆ �.

We now consider the case in whichl ∈ fn(P) but l′ , l. We use the contextC[·] ,
(νl f)([·] ‖ l′ :: in(!x)@l f .out(x)@l′f .P[x/l] ‖ l′f :: nil), wherel′f is a fresh name. Then,
C[(νl)(N ‖ l f :: 〈l〉)] � (νl f , l)(N ‖ l′ :: out(l)@l′f .P ‖ l′f :: nil) � (νl f , l)(N ‖ l′ ::
P ‖ l′f :: 〈l〉) � (νl)(N ‖ l′ :: P ‖ l′f :: 〈l〉). These equalities hold true by using,
resp., Proposition 4.9(1), (2) and (4). Similarly,C[(νl)(M ‖ l f :: 〈l〉)] � (νl)(M ‖ l′ ::
P ‖ l′f :: 〈l〉). By transitivity,C[(νl)(N ‖ l f :: 〈l〉)] � C[(νl)(M ‖ l f :: 〈l〉)] implies that
(νl)(N ‖ l′ :: P ‖ l′f :: 〈l〉) � (νl)(M ‖ l′ :: P ‖ l′f :: 〈l〉) and thusN ‖ l′ :: P< M ‖ l′ :: P.

The case forl′ = l is dealt with similarly. It uses contextC[·] , (νl f)([·] ‖ l′f ::
in(!x)@l f .eval(P[x/l])@x.out(x)@l′f), wherel′f is a fresh name, and Proposition 4.9(3).

2. For anyl′, it holds that(νl′)N< (νl′)M.

Let l′ , l, l f . Then (νl′, l)(N ‖ l f :: 〈l〉) ≡ (νl)((νl′)N ‖ l f :: 〈l〉) (and similarly when
replacingN with M). By transitivity of � and because≡ ⊆ � we can easily conclude.

Let l′ = l , l f . Then we consider the contextC[·] , (νl f)([·] ‖ l′f ::
in(!x)@l f .new(l′′).out(l′′)@l′f), for l′f and l′′ fresh. ThenC[(νl)(N ‖ l f :: 〈l〉)] �
(νl′′)((νl)N ‖ l′f :: 〈l′′〉) (and similarly when replacingN with M). Thus, we can con-
clude that (νl′′)((νl)N ‖ l′f :: 〈l′′〉) � (νl′′)((νl)M ‖ l′f :: 〈l′′〉) that implies (νl)N< (νl)M.

Finally, let l′ = l f , l. Then we consider the contextC[·] , (νl f)([·] ‖ l′f ::
in(!x)@l f .out(x)@l′f), for l′f fresh. ThenC[(νl)(N ‖ l f :: 〈l〉)] � (νl)((νl f)N ‖ l′f :: 〈l〉)
(and similarly when replacingN with M). Thus, we can conclude.

Theorem 4.12 (Completeness of≈ w.r.t. �) If N � M thenN ≈ M.

Proof: It is enough to prove that� is a bisimulation. We now pick up a transitionN
α−→ N′ and

reason by case analysis onα.

5 TRACE EQUIVALENCE 19

α = τ. This case is simple because of reduction closure.

α = 〈l〉@ l′ . In this case, we consider the contextC[·] , [·] ‖ l f :: in(l)@l′.new(l′′).out(l′′)@l f ,
for l f and l′′ fresh, and the reductionC[N] |=⇒ (νl′′)(N′ ‖ l f :: 〈l′′〉). By contextuality and
reduction closure, it must be thatC[M] |=⇒ M̄ such that (νl′′)(N′ ‖ l f :: 〈l′′〉) � M̄. This

implies thatM̄ ⇓ l f ; but this is possible only ifM =⇒ 〈l〉 @ l′−−−−−−→ M1 =⇒ M2. Moreover, because

of freshness ofl f andl′′, we can state that̄M ≡ (νl′′)(M2 ‖ l f :: 〈l′′〉). Thus,M
〈l〉 @ l′

=======⇒ M2

and, by Lemma 4.11,N′ � M2.

α = (νl) 〈l〉@ l′ . We now consider the contextC[·] , [·] ‖ l f :: in(!x)@l′.out(x)@l f , for l f fresh,
and the reductionC[N] |=⇒ (νl)(N′ ‖ l f :: 〈l〉). By arguments similar to those above, we

are ensured thatM
@ l′

======⇒ ; we now prove thatM (weakly) offers inl′ a restricted locality.
By contradiction, let us assume thatM only offers in l′ free names and let us pick up one

of these names, sayl′′. ThenM
〈l′′〉 @ l′

========⇒ M′ andC[M] |=⇒ M′ ‖ l f :: 〈l′′〉. But it cannot
be that (νl)(N′ ‖ l f :: 〈l〉) � M′ ‖ l f :: 〈l′′〉 for any M′ because of the context [·] ‖ l′f ::
in(l′′)@l f .out()@l′f . Hence,l′′ must be bound inM; we can now alpha-convertl′′ to l in M
(this is possible since we are assuming that bound names are pairwise distinct and different

from the free ones, and hencel < n(M)). Thus,M
(νl) 〈l〉 @ l′
=========⇒ M′′ and (νl)(N′ ‖ l f :: 〈l〉) �

(νl)(M′′ ‖ l f :: 〈l〉); by Lemma 4.11, we can conclude.

α = nil @ l . We now consider the contextC[·] , [·] ‖ l f :: eval(nil)@l.new(l′). out(l′)@l f ,
for l f fresh, and the reductionC[N] |=⇒ (νl′)(N′ ‖ l f :: 〈l′〉). Like before, we have that

M
nil @ l

=======⇒ M′ and (νl′)(N′ ‖ l f :: 〈l′〉) � (νl′)(M′ ‖ l f :: 〈l′〉) that suffices to conclude.

α = . l . We consider the context [·] ‖ l :: nil and the reductionN ‖ l :: nil 7−→ N′. Then,
by contextuality and reduction closure,M ‖ l :: nil |=⇒ M′ andN′ � M′. This suffices to
conclude (see Definition 4.4.2).

α = l2 / l1 . This case is similar to the previous one; we just consider the context [·] ‖ l1 :: 〈l2〉
and the reductionN ‖ l1 :: 〈l2〉 7−→ N′.

Corollary 4.13 (Tractable Characterization of Barbed Congruence)≈ = � .

5 Trace Equivalence

In this section, we develop a tractable characterization of may testing. For some well-known process
calculi, may testing coincides with trace equivalence [22, 8, 9]; in this section, we show how a
similar result is obtained also in the setting ofK. To the best of our knowledge, this is the first
tractable characterization of may testing for a distributed language with process mobility.

The idea beyond trace equivalence is thatN and M are related if and only if the sets of their
traces coincide. Put in another form, ifN exhibits a sequence of visible actionsσ, thenM must
exhibit σ as well, and viceversa. In an asynchronous setting [9, 16], this requirement must be
properly weakened, since the discriminating power of asynchronous contexts is weaker: in the
asynchronousπ-calculus, for example, contexts cannot observe input actions.

To define a proper trace equivalence we slightly modify the LTS of Table 5 by adding the rule

(LTS-R)
N

l2 / l1−−−−−→ N′ l2 < fn(N)

N
(νl2) l2 / l1−−−−−−−−→ N′ ‖ l2 :: nil

5 TRACE EQUIVALENCE 20

(L1) σ · (ν̃l)σ′ �0 σ · (ν̃l) • 4 l · σ′ if (ν̃l)σ′ , ⊥
(L2) σ · (ν̃l)(φ · •4 l · σ′) �0 σ · (ν̃l) • 4 l · φ · σ′ if (ν̃l)(φ · •4 l · σ′) , ⊥
(L3) σ · (ν̃l)σ′ �0 σ · (ν̃l) • 4 l · •4 l · σ′ if (ν̃l)σ′ , ⊥
(L4) σ · (νl′)φ · . l′ · σ′ �0 σ · (νl′)φ · σ′

(L5) σ · . l · (ν̃l) • 4 l · σ′ �0 σ · (ν̃l) • 4 l · σ′

(L6) σ · . l′ · (ν̃l) I @ l · σ′ �0 σ · (ν̃l) I @ l · . l′ · σ′ if l′ < l̃

In laws (L1), (L2), (L3) and (L5), •4 l stands for either. l or l′ / l
(hence,•4 l in rule (L3) stands fornil @ l or 〈l′〉@ l , respectively)

In rule (L4), φ can only be l′ / l or 〈l′〉@ l

Table 6: The Ordering Relation on Traces

that permits distinguishing the reception of a free name from the reception of a bound name (this is
akin to the asynchronousπ-calculus in [9]). In the latter case, the received namel2 must be fresh
for the receiving net and, because of law (RN), it can be considered as the address of a node;
of course,bn((ν̃l) l′ / l) = l̃. Notice that rule (LTS-R) is not needed by the bisimulation we
introduced in the previous section to capture barbed congruence. Thus, the new transition system
exploits the following labels:

µ ::= τ
∣∣∣ φ φ ::= (ν̃l) I @ l

∣∣∣ . l
∣∣∣ (ν̃l) l′ / l

where φ collects together all the visible labels. Clearly, rules (LTS-R), (LTS-P) and
(LTS-S) from Table 5 must now exploitµ instead ofα. Then, we define a complementation
function over the labels of the LTS. Formally,

. l = nil @ l nil @ l = . l

(ν̃l) l2 / l1 = (ν̃l) 〈l2〉@ l1 (ν̃l) 〈l2〉@ l1 = (ν̃l) l2 / l1

We letσ to range over (possibly empty) sequences of visible actions, i.e.

σ ::= ε
∣∣∣ φ · σ

whereε denotes the empty sequence of actions and ‘·’ represents concatenation. As usual,N
ε
=⇒

denotesN =⇒ andN
φ·σ
===⇒ denotesN

φ
=⇒ σ

=⇒ . A naive formulation of trace equivalence such as

“N
σ
=⇒ if and only if M

σ
=⇒ ” would be too strong in an asynchronous setting: for example, it would

distinguishN , l :: in(!x)@l1.in(!y)@l2 andM , l :: in(!y)@l2.in(!x)@l1, which are instead may
testing equivalent. Like in [9], a weaker trace equivalence can be defined as follows.

Definition 5.1 (Trace Equivalence)� is the largest symmetric relation betweenK nets such

that, wheneverN � M, it holds thatN
σ
=⇒ impliesM

σ′
==⇒ , for someσ′ � σ.

The crux is to identify a proper ordering on the traces such that may testing is exactly captured
by�. The ordering� is obtained as the reflexive and transitive closure of the ordering�0 defined in
Table 6. The intuition beyondσ′ � σ is that, if a context can interact with a net that exhibitsσ, then
the context can interact with any net that exhibitsσ′. The ordering�0 relies on the function (ν̃l)σ,

5 TRACE EQUIVALENCE 21

that is used in laws (L1), (L2) and (L3) when moving/removing a label of the form (νl′) l′ / l . In
this case, the information thatl′ is a fresh received value must be kept in the remaining trace. The
formal definition is

(ν̃l)σ =



σ if l̃ ∩ fn(σ) = ∅
σ1 · (νl′) l′ / l′′ · σ2 if l̃ = {l′} andσ = σ1 · l′ / l′′ · σ2 andl′ < fn(σ1, l′′)
⊥ otherwise

To better understand the motivations underlying this definition, consider the following example that
justifies the side condition of law (L1) (similar arguments also hold for laws (L2) and (L3)). In the
trace (νl′) l′ / l · 〈l′〉@ l′′ performed by the netN, the input action cannot be erased. Indeed, since
l′ is fresh (see the meaning of label (νl′) l′ / l), N cannot get knowledge ofl′ without performing the
input and, consequently, cannot perform the action〈l′〉@ l′′ . On the other hand, ifN could receive
l′ from a communication with another nodel′′′ (thus, it can perform actionl′ / l′′′ after l′ / l), then
the first input action can be erased and (νl′) l′ / l′′′ · 〈l′〉@ l′′ �0 (νl′) l′ / l · l′ / l′′′ · 〈l′〉@ l′′ .

The intuition beyond the rules in Table 6 now follows. The first three laws have been inspired
by [9], while the last three ones are strictly related to the difference between a ‘pure’ name and
a name that is used as a node address. Law (L1) states that an input, an output or a migration
cannot be directly observed; at most, theeffect of an output can be observed (by accessing the
datum produced by the output). Law (L2) states that the execution of an input/output/migration
can be delayed along computations without being noticed by any observer. Law (L3) states that two
adjacent ‘complementary’ actions can be deleted (by using a terminology burrowed from CCS [32],
we say thatφ andφ′ are complementary if they can synchronize to yield aτ – see rules (LTS-C)
and (LTS-S)). Law (L4) states that, since bound names can always be used as node addresses,
then the reception/transmission of a bound namel′ enables outputs/migrations tol′. Law (L5)
states that an input froml always enables outputs/migrations tol; indeed, if a datum froml has been
retrieved, thenl exists and any output/migration to it is enabled. Of course, an output/migration tol
always enables other outputs/migrations tol. Similarly, law (L6) states that, if an output/migration
to l′ is enabled after an actionφ of the form (ν̃l) I @ l , then the output/migration can be fired before
φ, sincel′ was already present. However, this is not possible ifl′ has been created beforeφ andφ
extruded it (i.e., ifl′ ∈ l̃).

Remarkably, may testing in the (synchronous/asynchronous)π-calculus [8, 9] cannot distin-
guish bound names from free ones; thus, a bound name can be replaced with any name in a trace.
This is not the case here: indeed, bound names can be always considered as addresses of nodes,
while free names cannot. This makes a difference for an external observer; thus, a law like

σ · 〈l′′〉@ l · (σ′[l′′/l′]) �0 σ · (νl′)〈l′〉@ l · σ′

(that, mutatis mutandis, holds for the asynchronousπ-calculus [9]) does not hold forK.

5.1 Soundness w.r.t. May Testing

To prove that trace equivalence exactly captures may testing we rely on the classical definition of

the latter equivalence [22], as proposed in Definition 3.4. By using the LTS,
OK
===⇒ corresponds to

〈test〉 @ test
=============⇒ ; when it is convenient, we still useOK to denote label〈test〉@test .

First, we extend the complementation of a label to traces as expectable:

σ =

{
ε if σ = ε

φ · σ′ if σ = φ · σ′

5 TRACE EQUIVALENCE 22

Remarkably,σ = σ. Then, we give a Lemma that describes a sufficient and a necessary condition
for the success of an experiment.

Lemma 5.2 Let N be a net andK be an observer. Then

1. N
σ
=⇒ andK

σ ·OK
=====⇒ imply thatN ‖ K

OK
===⇒ ;

2. N ‖ K
OK
===⇒ implies that there exists aσ such thatN

σ
=⇒ andK

σ ·OK
=====⇒ .

Proof:

1. The proof is by induction on the lenght ofσ. The base step is trivial. For the inductive step,
we have thatσ = φ ·σ′ and we consider the possibilities forφ. All the cases are trivial, except
for the following two:

• φ = (νl′) l′ / l . Now, we have thatN =⇒ N′
(νl′) l′ / l−−−−−−−→ N′′

σ′
==⇒ , for l′ < fn(N′);

moreover,K =⇒ K′
(νl′) 〈l′〉 @ l−−−−−−−−−→ K′′

σ′·OK
=====⇒ . By induction,N′′ ‖ K′′

OK
===⇒ . Now, by

Proposition 4.3.3,K′ ≡ (νl′)(K′′′ ‖ l :: 〈l′〉) and K′′ ≡ K′′′ ‖ l :: nil ; thus, N ‖
K =⇒ (νl′)(N′ ‖ K′′′ ‖ l :: 〈l′〉) τ−→ (νl′)(N′′ ‖ K′′)

OK
===⇒ (indeed, sinceK is an observer,

it can only emittest attest; thus,l′ , test).

• φ = (νl′) 〈l′〉@ l . This case is similar.

2. By definition, it must be thatN ‖ K(
τ−→)nH

OK−−→ ; the proof is by induction onn. The base
step is simple:σ = ε. For the inductive step, we have two subcases:

• N ‖ K
τ−→ N′ ‖ K′(

τ−→)n−1H. By induction,N′
σ′
==⇒ andK′

σ′·OK
=====⇒ , for someσ′. There

are six possibilities for the firstτ-step:

(a) N
τ−→ N′ andK′ ≡ K: in this case, we can pick upσ = σ′.

(b) N′ ≡ N andK
τ−→ K′: like before.

(c) N
. l−−→ N′ andK

nil @ l−−−−−−→ K′: we can pick upσ = . l · σ′.
(d) N

nil @ l−−−−−−→ N′ andK
. l−−→ K′: we can pick upσ = nil @ l · σ′.

(e) N
l′ / l−−−−→ N′ andK

〈l′〉 @ l−−−−−−→ K′: we can pick upσ = l′ / l · σ′.
(f) N

〈l′〉 @ l−−−−−−→ N′ andK
l′ / l−−−−→ K′: we can pick upσ = 〈l′〉@ l · σ′.

• N ‖ K
τ−→ (νl′)(N′ ‖ K′)(

τ−→)n−1H. SinceH ≡ (νl′)H′ for someH′ (indeed,τ-steps

cannot remove restrictions), it must bel′ , test. Thus,N′ ‖ K′(
τ−→)n−1H′

OK−−→ and,

by induction,N′
σ′
==⇒ andK′

σ′·OK
=====⇒ , for someσ′. There are only two possibilities for

the firstτ-step:

(a) N
(νl′) 〈l′〉 @ l−−−−−−−−−→ N′ andK

l′ / l−−−−→ K′. By definition of the LTS, we have to extend
the scope ofl′ before passing it by using rule (E). Thus,l′ < fn(K) and, by rule

(LTS-R), we have thatK
(νl′) l′ / l−−−−−−−→ K′. Thus, we can pick upσ = (νl′)〈l′〉@ l ·

σ′.

(b) N
l′ / l−−−−→ N′ andK

(νl′) 〈l′〉 @ l−−−−−−−−−→ K′: this case is similar.

The next Lemma states that the laws in Table 6 are ‘sound’, in the sense that, if an observer can
observe a traceσ (i.e., that can provideσ), then it can also observe any traceσ′ � σ.

5 TRACE EQUIVALENCE 23

Lemma 5.3 Letσ′ � σ andN
σ
=⇒ ; then,N

σ′
==⇒ .

Proof: By definition,σ′(�0)nσ; we proceed by induction onn. The base step is trivial, by reflex-

ivity. For the inductive step, we letσ′(�0)n−1σ′′ �0 σ; it suffices to prove thatN
σ
=⇒ implies that

N
σ′′
==⇒ . Indeed, by induction, the latter judgement implies thatN

σ′
==⇒ , as required. We reason by

case analysis on the law in Table 6 used to inferσ′′ �0 σ. Notice that all the laws hide a double
formulation that is made explicit in this proof.

(L1).a: σ , σ1 · (ν̃l) l′ / l ·σ2 andσ′′ , σ1 · (ν̃l)σ2. By definition,N
σ1
==⇒ N′

(ν̃l) 〈l′〉 @ l−−−−−−−−−→ N′′
σ2
==⇒ ;

moreover,N′ ≡ (ν̃l)(N′′′ ‖ l :: 〈l′〉) andN′′ ≡ N′′′ ‖ l :: nil . Now, if l̃ = ∅ or l̃ ∩ fn(σ2) =

∅, then it must be thatN′
σ2
==⇒ and, hence,N

σ′′
==⇒ . Otherwise, it must bẽl = {l′} and

σ2 , σ3 · l′ / l′′ · σ4 for l′ < fn(σ3, l′′); thus, N′′
σ3
==⇒ N′′1

〈l′〉 @ l′′−−−−−−−→ N′′2
σ4
==⇒ . Now,

N′
σ3
==⇒ (νl′)(N′′1 ‖ l :: 〈l′〉 ‖ l′′ :: 〈l′〉) and henceN

σ1·σ3·(νl′) 〈l′〉 @ l′′ ·σ4
==================⇒ , i.e. N

σ′′
==⇒ .

(L1).b: σ , σ1 · . l · σ2 andσ′′ , σ1 · σ2. By definition,N
σ1
==⇒ N′

nil @ l−−−−−−→ N′′
σ2
==⇒ ; moreover,

N′ ≡ N′′ and henceN
σ1·σ2
====⇒ , as required.

(L2).a: σ , σ1 · (ν̃l) l′ / l · φ · σ2 andσ′′ , σ1 · (ν̃l)(φ · l′ / l · σ2). By definition,

N
σ1
==⇒ N′

(ν̃l) 〈l′〉 @ l−−−−−−−−−→N′′
φ
=⇒ N′′′

σ2
==⇒ ; moreover,N′ ≡ (ν̃l)(N̂ ‖ l :: 〈l′〉) andN′′ ≡ N̂ ‖ l :: nil .

Now, if l̃ = ∅ or l̃ ∩ fn(φ) = ∅, then it must be thatN′
φ·(ν̃l) 〈l′〉 @ l ·σ2
=============⇒ and, hence,

N
σ′′
==⇒ . Otherwise, it must beφ = l′ / l′′ for l′ , l′′; thus,N′′

〈l′〉 @ l′′
========⇒ N′′′. Now,

N′
(νl′) 〈l′〉 @ l′′
===========⇒ N′′′ ‖ l :: 〈l′〉 〈l

′〉 @ l−−−−−−→ N′′′ ‖ l :: nil
σ2
==⇒ , and henceN

σ′′
==⇒ .

(L2).b: σ , σ1· . l ·φ·σ2 andσ′′ , σ1·φ· . l ·σ2. By definition,N
σ1
==⇒ N′

nil @ l−−−−−−→ N′′
φ
=⇒ N′′′

σ2
==⇒ ;

moreover,N′ ≡ N′′ ≡ N′′ ‖ l :: nil . This implies thatN′′′ ≡ N′′′ ‖ l :: nil (since nodes cannot

disappear along reductions) andN
σ1·φ· nil @ l ··σ2
=============⇒ , as required.

(L3).a: σ , σ1 · (ν̃l) l′ / l · 〈l′〉 @ l · σ2 and σ′′ , σ1 · (ν̃l)σ2. By definition,

N
σ1
==⇒ N′

(ν̃l) 〈l′〉 @ l−−−−−−−−−→ N′1 =⇒ N′2
l′ / l−−−−→ N′′

σ2
==⇒ ; moreover,N′ ≡ (ν̃l)(N̂ ‖ l :: 〈l′〉) and

N′1 ≡ N̂ ‖ l :: nil . Thus,N′ =⇒ (ν̃l)(N′2 ‖ l :: 〈l′〉) τ−→ (ν̃l)(N′′ ‖ l :: nil) , N3. Now, if l̃ = ∅ or

l̃ ∩ fn(σ2) = ∅, thenN3
σ2
==⇒ and, hence,N

σ′′
==⇒ . Otherwise, we reason like in case (L1).a to

obtain thatN3
(ν̃l)σ2
=====⇒ and, again,N

σ′′
==⇒ .

(L3).b: σ , σ1 · . l · nil @ l · σ2 and σ′′ , σ1 · σ2. By definition,

N
σ1
==⇒ N′

nil @ l−−−−−−→ N′′
. l

===⇒ N′′′
σ2
==⇒ ; moreover,N′ ≡ N′′ ‖ l :: nil . This implies that

N′ =⇒ N′′′ and we can easily conclude.

(L4).a: σ , σ1·(νl′) l′ / l ·σ2 andσ′′ , σ1·(νl′) l′ / l · . l′ ·σ2. Then,N
σ1
==⇒N′

(νl′) 〈l′〉 @ l−−−−−−−−−→N′′
σ2
==⇒ ;

thus, by rule (RN), N′ ≡ (νl′)(N̂ ‖ l :: 〈l′〉 ‖ l′ :: nil) andN′′ ≡ N̂ ‖ l :: nil . Hence,

N
σ1
==⇒ N′

(νl′) 〈l′〉 @ l−−−−−−−−−→ N̂ ‖ l :: nil ‖ l′ :: nil
nil @ l′−−−−−−→ σ2

==⇒ , as needed.

5 TRACE EQUIVALENCE 24

(L4).b: σ , σ1 · (νl′) 〈l′〉 @ l · σ2 and σ′′ , σ1 · (νl′) 〈l′〉 @ l · . l′ · σ2. Then,

N
σ1
==⇒ N′

(νl′) l′ / l−−−−−−−→ N′′
σ2
==⇒ ; by rule (LTS-R), it holds thatN′′ ≡ N′′ ‖ l′ :: nil . Thus,

N
σ1
==⇒ N′

(νl′) l′ / l−−−−−−−→ N′′ ‖ l′ :: nil
nil @ l′−−−−−−→ σ2

==⇒ , as needed.

(L5).a: σ , σ1 · (ν̃l) l′ / l · σ2 and σ′′ , σ1 · . l · (ν̃l) l′ / l · σ2. By definition,

N
σ1
==⇒ N′

(ν̃l) 〈l′〉 @ l−−−−−−−−−→ N′′
σ2
==⇒ ; moreover,N′ ≡ (ν̃l)(N′′′ ‖ l :: 〈l′〉) andN′′ ≡ N′′′ ‖ l :: nil .

Thus, easily,N
σ1
==⇒ N′

nil @ l−−−−−−→ (ν̃l) 〈l′〉 @ l−−−−−−−−−→ N′′
σ2
==⇒ , as required.

(L5).b: σ , σ1 · . l · σ2 andσ′′ , σ1 · . l · . l · σ2. Similar to case (L5).a.

(L6).a: σ , σ1 · (ν̃l) 〈l′′〉@ l · . l′ · σ2 andσ′′ , σ1 · . l′ · (ν̃l) 〈l′′〉@ l · σ2. By definition,

N
σ1
==⇒ N1

(ν̃l) l′′ / l−−−−−−−→ N2 =⇒ N3
nil @ l′−−−−−−→ N4

σ2
==⇒ ; moreover,N3 ≡ N3 ‖ l′ :: nil ≡ N4. Since

l′ < l̃, we have thatl′ must be a node also inN2 and in N1, i.e., N2 ≡ N2 ‖ l′ :: nil and

N1 ≡ N1 ‖ l′ :: nil . Hence,N
σ1
==⇒ N1

nil @ l′−−−−−−→ (ν̃l) 〈l′〉 @ l−−−−−−−−−→ N2 =⇒ N4
σ2
==⇒ , as required.

(L6).b: σ , σ1 · nil @ l · . l′ · σ2 andσ′′ , σ1 · . l′ · nil @ l · σ2. Similar to case (L6).a.

Now, the main theorem follows.

Theorem 5.4 (Soundness of� w.r.t. ') If N � M thenN ' M.

Proof: Let K be an oserver such thatN ‖ K
OK
===⇒ . By Lemma 5.2.2, there existsσ such thatN

σ
=⇒

andK
σ ·OK
=====⇒ . By Definition 5.1, there existsσ′ � σ such thatM

σ′
==⇒ . By suffix closure of�

(that can be easily proved), we have thatσ′ · test / test � σ · test / test . By Lemma 5.3,

K
σ′ ·OK
=====⇒ . By Lemma 5.2.1,M ‖ K

OK
===⇒ , as required by Definition 3.4. Thus,N '′ M that, by

Proposition 3.5, implies thatN ' M.

5.2 Completeness w.r.t. May Testing

Now, we define thecanonical observerfor a taceσ, writtenq(σ), as

q(σ) = C[test :: P]

5 TRACE EQUIVALENCE 25

where the actual observer processP and contextC[·] enabling the observation are returned by
O∅(σ) = < P ; C[·] > , which is inductively defined as follows

OL(ε) = < out(test)@test.nil ; [·] >
OL(nil @ l · σ) = < eval(nil)@l.P ; C[·] >

whereOL(σ) = < P ; C[·] >
OL(〈l′〉@ l · σ) = < in(l′)@l.P ; C[·] >

whereOL(σ) = < P ; C[·] >
OL((νl′) 〈l′〉@ l · σ) = < in(!x)@l.(P[x/l′]) ; C[·] >

whereOL∪{l′}(σ) = < P ; C[·] >

OL(. l · σ) =


< P ; C[·] ‖ l :: nil > if l < L

< P ; C[·] > otherwise

whereOL(σ) = < P ; C[·] >

OL((ν̃l) l′ / l · σ) =


< new(̃l).out(l′)@l.P ; C[·] ‖ l :: nil > if l < L

< new(̃l).out(l′)@l.P ; C[·] > otherwise

whereOL(σ) = < P ; C[·] >
L is the (finite) set of names extruded by the trace, i.e. those names created by the net that emitted
σ and offered as a datum in a visible location. We used the convention thatnew(̃l).out(l′)@l stands
for out(l′)@l whenever̃l = ∅. The context has only to provide localities where

• the observed net can place data/code (whenσ is of the form . l · σ′)
• the observer process can place data that the observed net needs (whenσ is of the form (ν̃l) l′ /

l · σ′).
However, the context should not provide a localityl′ wheneverl′ ∈ L. In this case, the observed net
already providesl′; indeed, ifl′ ∈ L, thenl′ has been extruded by an action (νl′) 〈l′〉@ l in σ.

The key property of the canonical observer forσ is that it always reports success when run in
parallel with a net that offersσ, as stated by the following Proposition.

Proposition 5.5 q(σ)
σ·OK
====⇒ .

Proof: The proof is by induction on|σ| and easily follows by definition of canonical observers.

Now, we distinguish the label. l generated by rule (LTS-O) from the same label generated
by rule (LTS-E). We shall write .� l the former and. l the latter. This is needed for technical
reasons (see the case (iv) in the proof of Lemma 5.7); the two labels are exactly the same. We start
by adapting Lemma 5.2.2 in order to exclude labels of the form.� l.

Lemma 5.6 If N ‖ q(σ)
OK
===⇒ , then there exists aσ′ such thatN

σ′
==⇒ , q(σ)

σ′ ·OK
=====⇒ andσ′ does

not contain labels of the form.� l.

Proof: By Lemma 5.2.2, we know that there exists a traceσ′′ such thatN
σ′′
==⇒ andq(σ)

σ′′ ·OK
======⇒ .

The proof now proceeds by induction on the number of labels of the form.� l (for a genericl) in
σ′′. The base step is trivial. For the inductive step, we have thatσ′′ = σ1 · .� l · σ2 such thatσ1

does not contain labels of the form.� . We consider two cases:

5 TRACE EQUIVALENCE 26

• There are nointruded names3 in σ1. Thus, σ1 does not contain labels of the form

(νl′) 〈l′〉 @ l′′ . Let q(σ) , C[test :: P]
σ1
==⇒ C′ [test :: out(l′)@l.P]

.� l−−→ C′ [test ::

P] ‖ l :: 〈l′〉 σ2
==⇒ . By definition of canonical observers, it must be thatC′ [·] ≡ C′ [·] ‖ l :: nil ;

indeed, for every actionout at l in a canonical observer, a node with addressl is always pro-
vided, except whenl is a name intruded by the observer (i.e., extruded by the trace), that is

not the case here. Thus,q(σ)
σ1·σ2
====⇒ . On the other side,N

σ1
==⇒ N′

nil @ l−−−−−−→ N′′
σ2
==⇒ , where

N′ ≡ N′′; thus,N
σ1·σ2
====⇒ . The thesis holds by induction onσ1 · σ2 that has one label of the

form .� less thanσ′′.

• There are intruded names inσ1 and these are{l1, . . . , lk}. If l < {l1, . . . , lk}, then the
proof is like in the case above; otherwise, letl be l i . Since l i has been intruded, it

must be thatq(σ)
σ3
==⇒ K

(νl i) l i / l′′−−−−−−−−→ K′ ‖ l i :: nil
σ4
==⇒ C[test :: out(l′)@l i .P],

where σ1 = σ3 · (νl i) 〈l i〉 @ l′′ · σ4 and C[test :: P] ‖ l i :: 〈l′〉 σ2
==⇒ . Now,

N
σ3
==⇒ N1

(νl i) 〈l i〉 @ l′′−−−−−−−−−−→ N2
σ4
==⇒ N3

nil @ l i−−−−−−→ N4
σ2
==⇒ , for someN2 ≡ N2 ‖ l i :: nil (this is always

possible because inN1 namel i is restricted and can be used as address of a node, by using
law (RN)). Moreover,N3 ≡ N4; thus, since the node with addressl i in K′ ‖ l i :: nil cannot

disappear during computations, it holds thatq(σ)
σ3·(νl i) l i / l′′ ·σ4·σ2
================⇒ , i.e.q(σ)

σ1·σ2
====⇒ , and

correspondinglyN
σ1σ2
====⇒ . Like before, we can apply induction toσ1 · σ2 and conclude.

The main Lemma to prove completeness of trace equivalence w.r.t. may testing is the following
one, stating thatq(σ) can report success only upon execution of a traceσ′ such thatσ′ � σ.

Lemma 5.7 Letq(σ)
σ′ ·OK
=====⇒ , wheretest < n(σ′) andσ′ does not contain labels of the form.� l.

Then,σ′ � σ.

Proof: The proof is by induction on|σ|. The base step is trivial. For the inductive step, letσ be
φ · σ′′; let us reason on the possibilities forφ.

(i) φ , nil @ l . By costruction,q(σ) , C[test :: eval(nil)@l.P], where < P ; C[·] > =

O∅(σ′′). The traceq(σ)
σ′ ·OK
=====⇒ can be produced only in two ways:

1. σ′ , σ1 · . l · σ2, whereC[0]
σ1
==⇒ C′ [0] andC′ [test :: P]

σ2·OK
=====⇒ . Thus,q(σ′′) ,

C[test :: P]
σ1·σ2·OK
=======⇒ ; by induction, this implies thatσ1 · σ2 � σ′′. Now, σ ,

φ ·σ′′ � φ ·σ1 ·σ2 � σ1 · φ ·σ2 , σ′, where the first inequality holds by prefix closure
of � (i.e., the inverse of�) while the second inequality holds by repeated applications
of law (L6). Indeed, sinceC[·] is just a parallel of nodes with no components,σ1 only
contains labels of the formnil @ ; thus,σ1 only contains labels of the form. .

2. σ′ , σ1 · σ2, whereC[0]
σ1· nil @ l
=========⇒ C′ [0] andC′ [test :: P]

σ2·OK
=====⇒ . Thus,q(σ′′) ,

C[test :: P]
σ1· nil @ l ·σ2·OK
==============⇒ ; by induction, this implies thatσ1 · . l ·σ2 � σ′′. Now,

by prefix closure, by repeated applications of law (L6) (like in the previous case) and
by law (L3), we have thatσ , φ ·σ′′ � φ ·σ1 · . l ·σ2 � σ1 · . l ·φ ·σ2 � σ1 ·σ2 , σ′,
as required.

3By symmetry of denomination w.r.t. extruded names, we callintrudeda name received via rule (LTS-R), i.e. name
l′ is intruded inσ if σ = σ′ · (νl′) l′ / l · σ′′.

5 TRACE EQUIVALENCE 27

(ii) φ , . l . By costruction,q(σ) , C[test :: P] ‖ l :: nil , where < P ; C[·] > = O∅(σ′′). Now,

we have thatσ′ , σ1 · σ2, whereC[test :: P]
σ1
==⇒ C′ [test :: P′] andC′ [test :: P′] ‖

l :: nil
σ2·OK
=====⇒ . Now, q(σ′′) , C[test :: P]

σ1·σ′2·OK
=======⇒ , whereσ′2 is the trace obtained

from σ2 by removing all the labelsnil @ l from it and by possibly adding a label of the
form . l . Indeed, since it is not necessarily the case thatC[·] ≡ . . . ‖ l :: nil , it can be
that some labelsnil @ l cannot be generated byC′ [test :: P′]; similarly, it could be
necessary to add a label. l if, in the production ofσ2, C′ [test :: P′] needsl to place some
data/process. Hence, by induction, we have thatσ1 · σ′2 � σ′′. We now have the desired

σ � φ ·σ1 ·σ′2 � φ ·σ1 ·σ2 � σ1 ·σ2. Notice that the second inequality has been obtained by
repeated applications of laws (L5) and (L2) (as many times as the number of labelsnil @ l
removed fromσ2 to obtainσ′2) and by possibly applying laws (L5), (L2) and (L3) (if a label
of the form . l has been introduced inσ′2). The last inequality relies on law (L1).

(iii) φ , (ν̃l) 〈l′〉@ l . By costruction, we have two subcases:

1. l̃ = ∅. Then,q(σ) , C[test :: in(l′)@l.P], where < P ; C[·] > = O∅(σ′′). Now,

we have thatσ′ , σ1 · l′ / l · σ2, whereC[test :: in(l′)@l.P]
σ1
==⇒ C′ [test ::

in(l′)@l.P]
l′ / l−−−−→ C′ [test :: P]

σ2·OK
=====⇒ . Thus,q(σ′′)

σ1·σ2·OK
=======⇒ and, by induction,

σ1 · σ2 � σ′′. Again, by using prefix closure and law (L6) (that can be used sinceσ1 is
only made up by labels of the form.), σ � φ · σ1 · σ2 � σ1 · φ · σ2 , σ′.

2. l̃ = {l′}. Then, q(σ) , C[test :: in(!x)@l.(P[x/l′])], where < P ; C[·] > =

O{l′}(σ′′). Now, we have thatσ′ , σ1 · (νl′) l′ / l · σ2, whereC[test ::

in(!x)@l.(P[x/l′])]
σ1
==⇒ C′ [test :: in(!x)@l.(P[x/l′])]

(νl′) l′ / l−−−−−−−→ C′ [test :: P] ‖ l′ ::

nil
σ2·OK
=====⇒ (indeed, by construction,l′ < fn(C′ [test :: in(!x)@l.(P[x/l′])])). By an easy

inspection of the definition of canonical observers, it holds thatq(σ′′) is structurally
equivalent to eitherC[test :: P] ‖ l′ :: nil or C[test :: P] (according to whetherσ′′

contains labels of the form. l′ and / l′ or not). In the first case,q(σ′′)
σ1·σ2·OK
=======⇒

and the thesis follows by induction, prefix closure and applications of law (L6). In the

second case, we proceed like in case (ii) above, i.e.q(σ′′)
σ1·σ′2·OK
=======⇒ whereσ′2 is ob-

tained fromσ2 by removing actionsnil @ l′ and by possibly adding an action. l′ .
The proof is then similar, but uses (L6) to placeφ at its right place.

(iv) φ , (ν̃l) l′ / l . By costruction,q(σ) , C[test :: new(̃l).out(l′)@l.P] ‖ l :: nil , where
< P ; C[·] > = O∅(σ′′). This case is the most tedious:q(σ) has a lot of possible evolu-
tions and, thus,σ′ can be of several forms. However, by hypothesisσ′ does not contain
labels of the form .� ; in particular, it does not contain.� l. Hence, the actionout(l′)@l
does not generate any visible action and forcesq(σ) to reduce to (ν̃l)(C[test :: P] ‖ l :: 〈l′〉)
in order to report success. We consider only the case in whichl̃ = {l′}, that is the most com-
plicated. We have to keep into account whether and howC[test :: P] and l :: 〈l′〉 interact,
and whether and howl′ is extruded. We have 12 possibilities in total.

1. l :: 〈l′〉 is not involved in the generation ofσ′

(a) l′ is not extruded byC[test :: P]: this case is the simplest, sinceq(σ′′)
σ′·OK
=====⇒ .

By an easy induction and by using (L1) we can conclude; indeed, notice thatl′ <
fn(σ′) and thus (νl′)σ′ = σ′.

5 TRACE EQUIVALENCE 28

(b) l′ is extruded byC[test :: P]: in this case, we have thatσ′ , σ1·(νl′) 〈l′〉@ l′′ ·σ2

andq(σ′′)
σ1· 〈l′〉 @ l′′ ·σ2·OK
================⇒ . By using induction and prefix closure, we have that

σ � φ ·σ1 · l′ / l′′ ·σ2 � σ1 · (νl′) l′ / l′′ ·σ2 , σ′, where the second inequality
relies on law (L1).

2. the first contribution ofl :: 〈l′〉 in σ′ is with label nil @ l

(a) the datum〈l′〉 is not used

i. l′ is not extruded:in this caseσ′ , σ1· nil @ l ·σ2 andq(σ′′)
σ1·σ′2·OK
=======⇒ , where

σ′2 is obtained fromσ2 like in case (ii) above. By induction and prefix closure,

σ � φ ·σ1 ·σ′2 � . l ·φ ·σ1 ·σ′2 � . l ·σ1 ·σ′2 � σ1 · . l ·σ′2 � σ1 · . l ·σ2 , σ′,
where the second inequality holds by law (L5), the third inequality holds by
law (L1) and becausel′ does not appear in what follows, the fourth inequality
holds by law (L2) and the fifth is obtained by using (L2), (L3) and (L5) like in
case (ii) above.

ii. l′ is extruded: in this case,σ′ , σ1 · (νl′) 〈l′〉 @ l′′ · σ2 · nil @ l · σ3

andq(σ′′)
σ1· 〈l′〉 @ l′′ ·σ2·σ′3·OK
==================⇒ , whereσ′3 has been obtained fromσ3 like in

(ii) before. By induction, prefix closure and by following steps similar to case
2.(a).i, we can prove thatσ � φ·σ1· l′ / l′′ ·σ2·σ′3 � σ1·(νl′) l′ / l′′ ·σ2· . l ·σ3 ,
σ′. The only difference with the previous inference is that the (νl′) at the
beginning ofφ is not thrown away but is captured byl′ / l′′ , as desirable.
Remark:it could also beσ′ , σ1 · nil @ l ·σ2 · (νl′) 〈l′〉@ l′′ ·σ3. This case

can be easily adapted, by consideringq(σ′′)
σ1·σ′2· 〈l′〉 @ l′′ ·σ′3·OK
==================⇒ , whereσ′i

has been obtained fromσi like in (ii).
(b) it also offers the datum via a label(νl′) 〈l′〉@ l (that also extrudesl′): in this case,

σ′ , σ1 · nil @ l ·σ2 · (νl′) 〈l′〉@ l ·σ3 andq(σ′′)
σ1·σ′2·σ′3·OK
==========⇒ , whereσ′2 andσ′3

have been obtained fromσ2 andσ3 like in (ii) above. Then,σ � φ · σ1 · σ′2 · σ′3 �
. l · φ ·σ1 ·σ′2 ·σ′3 � σ1 · . l ·σ2 · φ ·σ3 , σ′, where we have used laws (L5) and
(L2), possibly iterated several times, and law (L3) if needed.

(c) it also offers the datum via a label〈l′〉@ l but l′ has been previously extruded:
in this case,σ′ , σ1 · nil @ l · σ2 · (νl′) 〈l′〉 @ l′′ · σ3 · 〈l′〉 @ l · σ4 and

q(σ′′)
σ1·σ′2· 〈l′〉 @ l′′ ·σ′3·σ′4·OK
=====================⇒ , where theσ′i s have been obtained from the corre-

spondingσis like in (ii) above. The proof proceeds like in the previous cases, by us-
ing (L5), (L2) and (L3). Again, like in case 2.(a).ii, the restriction onl′ is captured
by l′ / l′′ , as required. Moreover, like in case 2.(a).ii, the proof is not radically
changed if we considerσ′ , σ1 · (νl′) 〈l′〉@ l′′ · σ2 · nil @ l · σ3 · 〈l′〉@ l · σ4.

(d) the datum〈l′〉 is then passed toC[test :: P] with a communication

i. l′ is not extruded: in this case,σ′ , σ1 · nil @ l · σ2 · σ3 and

q(σ′′)
σ1·σ′2· l′ / l ·σ′3·OK
===============⇒ , whereσ′2 andσ′3 have been obtained fromσ2 andσ3

like in (ii) above. Then,σ � φ·σ1·σ′2· 〈l′〉@ l ·σ′3 � . l ·φ·σ1·σ′2· 〈l′〉@ l ·σ′3 �
σ1 · . l ·σ2 · φ · 〈l′〉@ l ·σ3 � σ1 · . l ·σ2 ·σ3 , σ′, where the second step
relies on law (L5), the third step on laws (L2), (L5) and (L3) used as needed,
and the fourth step relies on rule (L3). Notice that, sincel′ is not extruded, it
must be thatl′ < fn(σ3); thus, (νl′)σ3 = σ3.
Remark: if l′ is extruded after the communication,σ3 will be of the form

6 VERIFYING A DISTRIBUTED PROTOCOL: THE DINING PHILOSOPHERS 29

. . .· 〈l′〉@ l ′′ ·. . .; hence,σ3 is .̄̄.̄.· l′ / l ′′ · .̄̄.̄. . Now, (νl′)σ3 = .̄̄.̄.·(νl′) l′ / l ′′ · .̄̄.̄.
and the proof carries on in the same way.

ii. l′ has been previously extruded:in this case,σ′ , σ1 · nil @ l · σ2 ·
(νl′) 〈l′〉 @ l′′ · σ3 · σ4 andq(σ′′)

σ1·σ′2· 〈l′〉 @ l′′ ·σ′3· l′ / l ·σ′4·OK
==========================⇒ , where the

σ′i s have been obtained from the correspondingσis like in (ii) above. The
proof is carried on similarly to the previous cases. The situation in which the
extrusion ofl′ proceeds the labelnil @ l is similar.

3. the first contribution ofl :: 〈l′〉 in σ′ is with (νl′) 〈l′〉@ l (that also extrudesl′): in this

case,σ′ , σ1 · (νl′) 〈l′〉@ l · σ2 andq(σ′′)
σ1·σ′2·OK
=======⇒ , whereσ′2 has been obtained

from σ2 like in (ii). The thesis follows by induction, prefix closure, law (L2) and by
possibly repeated applications of laws (L5), (L2) and (L3).

4. the first contribution ofl :: 〈l′〉 inσ′ is with 〈l′〉@ l andl′ has been previously extruded:

in this case,σ′ , σ1 · (νl′) 〈l′〉@ l′′ ·σ2 · 〈l′〉@ l ·σ3 andq(σ′′)
σ1· 〈l′〉 @ l′′ ·σ2·σ′3·OK
==================⇒ ,

whereσ′3 has been obtained fromσ3 like in (ii). The situation is like in the previous
case, but now the restriction onl′ remains associated tol′ / l′′ , as needed.

5. the first contribution ofl :: 〈l′〉 to the production ofσ′ is by passing the datum to
C[test :: P] with a communication

(a) l′ is not extruded:this case is similar to 2.(d).i above, but it is simpler. Indeed,

σ′ , σ1 · σ2 andq(σ′′)
σ1· l′ / l ·σ′2·OK
=============⇒ . The situation does not radically change

if l′ is extruded after the communication (see the Remark at the end of case 2.(d).i
above).

(b) l′ has been previously extruded:this case is similar to 2.(d).ii above. Indeed,σ′ ,

σ1 · (νl′) 〈l′〉@ l′′ · σ2 · σ3 andq(σ′′)
σ1· 〈l′〉 @ l′′ ·σ2· l′ / l ·σ′3·OK
=======================⇒ .

Finally, we can prove that trace equivalence is a sound proof technique for may testing (see
Theorem 5.4) that exactly captures it.

Theorem 5.8 (Completeness of� w.r.t. ') If N ' M thenN � M.

Proof: Letσ be a trace ofN, i.e. N
σ
=⇒ . By Proposition 5.5,q(σ)

σ ·OK
=====⇒ ; thus, by Lemma 5.2.1,

N ‖ q(σ)
OK
===⇒ . By Proposition 3.5 and Definition 3.4, it holds thatM ‖ q(σ)

OK
===⇒ . By Lemma 5.6,

there existsσ′ such thatM
σ′
==⇒ , q(σ)

σ′ ·OK
=====⇒ andσ′ does not contain labels of the form.� l.

By Lemma 5.7 (notice that, sincetest is fresh, it holds thattest < n(σ′)), σ′ � σ as required by
Definition 5.1; thus,N � M.

Corollary 5.9 (Tractable Characterization of May Testing) � = ' .

6 Verifying a Distributed Protocol: The Dining Philosophers

We now use the proof techniques we have just presented to state and prove the properties of a
‘classical’ problem in distributed systems, namely the‘Dining Philosophers’.4 In what follows,

4Historically, the problem was first formulated and solved by Dijkstra in 1965 and was used to motivate the use of
semaphores.

6 VERIFYING A DISTRIBUTED PROTOCOL: THE DINING PHILOSOPHERS 30

we shall use bisimulation, that is finer but easier to prove. All the work can be done with trace
equivalence as well.

To have a more elegant implementation of the protocol and an easier verification, in this section
we shall use polyadic data, i.e. we shall consider data of the form〈l1, . . . , ln〉. In [21] we prove
that this feature does not radically improve the expressive power of the calculus. By using some
terminology fromL [26], we use the following extended syntax ofK:

Tuples t ::= u
∣∣∣ t1, t2

Templates T ::= p
∣∣∣ T1,T2

Actions a ::= out(t)@u
∣∣∣ in(T)@u

∣∣∣ eval(P)@u
∣∣∣ new(l)

The remaining productions are like in Table 1. Now, a tuple〈t〉 can be retrieved by means of a
templateT if they both have the same number of fields and corresponding fields match (i.e., a
bound variable matches any name, while two names match only if identical). In this case, we write
match(T, t). Now, rules (LTS-I) and (LTS-M) are joint together in rule

match(T, t)

l :: in(T)@l′.P
t / l′−−−−→ l :: P[t/T]

ProcessP[t/T] is obtained fromP by replacing all the occurrences of variables bound inT with the
corresponding name int. A similar adaption is needed also for rules (R-I) and (R-M). We let
≈p and�p be the bisimulation and the barbed congruence in the polyadic case. It is trivial to prove
that≈p = �p ; thus, in what follows, we are justified to use≈p.

The problem. The dining philosophers is a “classical” synchronisation problem; its luck derives
from the fact that it naturally models many synchronisation problems arising when allocating re-
sources in concurrent/distributed systems. The problem can be described as follows. Some, say
n, philosophers spend their lives alternating between thinking and eating. They are seated around
a circular table and there is a fork placed between each pair of neighbouring philosophers. Each
philosopher has access to the forks at his left and right; if a philosopher wants to eat, he has to ac-
quire both the forks near to him (this is possible only if none of his neighbours are using the forks);
when done eating, the philosopher puts both forks back down on the table and begins thinking. The
challenge in the dining philosophers problem is to design a protocol so that the philosophers do
not deadlock (i.e. the entire set of philosophers does not stop and wait indefinitely), and so that
no philosopher starves (i.e. each philosopher eventually gets his hands on a pair of forks). Addi-
tionally, the protocol should be as efficient as possible – in other words, the time that philosophers
spend waiting to eat should be minimised.

Our solution. We now propose a protocol inµK to solve the problem, in the same spirit as
Dijkstra’s solution. We shall associate each philosopher with a distinct locality taken from the set
{l1, . . . , ln}. We also use a restricted localityl to record in a tuple of lengthn the allocation of the
forks (i.e. the status of each philosopher); more precisely, if thei-th component of this tuple ist
then thei-th philosopher is thinking, if it ise the i-th philosopher is eating. The access to such a
tuple will allow the processes to act on resources allocation in mutual exclusion. The nodel i will
then host the following process (implementing the behaviour of thei-th philosopher):

recX. think. in(Ti)@l.out(ti)@l . eat. in(T′i)@l.out(t′i)@l.X

6 VERIFYING A DISTRIBUTED PROTOCOL: THE DINING PHILOSOPHERS 31

where

Ti ,


t, t, !x3, . . . , !xn−1, t

!x1, . . . , !xi−2, t, t, t, !xi+2, . . . , !xn

t, !x2, . . . , !xn−2, t, t

if i = 1
if 1 < i < n
if i = n

ti ,


e, t, x3, . . . , xn−1, t

x1, . . . , xi−2, t, e, t, xi+2, . . . , xn

t, x2, . . . , xn−2, t, e

if i = 1
if 1 < i < n
if i = n

T′i ,


e, t, !y3, . . . , !yn−1, t

!y1, . . . , !yi−2, t, e, t, !yi+2, . . . , !yn

t, !y2, . . . , !yn−2, t, e

if i = 1
if 1 < i < n
if i = n

t′i ,


t, t, y3, . . . , yn−1, t

y1, . . . , yi−2, t, t, t, yi+2, . . . , yn

t, y2, . . . , yn−2, t, t

if i = 1
if 1 < i < n
if i = n

Intuitively, the firstin action verifies that the neighbors of thei-th philosopher are not eating and
simoultaneously acquires the lock on the tuple; then theout action sets the status of thei-th philoso-
pher toe, while releasing the lock. Then, the followingin andout actions release the resources used
upon completion of the eating phase and the protocol iterates.

For the sake of simplicity, we do not model thethink phase, while theeatphase is just anout
action over some (fresh) localityl′. Hence, if the system starts with all the philosophers in a thinking
state, the net implementing the system is

N , (νl)(l :: 〈t, . . . , t〉 ‖ n
Π
i=1

l i :: Pi)

Pi , recX.in(Ti)@l.out(ti)@l.out(l i)@l′.in(T′i)@l.out(t′i)@l.X

Soundness of our solution. We shall now verify the correctness of our protocol, namely that (1)
no deadlock nor starvation ever occur, (2) resources are properly used (namely, no neighboring
philosophers eat at the same time) and (3) the protocol enables the highest level of parallelism (i.e.
it is possible forbn2c philosophers to eat together).

1. We shall prove that
N ‖ l′ :: nil ≈p N ‖ l′ :: 〈l i〉 (1)

for each i = 1, . . . ,n. Equation (1) can be proved by showing that the relations<i
1 ,

{ (N′ , N′ ‖ l′ :: 〈l i〉) : N ‖ l′ :: nil =⇒ N′ } ∪ Id are weak bisimulations (up-to≡); this can
be done easily. This means that computations fromN can never get stuck (hence deadlock
will never occur) and that each philosopher can eat an unbounded number of times (hence
starvation cannot occur).

Deadlock freedom: To prove it, we proceed by contradiction; hence, let us suppose that
there exists a computation fromN leading to deadlock. Since the computation is finite,
we can find an integerk which is an upper bound to the number of steps performed
by N before reaching the deadlock. But then, we can iteratek + 1 times Equation (1)

and (the polyadic case of) Theorem 4.7 to obtain thatN ‖ l′ :: nil ≈p N ‖ k+1
Π
j=1

l′ ::

〈l i〉. This equivalence is however contradicted by lettingN ‖ l′ :: nil to follow the
computation leading to deadlock. Indeed, sinceN ‖ l′ :: nil performs at mostk steps
in such computation, it is impossible for it to producek + 1 data inl′ (recall thatl′ is

fresh forN); on the other hand, no computation fromN ‖ k+1
Π
j=1

l′ :: 〈l i〉 will ever remove

data froml′ (becausel′ has been chosen fresh forN). Thus, the resulting nets exhibit
different data inl′ and cannot be equivalent.

7 EQUATIONAL LAWS AND THE IMPACT OF RICHER CONTEXTS 32

Starvation freedom: The proof is similar. Indeed, if there exists a computation fromN
starving philosopheri by letting him to eat at mostk times, then such a computation

contradictsN ‖ l′ :: nil ≈p N ‖ k+1
Π
j=1

l′ :: 〈l i〉.

2. Let l′′ be a fresh locality. We define

M , l :: 〈t, . . . , t〉 ‖ n
Π
i=1

l i :: Pi

C[·] , l′′ :: nil ‖ (νl, l′)[·]
D[·] , l′′ :: nil ‖ (νl, l′)([·] ‖ l :: in(e, e, !x3, . . . , !xn)@l.out()@l′′

| in(!x1, e, e, !x4, . . . , !xn)@l.out()@l′′ | . . .
| in(e, !x2, . . . , !xn−1, e)@l.out()@l′′)

Notice thatN , (νl)M and henceC[M] , l′′ :: nil ‖ (νl′)N. We have restricted nodel′

because we are not interested in observing who is eating (and because this simplifies the
formulation of Equation (2) below); we later show that this fact implies thatN must access
resources properly. We want to prove that

C[M] ≈p D[M] (2)

i.e. D[M] will never produce data atl′′ (sinceC[M] cannot). Intuitively,D[M] can pro-
duce a datum atl′′ if it happens that two adiacent philosophers eat simoultaneously; hence
Equation (2) implies that no resource is ever misused. The above equation can be proved
by showing that the relation<2 , { (C[M′] , D[M′]) : C[M] =⇒ C[M′] } is a bisimulation;
again, this is an easy task.

Now, suppose that there exists a computation fromN misusing the resources; this means

thatN
α1−→ . . .

αk−→ N′ andN′ is a net where two adjacent philosophers are eating simoultane-
ously. ThusN′ , (νl)(l :: 〈. . . , e, e, . . .〉 ‖ . . .) where the twoe are adjacent modulon. But

thenD[M]
α′1−→ . . .

α′k−→ D[M′] whereN′ , (νl)M′, α′i = αi if l′ is not the target ofαi , and

α′i = τ otherwise. Hence,D[M′]
τ−→ τ−→ 〈〉 @ l′′−−−−−−→ , thus contradicting Equation (2).

3. The easiest way to prove thatbn2c philosophers can eat simultaneously is to show a compu-
tation fromN leading to a tuple inl with exactlybn2c items of kinde, while respecting the
correct use of resources. The wanted reduction is obtained by letting the even philosophers
accessing in turn the status tuple. This is always possible since an even philosopher is always
surrounded (modulon) by two, not eating, odd philosophers. Hence we have that

N
τ−→ τ−→ l :: 〈t, e, t, t, . . . , t〉 ‖ l2 :: out(l2)@l′.in(T′2)@l.out(t′2)@l.P2 ‖

i,2
Π

i=1,...,n
l i :: Pi

τ−→ τ−→ l :: 〈t, e, t, e, t, t, . . . , t〉 ‖ l2 :: out(l2)@l′.in(T′2)@l.out(t′2)@l.P2 ‖
l4 :: out(l4)@l′.in(T′4)@l.out(t′4)@l.P4 ‖

i,2,4
Π

i=1,...,n
l i :: Pi

. . .
τ−→ τ−→ l :: 〈t, e, t, e, . . .〉 ‖ i even

Π
i=1,...,n

l i :: out(l i)@l′.in(T′i)@l.out(t′i)@l.Pi ‖
i odd
Π

i=1,...,n
l i :: Pi

7 Equational Laws and the Impact of Richer Contexts

In this section, we want to discuss some equational laws that can be easily proved by exploiting
both bisimulation and trace equivalence. We concentrate on bisimulation that is finer (by virtue

7 EQUATIONAL LAWS AND THE IMPACT OF RICHER CONTEXTS 33

of Proposition 3.5 and Theorems 4.8 and 5.8). The first law is inspired from the asynchronous
π-calculus [4]

l′ :: recX.in(!x)@l.out(x)@l.X ≈ l′ :: nil

and states that (repeatedly) accessing a datum and putting it back in its original location is ob-
servationally equivalent to performing no operation. Of course, this heavily exploits the fact that
communication inK is asynchronous. This law also motivates the choice to omit fromK

theX-K actionread. In fact, actionread is relevant, e.g., for security reasons (removing a da-
tum while accessing it via anin requires a different capability than simply accessing it via aread)
that are ignored in this paper.

We have also the following four significant laws (the last one can be easily derived from the
second and the third one):

l :: out(l′′)@l′.P ‖ l′ :: nil ≈ l :: P ‖ l′ :: 〈l′′〉 (3)

l :: eval(Q)@l′.P ‖ l′ :: nil ≈ l :: P ‖ l′ :: Q (4)

l :: P|Q ‖ l′ :: nil ≈ l :: P ‖ l′ :: Q (5)

l :: eval(Q)@l′.P ‖ l′ :: nil ≈ l :: P|Q ‖ l′ :: nil (6)

Laws 3 and 4 state that it is impossible to know when data and processes have been allocated – either
at the outset or during computations. Law 5 states that, once the net is fixed, the actual distribution
of processes is irrelevant, while law 6 states that remotely executing a process is observationally
equivalent to executing the process locally. At a first sight, these laws could be quite surprising and
seem to contradict the design principles at the basis ofK. However, they can be explained by
observing the net at a very high level, namely at the level of the user applications. Indeed, we are
observing the functionalities a net offers to a terminal user. Therefore, the allocation of processes
cannot be observed (law 5) and the advantages of exploiting mobile processes (e.g. efficiency,
reduced network load, support for disconnected operations) cannot be perceived at all (law 6).

In many circumstances this level of abstraction is exactly what we need. For example, when we
studied the ‘Dining philosophers’, we were interested in the overall behaviour of the system and in
the properties it enjoyed; thus, we could ignore the implementation details and take into account
only the functional aspects of the protocol. If we want more details on the distributed environment
underlying aK application, we have to refine the observation level. Consequently, to study
lower-level aspects like, e.g., routing problems or failures, we have to adapt the language and the
semantic theories we developed in this paper. To this aim, we have studied three variants ofK

where (i) communication can only take place locally, (ii) failures (of both components and nodes)
can occur, and (iii) dynamically evolving connections between nodes are explicitly modelled. Later
on, we shall give some hints on the first two variants and leave the more elaborated treatment of the
third scenario for a companion paper [20]. Predictably, laws 5 and 6 do not hold in these lower-level
settings.

Local Communications. We start by modifying the syntax of Table 1 in order to forbid remote
executions of actionsin andout. The productions for process actions now become

a ::= in(p)
∣∣∣ out(u)

∣∣∣ eval(Q)@u
∣∣∣ new(l)

Rules (R-O), (R-I) and (R-M) are modified accordingly to become

(R-O) l :: out(l′).P 7−→ l :: P | 〈l′〉
(R-I) l :: in(!x).P | 〈l′〉 7−→ l :: P[l′/x]

(R-M) l :: in(l′).P | 〈l′〉 7−→ l :: P

7 EQUATIONAL LAWS AND THE IMPACT OF RICHER CONTEXTS 34

Let �l and'l be the barbed congruence and the may testing in the resulting calculus. We now
show that the proof techniques developed in Sections 4 and 5 still hold in this more localised frame-
work. To this aim, we need to modify the LTS of Table 5; now, rules (LTS-O), (LTS-I) and
(LTS-M) become

(LTS-O) l :: out(l′).P
. l−−→ l :: P | 〈l′〉

(LTS-I) l :: in(!x).P
l′ / l−−−−→ l :: P[l′/x]

(LTS-M) l :: in(l′).P
l′ / l−−−−→ l :: P

By letting≈l and�l be the bisimulation and testing equivalences defined like in Sections 4 and 5 on
top of this modified LTS, we can prove the analogous of our main results.

Theorem 7.1 ≈l = �l ⊂ 'l = �l .

Proof: The proofs of the three claims can be easily adapted from those of Theorems 4.8, 4.12, 5.4
and 5.8, and by exploiting Proposition 3.5.

It is very easy to check that

l :: P ‖ l′ :: nil 6'l l :: nil ‖ l′ :: P l :: eval(Q)@l′.P ‖ l′ :: nil 6'l l :: P|Q ‖ l′ :: nil

This is reasonable because, since communications are local, by moving a process we also change
its execution environment. Thus, at the very least, its observable behaviour will change according
to the node where it runs. Notice that, in order to disprove laws 5 and 6 we have used may testing.
Indeed, because of Theorem 7.1,6'l implies 6≈l .

Failures. Now, we consider another setting and enrichK with a mechanism for modelling
various forms of failures. This is achieved by adding the following rules to the definition of the
reduction relation and of the LTS:

(R-F) l :: C 7−→ 0 (LTS-F) l :: C
τ−→ 0

These rules model corruption of data (message omission) if C , 〈d1〉| . . . |〈dn〉, node (fail-silent)
failure if l :: C collects all the components located atl, and abnormal termination of some processes
running atl otherwise. In this way, we model failures as disappearance of a resource (a datum, a
process or a whole node). This is a simple, but realistic, way of representing failures, specifically
fail-silent and message omission, in a global computing scenario [12]. Indeed, while the presence of
data/nodes can be ascertained, their absence cannot because in such a scenario there is no practical
upper bound to communication delays. Thus, failures cannot be distinguished from long delays and
should be modelled as totally asynchronous and undetectable events.

Again, it is easy to prove that laws 5 and 6 given forK do not hold anymore in this more
concrete setting. Indeed, the failure ofl′ can easily modify the overall behaviour of the equated
nets. We now examine what happens to the characterization of barbed congruence and may testing
in this new framework. The definition of the bisimulation equivalence does not need to be modified
to exactly capture barbed congruence. Indeed, the recursive closure of both barbed congruence and
bisimulation already forces the corruption of the same data and the failure of the same nodes to
take place at the same time; as regards process abnormal termination, it will be the evolution of the
involved nets that will affect the equivalence. About trace equivalence, the characterization breaks
down: trace equivalence is only a sound (but not complete) proof technique for may testing. The

8 CONCLUSIONS AND RELATED WORK 35

problem is that Lemmas 5.6 and 5.7 do not hold anymore in the lower-level setting. This does not
mean that trace equivalence is strictly finer than may testing, even if we believe this; it only means
that the proof of Theorem 5.8 must be carefully re-examined. A more precise statement on this
aspect is left for future work.

If we let ≈ f , � f , � f and' f denote labelled bisimilarity, barbed congruence, trace equivalence
and may testing for the calculus with failures, we have

Theorem 7.2 ≈ f = � f and � f ⊆ ' f .

Proof: The proof is formally identical to those of Theorems 4.8, 4.12 and 5.4, but now aτ-step or
a reduction can be also generated by applying rule (LTS-F) and (R-F) respectively.

8 Conclusions and Related Work

We have presented some semantic theories forK, a process calculus with process distribution,
process mobility, remote operations and asynchronous communication through distributed reposito-
ries. This combination of design choices has already proved to be valuable from an implementative
and applicative point of view. The semantic theories we introduced in this paper have been defined
in a uniform fashion [10]: first, we defined some user basic observables for a global computing
setting; then, we closed them under all possible contexts and/or reductions, thus obtaining two
touchstone equivalences (namelybarbed congruenceandmay testing); finally, we gave tractable
characterisations of these equivalences by means oflabelled bisimulationand trace equivalence.
We have also discussed if and how these theories change when extendingK with lower-level
mechanisms like modelling of failures and implementing remote communications via migrations
and local exchanges.

Future work. Possible developments of this work include the study of abstractions, e.g. adminis-
trative domains and security policies, that determinevirtual networks on top of the effective one. To
this aim, dynamically evolving type environments could be exploited to constraint the behaviours
of processes and the observations of an environment. Some work in this direction has been done in
[28].

Finally, it would also be interesting to analyze efficiency issues to better clarify, e.g., the advan-
tages of mobile code and process distribution. A possible application of laws 5 and 6 in Section 7
is to find out possible rearrangements of the processes over a given net that minimize the number
of remote operations. In fact, it is reasonable to assume that local operations are cheaper and faster
than remote ones. Thus, we can re-locate the parallel components or spawn some of the processes
running at some locality to improve the overall net behaviour.

Related work. We conclude by reviewing related work on observational equivalences for calculi
with process distribution and mobility (many of them are surveyed in [15]). In the nineties, many
CCS-like process calculi have been enriched with localities to explicitly describe the distribution of
processes. The aim was mainly to provide these calculi with non interleaving semantics or, at least,
to differentiate processes’ parallel components (thus obtaining more inspective semantics than the
interleaving ones). This line of research is far from the one in whichK falls, where localities
are used as a mean to make processes network aware thus enabling them to refer to the network
locations as target of remote communication or as destination of migrations. Localities are not only
considered as units of distribution but, according to the case, as units of mobility, of communication,
of failure or of security.

8 CONCLUSIONS AND RELATED WORK 36

[39] and [3] extend, resp., CCS andπ-calculus with process distribution and mobility. In both
cases, processes run over the nodes of an explicit, flat and dynamically evolving net architecture.
Nodes can fail thus causing loss of all hosted processes. There are explicit operations to kill nodes
and to query the status of a node. Failures can be detected, which is suitable for distributed com-
puting but clashes with the assumptions underlying global computing. In both papers, a labelled
bisimulation (akin to the bisimulation in the CCS andπ-calculus) is given to capture a standardly
defined barbed congruence.

Another distributed version of theπ-calculus is presented in [28]; the resulting calculus contains
primitives for code movement and creation of new localities/channels in a net with a flat architec-
ture. Over the LTS defining the semantics of the calculus, a typed bisimulation (with a tractable
formulation) is defined that exactly capture typed barbed equivalence. The use of types illustrates
the importance of having the rights to observe a given behaviour: indeed, different typings (i.e.
observation rights) generate different bisimulations, that are finer as long as the typing is less re-
strictive.

In the Distributed Join calculus [24], located mobile processes are hierarchically structured and
form a tree-like structure evolving during the computation. Entire subtrees, not only single pro-
cesses, can move). Technically, nets are flat collections of named nodes, where the name of a node
indicates the nesting path of the node; e.g., a node whose name isl1. · · · .lk.l represents a node re-
ferrable to via the unique namel and that is contained inlk, that is a node contained inlk−1 and so
on. Communication in DJoin takes place in two steps: firstly, the sending process sends a message
on a channel; then, the ether (i.e. the environment containing all the nodes) delivers the message
to the (unique) process that can receive on that channel. The fact that in the whole net there is a
unique process capable to receive at a given channel makes DJoin communication somehow similar
to K one, in that DJoin channels have a role similar to that ofK localities. Failures are
modelled by tagging locality names: e.g. the (compound) name· · · .lΩi . · · · .l states thatl is a node
contained in a failed nodel i and, thus,l itself is failed. TheΩ at l i has been caused by execution
of the primitivehalt by a process running atl i . Failures can be detected by using the primitive
f ail. Failed nodes cannot host running computations but can receive data/code/sublocations that,
however, once arrived in the failed node, become definitely stuck. Some interesting laws and prop-
erties are proved using a contextual barbed equivalence, but no tractable characterization of the
equivalence is given and it is not even obvious how to extend the characterization of barbed bisimu-
lation for the (non-distributed) Join calculus introduced in [25] to account for distribution and agent
mobility.

The Ambient calculus [13] is an elegant notation to model hierarchically structured distributed
applications. Though the definition of its reduction semantics is very simple, the formulation of
a reasonable, possibly tractable, observational equivalence is a very hard task. The calculus is
centered around the notion of connections between ambients, that are containers of processes and
data. Each primitive can be executed only if the ambient hierarchy is structured in a precise way;
e.g., an ambientn can enter an ambientmonly if n andmare sibling, i.e. they are both contained in
the same ambient. This fact greatly complicates the definition of a tractable equivalence. Recently,
in [31], a bisimulation capturing Ambient’s barbed congruence has been defined. This has been
done by structuring the syntax into two levels, namely processes and nets (where the latter ones
are particular cases of the former ones), and by exploiting an involved LTS (using three different
kinds of labels some of which containing process contexts). However, the defined bisimulation is
not standard and suffers from a quantification over all the possible processes (to fill in the ‘holes’
generated by the operational semantics).

Similar bisimulations have also been developed for calculi derived from Ambient, like, e.g.,
Safe Ambients [30], Boxed Ambients [11], the Seal Calculus [14] and the calculus of Mobile Re-

REFERENCES 37

sources [27]. Moreover, in the last three papers, bisimulation is only a sound but not complete proof
technique for barbed congruence.

To conclude, we want to remark that, to the best of our knowledge, no characterization of may
testing in terms of trace equivalence has even been given for an asynchronous, distributed language
with process mobility. In [42], a theory for may testing (and the corresponding characterization)
is developed for the Actors Model [1]. However, the work is done by reducing Actors to a typed
asynchronousπ-calculus and the trace-based characterisation follows [9].

References

[1] G. Agha.A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

[2] M. Agrawal and A. Seth, editors.FST TCS 2002: Foundations of Software Technology and Theoretical
Computer Science, 22nd Conference Kanpur, India, December 12-14, 2002, Proceedings, volume 2556
of Lecture Notes in Computer Science. Springer, 2002.

[3] R. M. Amadio. On modelling mobility.Theoretical Computer Science, 240(1):147–176, 2000.

[4] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronousπ-calculus.
Theoretical Computer Science, 195(2):291–324, 1998. An extended abstract appeared inProceedings
of CONCUR ’96, LNCS 1119: 147–162.

[5] L. Bettini, V. Bono, R. D. Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese, E. Tuosto,
and B. Venneri. The klaim project: Theory and practice. In C. Priami, editor,Global Computing:
Programming Environments, Languages, Security and Analysis of Systems, number 2874 in LNCS.
Springer-Verlag, 2003.

[6] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents inX-K. In
P. Ciancarini and R. Tolksdorf, editors,Proc. of the 7th Int. IEEE Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE), pages 110–115, Stanford, 1998. IEEE
Computer Society Press.

[7] L. Bettini, R. De Nicola, and R. Pugliese.K: a Java Package for Distributed and Mobile Applica-
tions. Software — Practice and Experience, 32:1365–1394, 2002.

[8] M. Boreale and R. De Nicola. Testing equivalences for mobile processes.Journal of Information
and Computation, 120:279–303, 1995. Available as Report SI 92 RR 04, Università “La Sapienza” di
Roma; an extended abstract appeared inProceedings of CONCUR ’92, LNCS 630.

[9] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous processes.
Information and Computation, 172:139–164, 2002.

[10] M. Boreale, R. D. Nicola, and R. Pugliese. Basic observables for processes.Information and Compu-
tation, 149(1):77–98, 1999.

[11] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication interference in mobile boxed ambi-
ents. In Agrawal and Seth [2], pages 71–84.

[12] L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen, editors,Secure Internet
Programming: Security Issues for Mobile and Distributed Objects, number 1603 in LNCS, pages 51–
94. Springer, 1999.

[13] L. Cardelli and A. D. Gordon. Mobile ambients.Theoretical Computer Science, 240(1):177–213,
2000. An extended abstract appeared inProceedings of FoSSaCS ’98, number 1378 of Lecture Notes
in Computer Science, pages 140-155, Springer, 1998.

[14] G. Castagna and F. Z. Nardelli. The Seal Calculus Revisited: contextual equivalence and bisimilarity.
In Agrawal and Seth [2], pages 85–96.

[15] I. Castellani. Process algebras with localities. In J. Bergstra, A. Ponse, and S. Smolka, editors,Hand-
book of Process Algebra, pages 945–1045. Elsevier Science, 2001.

REFERENCES 38

[16] I. Castellani and M. Hennessy. Testing theories for asynchronous languages. In V. Arvind and R. Ra-
manujam, editors,Proceedings of FSTTCS ’98, volume 1530 ofLNCS, pages 90–101. Springer, Dec.
1998.

[17] S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDE: a coordination system. Technical
Report UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ. di Bologna, Italy, 1996.

[18] N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple space based platform for adap-
tive mobile applications. InInt. Conference on Open Distributed Processing/Distributed Platforms
(ICODP/ICDP’97), 1997.

[19] R. De Nicola, G. Ferrari, and R. Pugliese.K: a Kernel Language for Agents Interaction and
Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

[20] R. De Nicola, D. Gorla, and R. Pugliese. Bisimulations for a calculus for global computing. Draft,
2004.

[21] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based calculi. In F. Cor-
radini and J. Baeten, editors,Proc. of EXPRESS’04, ENTCS. Elsevier, 2004.

[22] R. De Nicola and M. Hennessy. Testing equivalence for processes.Theoretical Computer Science,
34:83–133, 1984.

[23] D. Deugo. Choosing a Mobile Agent Messaging Model. InProc. of ISADS 2001, pages 278–286.
IEEE, 2001.

[24] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Ŕemy. A calculus of mobile agents. In
U. Montanari and V. Sassone, editors,Proceedings of CONCUR ’96, volume 1119 ofLNCS, pages
406–421. Springer, 1996.

[25] C. Fournet and C. Laneve. Bisimulations in the join-calculus.Theoretical Computer Science, 266(1-
2):569–603, 2001.

[26] D. Gelernter. Generative communication in linda.ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[27] J. Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile resources. In L. Brim, P. Jancar,
M. Kret́ınsḱy, and A. Kucera, editors,CONCUR, volume 2421 ofLNCS, pages 272–287. Springer,
2002.

[28] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mobility control in
distributed systems. InProceedings of FoSSaCS ’03, volume 2620 ofLNCS, pages 282–299. Springer,
2003. Full version as COGS Computer Science Technical Report, 2002:01.

[29] K. Honda and N. Yoshida. On reduction-based process semantics.Theoretical Computer Science,
152(2):437–486, 1995. An extract appeared inProceedings of FSTTCS ’93, LNCS 761.

[30] M. Merro and M. Hennessy. Bisimulation congruences in Safe Ambients. InProceedings of POPL ’02.
ACM, 2002.

[31] M. Merro and F. Z. Nardelli. Bisimulation proof methods for mobile ambients. InProc. of ICALP’03,
LNCS. Springer, 2003. Full version as COGS Technical Report 2003:1, University of Sussex, Brighton.

[32] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[33] R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II.Information and
Computation, 100(1):1–40, 41–77, 1992.

[34] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor,Proceedings of ICALP ’92,
volume 623 ofLNCS, pages 685–695. Springer, 1992.

[35] U. Montanari and M. Pistore. Finite state verification for the asynchronous pi-calculus. In R. Cleave-
land, editor,Proc. of TACAS’99, volume 1579 of LNCS, pages 255–269. Springer, 1999.

REFERENCES 39

[36] U. Nestmann and B. C. Pierce. Decoding choice encodings.Journal of Information and Computation,
163:1–59, 2000. Also available as report BRICS-RS-99-42, Universities of Aalborg and Århus, Den-
mark, 1999. An extended abstract appeared in the Proceedings ofCONCGUR ’96, LNCS 1119, pages
179–194.

[37] A. Park and P. Reichl. Personal Disconnected Operations with Mobile Agents. InProc. of 3rd Workshop
on Personal Wireless Communications, PWC’98, Tokyo, 1998.

[38] J. Parrow. An introduction to the pi-calculus. In J. Bergstra, A. Ponse, and S. Smolka, editors,Handbook
of Process Algebra, pages 479–543. Elsevier Science, 2001.

[39] J. Riely and M. Hennessy. Distributed processes and location failures.Theoretical Computer Science,
266:693–735, 2001.

[40] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms.
PhD thesis, LFCS, University of Edinburgh, 1993. CST-99-93 (also published as ECS-LFCS-93-266).

[41] P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for mobile agents. In H. Bal,
B. Belkhouche, and L. Cardelli, editors,Proceedings of ICCL ’98, Workshop on Internet Programming
Languages (Chicago, IL, USA, May 13, 1998), volume 1686 ofLNCS. Springer, Sept. 1999. Full
version with titleLocation-Independent Communication for Mobile Agents: a Two-Level Architecture
appeared as Technical Report 462, Computer Laboratory, University of Cambridge, April 1999.

[42] P. Thati, R. Ziaei, and G. Agha. A Theory of May Testing for Actors. InProc. of FMOODS’02, pages
147–162. Kluwer, 2002.

