
A Basic Calculus for Modeling Service Level
Agreement?

Rocco De Nicola1, Gianluigi Ferrari2, Ugo Montanari2,
Rosario Pugliese1, and Emilio Tuosto2

1 Dipartimento di Sistemi e Informatica,
Università di Firenze, Via C. Lombroso 6/17, 50134 Firenze – Italy

email:{denicola,pugliese}@dsi.unifi.it
2 Dipartimento di Informatica,

Largo Pontecorvo 1, 56127 Pisa – Italy
email:{giangi,ugo,etuosto}@di.unipi.it

Abstract. The definition of suitable abstractions and models for identifying, un-
derstanding and managing Quality of Service (QoS) constraints is a challenging
issue of the Service Oriented Computing paradigm. In this paper we introduce a
process calculus where QoS attributes are first class objects. We identify a mini-
mal set of primitives that allow capturing in an abstract waythe ability to control
and coordinate services in presence of QoS constraints.

1 Introduction

Service Oriented Computing(SOC) [14] has been proposed as an evolutionary
paradigm to build wide area distributed systems and applications. In this paradigm,
services are the basic building blocks of applications. Services are heterogeneous soft-
ware components which encapsulate resources and deliver functionalities. Services can
be dynamically composed to provide new services, and their interaction is governed in
accordance with programmable coordination policies. Examples of SOC architectures
are provided by WEB services and GRID services.

The SOC paradigm has to face several challenges like servicecomposition and
adaptation, negotiation and agreement, monitoring and security. A key issue of the
paradigm is that services must be delivered in accordance with contractsthat spec-
ify both client requirements and service properties. Thesecontracts are usually called
Service Level Agreements (SLA). SLA contracts put special emphasis on Quality of
Service (QoS) described as a set of non functional properties concerning issues like
response time, availability, security, and so on.

The actual metric used for evaluating QoS parameters is heavily dependent on the
chosen level of abstraction. For instance, when designing network infrastructures, per-
formance (with some probabilistic guarantees) is the main QoS metric. When describ-
ing multimedia applications, visual and audible qualitieswould be the crucial param-
eters. Instead, for final users, the perceived QoS is not justa matter of performance

? Work partially supported by EU-FET Project AGILE, EU-FET Project MIKADO, EU-FET
Project PROFUNDIS, and MIUR project SP4 Architetture Software ad Alta Qualità di
Servizio per Global Computing su Cooperative Wide Area Networks.

but also involves availability, security, usability of therequired services. Moreover, the
user would like to have a certain control on QoS parameters inorder to customize
the invoked services, while network providers would like tohave a strict control over
services. The resolution of this tension will be inherentlydynamic depending on the
run-time context.

In our view, it is of fundamental importance to develop formal machineries to de-
scribe, compose and relate the variety of QoS parameters. Indeed, the formal treat-
ment of QoS parameters would contribute to the goal of devising robust programming
mechanisms and the corresponding reasoning techniques that naturally support the SOC
paradigm. In this paper we face this issue by introducing a process calculus where QoS
parameters are used to control behaviours, i.e. QoS parameters are first class objects.

The goal of the present paper is to identify a minimal set of constructs that provide
an abstract model to control and coordinate services in presence of QoS constraints.
This differentiates our proposal from other approaches. In particular, process calculi
have been designed to model QoS in terms of performance issues (e.g., the probabilistic
π-calculus [15]). Other process calculi have addressed the issues of failures and failure
detection [13]. Process calculi equipped with powerful type systems have also been put
forward to describe the behavioral aspects of contracts [11, 10, 9].

Some preliminary results towards the direction of this paper can be found in [3, 4].
Cardelli and Davies [3] introduced a calculus which incorporates a notion of communi-
cation rate (bandwidth) together with some programming constructs. In [17, 8, 4] a (hy-
per)graph model to control explicitly QoS attributes has been introduced. The graphical
semantics allows us to describe interactions in accordancewith the agreed QoS level
as optimal paths in the model thus creating a bridge between formal models and the
protocols used in practice. Here, we elaborate on [4] with the aim of bridging further
the gap between formal theories and the pragmatics of software development.

Fundamental to our approach is the notion of QoS values; a QoSvalue is atupleof
values and each component of the tuple indicates a QoS dimension. The values of the
fields can be of different kind, for instance, the value along the latency dimension could
be a numerical value but the security values could have the form of sets of capabilities
indicating the permissions to perform some operations on given resources, e.g. read or
write a file. Compositionality of QoS values is therefore a key element of our approach:
the composition of QoS values will be a QoS value as well. Indeed, one might want to
build a QoS value based on latency, availability and access rights of a service.

To guarantee compositionality of QoS parameters, we shall require QoS values to
be elements of suitable algebraic structures, calledconstraint semirings(c-semirings,
for short), consisting of a domain and two operations, theadditive(+) and themulti-
plicative(·) operations, satisfying some properties. The basic idea isthat the former is
used to select among values and the latter to combine values.C-semirings were orig-
inally proposed to describe and program constraints problems [2]. Several semirings
have been proposed to model QoS issues. For instance, general algorithms for comput-
ing shortest paths in a weighted directed graph are based on the structure of semirings
[12]. The modelling of trustness in an ad hoc networks exploits the semiring structure
[16]. C-semiring based methods have a unique advantage whenproblems with multiple

QoS dimensions must be tackled. In fact, it turns out that cartesian products, exponen-
tials and power constructions of c-semirings are c-semirings as well.

Our process calculus,KoS, builds on K (Kernel Language for Agent Interac-
tion and Mobility) [5]. K is an experimental kernel programming language specifi-
cally designed to model and program wide area network applications with located ser-
vices and mobility. K naturally supports apeer-to-peerprogramming model where
interacting peers (nodes in K terminology) cooperate to provide common sets of
services.KoS primitives handle QoS values as first class entities. For instance, an
overlay network is specified by creating nodes (nodeκ〈t〉) and new links (s

κ
^ t) and

indexing them with the QoS valueκ of the operation. Thus, for instance the expression
s
κ
^ t states thatsandt are connected by a link whose QoS parameters are given byκ.

The operational semantics ofKoS ensures that the QoS values are respected dur-
ing system evolution. Suppose for example that nodes would interact by an operation
whose QoS value isκ′ with nodet along the links

κ
^ t. This interaction will be allowed

provided that the SLA contract of the link is satisfied, namely, κ′ ≤ κ.
We shall illustrate the expressiveness of the calculus through several examples. This

can appear as an exercise in coding a series of linguistic primitives into our calculus
notation, but it yields much more because the encodings offer a practical illustration
of how to give a precise semantic interpretation of QoS management. Indeed, the main
contribution of this paper is the careful investigation of aminimal conceptual model
which provides the basis to design programming constructs for SOC. We focus on the
precise semantic definition of the calculus because it is a fundamental step to design
programming primitives together with methods supporting the correct usages of the
primitives and the formal verification of the resulting applications.

The rest of the paper is organized as follows. In the next section we illustrate a
motivating example and, in Section 3, we introduce syntax and semantic ofKoS. In
Section 4, we deal with expressivity issues and in the subsequent one we present a
more complex scenario and show how it can be tackled by following our approach.

2 A motivating example

Before introducing the formal definition ofKoS, we prefer to show its usefulness by
modelling a realistic, but simplified, example. Our purposehere is to give a flavour of
the underlying programming paradigm. We consider a scenario wheren servers provide
services tom clients and we focus on balancing the load of the servers. Clients and
servers are located on different nodes; a generic client node has addressci while a
generic server node has addresssj . Clients issue requests to servers by spawning process
R from their node to a server node. For simplicity, we abstractfrom the actual structures
of QoS values, and we assume that clients and servers “knows”each other and cannot
be created dynamically. Adding dynamicity is straightforward.

A generic client nodeMi , for i ∈ {1, . . . ,m}, is described by the following term:

Mi
def
= ci :: 〈s1, κ1〉 | . . . | 〈sn, κn〉 | !Cδ.

Intuitively, Mi represents a network component with addressci , containing tuples of the
form 〈sj , κ j〉, for j ∈ {1, . . . , n}, and running process !Cδ. Each tuple〈sj , κ j〉 represents

the loadκ j of the serversj that the client perceives, thus the whole set of tuples repre-
sents a sort ofdirectory servicecontaining the SLA contract with the available servers.
Operator ! is the replication operator: !Cδ represents an unbounded number of concur-
rent copies of processCδ. Finally, processCδ specifies the behaviour of the client and
is defined as follows:

Cδ
def
= (?u, ?v).εv[R]@u.conv·δ〈u〉.〈u, v · δ〉.

Initially, the client selects a server by non-deterministically inputting a tuple by means
of the operation (?u, ?v). Once the input is executed, variablesu andv are instantiated
with the server name and its load, respectively. Afterward,the client tries to spawn
processR to the selected serveru. Execution ofεv[R]@u takes place only if a “suitable”
link towardu exists. What here is meant for “suitable” is that the loadv of the client
must not exceed the value on the link. Then, since remote spawning consumes the links
traversed during the migration, the client attempts to re-establish a connection with
u by executingconv·δ〈u〉. Notice that the operationconv·δ〈u〉 is used by the client to
ask for a link with a QoS value increased of a quantityδ. Once the connection has
been established, the client updates its SLA view of the servers load by inserting tuple
〈u, v · δ〉 into its local directory service.

A generic serverN j , for j ∈ {1, . . . , n}, is described as follows:

N j
def
= sj :: 〈h〉 | 〈c1, κ

′
1〉 | . . . | 〈cm, κ

′
m〉 |

!(S c1 sj) | . . . | !(S cm sj).

Similarly to clients,N j encapsulates a directory service containing SLA data aboutthe
clients. This directory service is formed by tuples of the form 〈ci , κ

′
i 〉, for i ∈ {1, . . . ,m},

each recording the QoS valueκ′i assigned to the link towards nodeci , and by the current
load of the server, represented by a tuple containing a natural number〈h〉. For any
client ci there is aload manager S ci sj which decides whether a link withci can be
re-established or not. ProcessS c sis written as follows:

S c s
def
= (?l).〈l〉.If s l < max

then(c, ?v).accf (v,l)〈c〉.〈c, f (v, l)〉.

The load manager repeatedly acquires the tuple〈h〉 (current load) and compares it with
the maximum admissible load (max). Then, the process decides whether to accept re-
quests for new connections coming from the client: the link is created only whenh is
less than max. The QoS value of the new link is computed by a function f and depends
on both the old QoS value and the current load.

Finally, we assume that processR representing clients service requests is a sequen-
tial process of the form

R
def
= (?x).〈x+ 1〉 . . .actual request. . . (?y).〈y− 1〉,

Namely,R has a prologue and an epilogue which respectively increments and decre-
ments the counter that measures the server load.

3 The calculus

This section introducesKoS a calculus that provides a set of basic primitives for
modelling and managing QoS values. AKoS term represents a net made ofnodes
which model places where computations take place or where services can be allo-
cated/accessed. We assume as given a set of nodesS (ranged over bys, t, . . .) that
are connected bylinks representing the middleware infrastructure, i.e., the interactions
between two nodes can take place only if they are connected bya sequence of links.
Links are weighted by “measures” that represent the QoS value of the connections.

3.1 QoS Values as constraint semirings

We assume existence of a set ofQoS valuesC, ranged over byκ, that forms aconstraint
semiring[2] (c-semiring).

Definition 1 (C-semiring). An algebraic structure〈A,+, ·, 0, 1〉 is a c-semiring if A is
a set (0, 1 ∈ A), and+ and · are binary operations on A that satisfy the following
properties:

– + (additive operation) is commutative, associative, idempotent,0 is its unit element
and1 is its absorbing element;

– · (multiplicative operation) is commutative, associative,distributes over+, 1 is its
unit element, and0 is its absorbing element.

Operation+ induces a partial order onA defined asa ≤A b ⇐⇒ a + b = b. The
minimal element is thus0 and the maximal1. a ≤A b means thata is more constrained
thanb.

An example of c-semiring is〈ω,min,+,+∞, 0〉, whereω is the set of natural num-
bers, the minimum between natural numbers is the additive operation and the sum over
natural numbers is the multiplicative operation. Notice that in this case the partial order
induced by the additive operations is the inverse of the ordinary total order on natu-
ral numbers. Another example of c-semiring is〈℘({A}),∪,∩, ∅,A}〉, where℘(A) is the
powerset of a setA, and∪ and∩ are the usual set union and intersection operations.
KoS does not take a definite standing on which of the many c-semiring structures

to use. The appropriate c-semiring to work with should be chosen, from time to time,
depending on the kind of QoS dimensions one intends to model.Below, we introduce
some c-semiring structures together with the QoS dimensionthey handle:

– 〈{true, false},∨,∧, false, true〉 (boolean): Network and service availability.
– 〈Real+,min,+,+∞, 0〉 (optimization): Price, propagation delay.
– 〈Real+,max,min, 0,+∞〉 (max/min): Bandwidth.
– 〈[0, 1],max, ·, 0, 1〉 (probabilistic): Performance and rates.
– 〈[0, 1],max,min, 0, 1〉 (fuzzy): Performance and rates.
– 〈2N,∪,∩, ∅,N〉 (set-based, whereN is a set): Capabilities and access rights.

C-semiring based methods have a unique advantage when problems with multiple
QoS criteria must be tackled. In fact, it turns out that cartesian products, exponentials
and power constructions of c-semirings are c-semirings as well.

N,M ::= N
0 Empty net

| s :: P Located Process
| s

κ
^ t Link

| (ν s)N Node restriction
| N ‖ M Net composition

P,Q ::= P
0 Null process

| γ.P Action prefixing
| (ν s)P Restriction
| P | Q Parallel process
| !P Iteration

γ ::= P
nodeκ〈t〉 Node creation

| conκ〈t〉 Connection request
| accκ〈t〉 Connection acceptance
| (T) Input
| 〈v1, . . . , vn〉 Output
| εκ[P]@t Remote process spawning

T ::= ε | v | ?x | ¬v | T,T I 

Table 1.KoS Syntax

3.2 Syntax

The syntax ofKoS is presented in Table 1. Other than the existence ofC, existence of
a set ofnamesN (ranged over byr, sandt) is assumed. First-classvalues, ranged over
by u andv, can be either QoS values or names.

The syntax for nets permits the (possibly empty) parallel composition oflocated
processesand links. A located processs :: P consists of a names, called theaddress
of P, and the processP running ats. A link s

κ
^ t states thats andt are connected by

a link whose QoS value isκ. The net (ν s)N is a net that declaress as restricted inN,
which is the scope of the restriction.

The syntax for processes is standard. The symbol0 overloads the symbol for empty
nets; however, the contexts will clarify whether it refers to processes or nets. Prefixesγ
encompass actions for

– creating a node (nodeκ〈t〉) or a connection to/from another node (conκ〈t〉, accκ〈t〉),
– exchanging tuples of values ((T) and〈v1, . . . , vn〉),
– remotely spawning a process (εκ[P]@t).

Links are oriented, indeeds
κ
^ t allows a process to be spawned froms to t but not the

viceversa. The creation of new links is obtained by synchronising actionsconκ〈t〉 and
accκ′〈s〉 performed atsandt, respectively.

Communication involves exchange of tuples (i.e. finite sequences) of values that are
retrieved via pattern matching. Input prefixes usetemplates T, namely finite sequences

of values or placeholders (written as ?x). Execution of an output prefix causes gener-
ation of a tuple of valuesv1, . . . , vn. Both the empty template and the empty tuple are
denoted byε. Hereafter, we lett range over tuples of values and, given a templateT
and a tuplet, we letTi andti denote thei-th element ofT andt, respectively.

The placeholder ?x binds the occurrences ofx in the rest of the template, namely,
in ?x,T, the scope of ?x is T. The set bn(T) collects the names bound inT while
fn(T) denotes the names having free occurrences inT; their definitions are standard.
We consider as equivalent those templates that differ only for renaming of bound names.
The template¬v tests for inequality, namely, it requires the matching tuple to contain
a value different fromv (see Definition 7). The only binders of the calculus are the
placeholder ?x and the node restrictionν s. Note that node names might be QoS values
(e.g., for specifying access rights), hence, we write fn(κ) to denote the names appearing
in κ. Moreover, we require that QoS values do not bind node names,therefore, bn(κ)
is empty, for any QoS valueκ. We formally definefree andboundnames of nets and
processes as follows. In the following we write fn(,) (resp. bn(,)) as an abbreviation
for fn() ∪ fn() (bn() ∪ bn(), respectively).

Definition 2 (Free and bound names).The free names of prefix actions are defined
as expected:fn(γ) = fn(κ) ∪ {s}, if γ ∈ {nodeκ〈s〉, conκ〈s〉, accκ〈s〉}, fn((T)) = fn(T),
fn(〈v1, . . . , vn〉) = fn(v1) ∪ . . . ∪ fn(vn) and fn(εκ[P]@s) = fn(κ,P) ∪ {s}. Bound names
of γ are defined similarly, e.g.,bn((T)) = bn(T) andbn(εκ[P]@s) = bn(P) (while in the
remaining cases is the empty set).

The setsfn() andbn() of free and bound names of processes and nets are defined
accordingly. The only non-standard case is that for links where we letfn(r

κ
^ s) =

fn(κ) ∪ {s, r} andbn(r
κ
^ s) = ∅.

As usual, processes or nets obtained byα-converting bound names are considered
equivalent. Moreover, we assume the following structural congruence laws.

Definition 3 (Structural congruence).The relation≡P⊆ P×P is the least equivalence
relation on processes (containingα-conversion and) satisfying the following axioms:

– (P, | , 0) is a commutative monoid;
– !P ≡P P | !P.

The relation≡⊆ N×N is the least equivalence relation on nets (containingα-conversion
and) satisfying the following axioms:

– (N, ‖ , 0) is a commutative monoid;
– if P ≡P Q then s:: P ≡ s :: Q;
– s :: P | Q ≡ s :: P ‖ s :: Q;
– s :: (ν t)P ≡ (ν t)(s :: P), if t , s;
– (ν s)(N ‖ M) ≡ N ‖ (ν s)M, if s < fn(N);
– (ν s)(ν t)N ≡ (ν t)(ν s)N.

The last axiom of Definition 3 states that the order of the restrictions is irrelevant, hence
we can write (ν s1, . . . , sn)N instead of (ν s1) . . . (ν sn)N.

3.3 Semantics

We define the operational semantics ofKoS by means of a labelled transition system
that describes the evolution of nets. In the semantic clauses, it is useful to define a
function that, given a netN, yields the names that are used as node addresses in the net.

Definition 4 (Addresses).Letaddr be the function given by:

addr(N) =































∅, N = 0∨ N = s
κ
^ t

{s}, M = s :: P
addr(M) \ {s}, N = (ν s)M
addr(N1) ∪ addr(N2), N = N1 ‖ N2.

Notice thataddr(N) ⊆ fn(N), but not necessarilyaddr(N) = fn(N), for instance if
N = s :: 〈t〉.0 then fn(N) = {s, t} while addr(N) = {s}. Basically,addr(N) collects
those free names ofN that effectively occur inN as address of some node.

Definition 5 (Localized Actions).Let γ be a prefix, then thelocalized prefixγ@s is
defined as follows:

γ@s=

{

sεs
κ〈P〉@t if γ = εκ〈P〉@t

sγ otherwise

The syntax oflocalized actionsα is given below:

α ::= γ@s | s link t | τ

We let fn(γ@s) = fn(γ) ∪ {s} and bn(γ@s) = bn(γ).

Definition 6 (Nets semantics).The operational semantics of nets is given by the rela-
tion −→> ⊆ N × (α × C) × N. Relation−→> is defined by the rules in Table 2 and the

following standard rules:

()
N
τ
−−→
κ
> M

(ν s)N
τ
−−→
κ
> (ν s)M

()
N ≡ N′

α
−−→
κ
> M′ ≡ M

N
α
−−→
κ
> M

()
N
α
−−→
κ
> N′

if

{

bn(α) ∩ fn(M) = ∅ ∧
(addr(N′) \ addr(N)) ∩ addr(M) = ∅N ‖ M

α
−−→
κ
> N′ ‖ M

Intuitively, N
α
−−→
κ
> M states that the netN can perform the transitionα to M by exposing

the QoS valueκ. Clearly, all local transitions (communications, node or link creations)
have unitary QoS value, while the only non-trivial QoS values appear on the transitions
that spawn processes or show the presence of links. Let us give more detailed comments
on the rules in Table 2.

Rule () states that a link within a net disappears once it has been used. These
transitions are used in the premises of rules () and () for establishing a path
between two nodes such that a remote evaluation can take place.

Rule () accounts for action prefixing; node creation, however, deserves a spe-
cific treatment that is defined in rule (). The side condition of () also states that

() s
κ
^ t

s link t
−−−−−−→
κ
> 0

() s :: γ.P
γ@s
−−−−→

1
> s :: P, γ < {nodeκ〈t〉, conκ〈s〉,accκ〈s〉}

() s :: nodeκ〈t〉.P
node〈t〉
−−−−−−→

1
> s :: P ‖ s

κ
^ t ‖ t :: 0, s, t

()
N

s conκ〈t〉
−−−−−−−→

1
> N′ M

t accκ′ 〈s〉
−−−−−−−−→

1
> M′

κ ≤ κ′

N ‖ M
τ
−−→

1
> N′ ‖ M′ ‖ s

κ
^ t

() s :: εκ[Q]@s.P
τ
−−→

1
> s :: P ‖ s :: Q

()
N

r εs
κ〈P〉@t

−−−−−−−−→
κ′
> N′ M

r link r ′
−−−−−−−→
κ′′
> M′ κ′ · κ′′ ≤ κ

N ‖ M
r ′ εs

κ〈P〉@t
−−−−−−−−−→
κ′ · κ′′

> N′ ‖ M′
, t , r ′

()
N

r εs
κ〈P〉@t

−−−−−−−−→
κ′
> N′ M

r link t
−−−−−−→
κ′′
> M′ κ′ · κ′′ ≤ κ

N ‖ M
τ

−−−−→
κ′ · κ′′
> N′ ‖ M′ ‖ t :: P

()
N

s (T)
−−−−→

1
> N′ M

s t

−−−→
1
> M′ ./ (T, t) = σ

N ‖ M
τ
−−→

1
> N′σ ‖ M′

Table 2.Network semantics

no link from s to itself can be created. Indeed, we assume that transitionsthat involve
only the local node have unitary QoS value and are always enabled.

Rule () allows a process allocated ats to use a namet as the address of a new
node and to create a new link froms to t exposing the QoS valueκ. The side condition
of () prevents that new nodes (and links) are created by using addresses of existing
nodes.

Rule () adds a new link between two existing addressessandt; the link is created
only if the processes ats andt satisfy the SLA contract. More precisely, the accepting
nodet is willing to connect only to those nodes that declare a QoS value lower thanκ′. If
this condition holds, a new link is added to the net, such linkhas the QoS value exposed
by s. One can think ofs as asking for the connection withat leastsome characteristics

expressed byκ andt establishes the connection only when it can enforce the requirement
of s, namelyκ ≤ κ′.

Rule () states that the local spawning of a process is always enabled while rules
() and () control process migration and require more detailed explanations. A
remote spawning actionεκ[P]@t consists of the migrating processP, the arrival nodet
and a QoS valueκ expressing thatP must be routed on a path exposing a QoS value1 at
mostκ. Differently from the local spawning of processes, remote spawning is not always
possible, it is indeed mandatory that the net contains a pathof links from the starting
nodes to the arrival nodet. Moreover, the SLA contract of the path betweens and t
must not exceed the valueκ that the spawner has declared. Notice that this semantically
describes the SLA agreement on the mobility of processes. This is formally achieved
by rules () and (). More specifically, rule () states that, if the migrating
process can go through an intermediate noder and a link fromr to a noder ′ , t exists,
the QoS valueκ′ of the partial path froms to r composed with the valueκ′′ of the link
from r to r ′ must be lower thanκ. If this is the case, a transition can be inferred stating
thatP, spawned froms, can go throughr ′ exposing the QoS valueκ′ · κ′′. Rule ()
is similar to () but describes the last hop ofP, namely when the target nodet is
reached. In this case,P is spawned att, provided that the QoS value of the whole path
that has been found is lower thanκ.

Rule () establishes that a synchronization takes place provided that sender and
receiver are allocated at the same node and that the templateand the tuple match accord-
ing to the definition below. Hereafter, we useσ to denote a substitution, i.e. a map from
names to names and QoS values, andσ[σ′] to denote the composition of substitutions,
i.e. the substitutionσ′′ defined as follows:σ′′(x) = σ′(x) if x ∈ dom(σ′), σ′′(x) = σ(x)
if x ∈ dom(σ) − dom(σ′).

Definition 7 (Pattern matching).A template T and a tuplet matchwhen the following
function is defined

./ (T, t) =































ε if (T = ε ∧ t = ε) ∨ (T = v ∧ t = v)
ε if T = ¬v ∧ t = v′ ∧ v , v′

{v/x} if T =?x ∧ t = v
σ[σ′] if T = F,T′ ∧ t = v, t′ ∧ ./ (F, v) = σ ∧ ./ (T′σ, t′) = σ′

where the application of a substitution to a template, Tσ, is defined as follows:

Tσ =































ε if T = ε
v,T′σ if T = x,T′ ∧ σ(x) = v
x,T′σ if T = x,T′ ∧ x < dom(σ)
?x,T′σ{x/x} if T =?x,T′.

Under the conditions of (), the substitution./ (T, t) is applied to the receiver. Note
that ./ may not be defined, for instance./ (¬s, s) does not yield any substitution and,
therefore, the match in such a case does not hold.

1 The QoS value of a paths0
κ1
^ s1 . . . sn−1

κn
^ sn is defined asκ1 · . . . · κn.

4 Examples

In this section we present some specification examples. To make the presentation more
readable let us introduce some notational conventions. First, we avoid writing trailing
0 processes, second, we writeε[P]@r instead ofε1[P]@r and similarly fornode1〈t〉,
con1〈t〉 andacc1〈t〉.

Boolean expressionsBooleans are encoded as processes that allocate a pair of names
to a node:

True r
def
= (ν t)ε[〈t, t〉]@r

False r
def
= (ν f , f ′)ε[〈 f , f ′〉]@r.

The truth and the falsity are tested by checking that the names in a pair are equal or
different, respectively. The following process tests for the equality of two names:

Test x y r
def
= (ν t)(node〈t〉.ε[Eval y r | 〈x〉]@t),

whereEval y r
def
= (y).True r | (¬y).False r. ProcessTestspawns the tuple〈x〉 and the

Eval process onto a newly generated node so that the first or the second component of
Evalhave exclusive access to〈x〉. Notice that only one of the components can consume
the tuple, indeed, eitherx = y (and only the pattern (y) matches〈x〉) or x , y (and
only the pattern (¬y) matches〈x〉). Finally, Trueor Falseallocates on noder the truth
value corresponding to evaluation ofx = y. Assuming the encoding of booleans, we can
represent standard control structures such asif-then-else andwhile.

The encoding of boolean values is indeed an example of a standard programming
metaphor for finding and handling services. Assume that we want to describe alook-up
mechanism for discovering distributed services. For instance, theweb servicestechnol-
ogy allows deploying new services by gluing together those that have been published.
Web service composition, however, requires a look-up phasewhere the available service
must be discovered. In the boolean example, processesTrueandFalseare the services
that have been published and composed together to provide theTestservice. Notice that
the look-up phase does not require the knowledge of the service name but only that of
the “schema” of the service. For instance, whenever a new “true” service is published it
suffice to generate a new name and use it for building the “schema” for the true service
(i.e., a pair of two equal names).

Public, private, permanent and stable linksLinks in KoS are public entities: when
available they can be exploited by all processes. Consider the followingKoS net:

N
def
= s :: ε3[P]@t ‖ s

1
^ r ‖ r :: con2〈t〉.ε2[Q]@t ‖ t :: acc2〈r〉,

where QoS values are the c-semiring of natural numbers. NetN has three nodess, r
andt and, initially, onlys andr are connected by a link with QoS value 1. Nodes is
trying to spawnP on t which is not possible because there is no path froms to t. Node
r is willing to spawn a processQ on t, as well; however,r is aware that a link must be

first created. Nodet simply accepts requests for establishing a link fromr. Initially, it is
only possible to synchronizecon2〈t〉 andacc2〈r〉 which, by applying rule () leads to

N′
def
= s :: ε3[P]@t ‖ s

1
^ r ‖ r :: ε2[Q]@t ‖ r

2
^ t ‖ t :: 0.

Now, applying rules (), () and () we derive

N′
τ
−→

2
> s :: ε3[P]@t ‖ s

1
^ r ‖ r :: 0 ‖ t :: Q.

Notice that the link betweenr andt is consumed by the migration ofQ henceP cannot
reacht. However,N′ can also evolve differently, in fact, both the two spawning actions
are enabled, because the creation of the link betweenr andt has also provided a path
from s to t exposing the QoS value 3. Hence, by rules (), (), () and ()
we can also derive

N′
τ
−→

3
> s :: 0 ‖ r :: ε2[Q]@t ‖ t :: P.

Noteworthy, the migration ofP preventsQ to be spawned because the link created byr
has been used byP.

In general, this kind of interference should be avoided and this can be done inKoS
by expressingprivate linkswhich can be specified by exploiting the properties of c-
semirings. The intuition is that the use of a link is allowed only whether the traversing
process has the appropriate “rights”. If we represent access rights as sets of names,
then a process must “know” all the names needed for traversing the link. For instance,
consider the following net:

s :: ε{r,s}[P]@t ‖ s
{r}
^ s′,

processP can traverse the links
{r}
^ s′ because it “knows”r, that is the only name

required to traverse the link. Noteworthy,P could not traverses
{r,u}
^ s′ because it does

not expose nameu.
We consider the c-semiringR = 〈℘fin(S) ∪ {S}, glb,∪,S, ∅〉 to represent access

rights (recall thatS is the set of sites). It is straightforward to prove thatR is a c-
semiring; moreover, the order induced by the additive operation of R is the inverse of
the set inclusion (i.e.,X ≤ Y ⇐⇒ Y ⊆ X).

Therefore, a private link between the nodessandt can be specified as

(ν p)(s :: P ‖ s
{p}
^ t ‖ t :: Q),

indeed, in order to pass through links
{p}
^ t, a process must exhibit the “password”p.

The knowledge ofp is handled by enlarging the scope of the restriction and communi-
cating it.

We conclude by illustrating how one could implementpermanentlinks, i.e. links
that are always available, by exploiting replication:

s :: !conκ〈t〉 ‖ t :: !accκ′〈s〉

A slight variation arestablelinks, which are links existing until a given condition is
satisfied.

Stables G t
def
= !conκ〈t〉 | ε[While G do accκ〈s〉 od 0]@t

Cryptography By exploiting private links,KoS can encode standard encryp-
tion/decryption mechanisms usually adopted for expressing security protocols in pro-
cess calculi (see e.g. [1]). Consider the following net:

(ν k, sk)(i :: P ‖ i
{k}
^ sk ‖ sk :: M ‖ sk

{k}
^ r ‖ r :: Q), (1)

and assume that the only links from/to sk are those appearing in (1). Net (1) aims at
representing the initiatori and the responderr of a protocol that share a keyk. According
to (1) a key is modelled by means of a pair made of a name and a node which roughly
speaking contains those messages that are encrypted withk.

The intuition is that encrypting corresponds to allocatinga message onsk while
decrypting corresponds to the possibility of “jumping” onsk and reading a message or,

in other words, to the knowledge ofk for traversing linksi
{k}
^ sk or sk

{k}
^ r.

5 Composing Overlay Networks

We consider a scenario where a service is replicated over thenodes of an overlay net-
work and can be invoked trough auniquehandlerH that manages the requests of the
clients. This kind of architectures is adopted from Internet Service Providers (ISP) that
offer dial-up connection to end-users (EU). In this case a telecommunication company
(TC) handles the phone overlay networks. The EU connects to the “nearest” ISP server
by dialing a single (country-wide) number. The TC takes careof dispatching the call
to the closest ISP server on the overlay network. There are (at least) two possible way
of connecting the EU and the ISP server. Either the TC establishes a direct connection
between the EU and the ISP, or the TC act as a gateway between the phone overline net-
work and the ISP overlay network. Both solutions can be easily expressed inKoS in the
logical architecture of the system: the handlerH manages the requests (e.g., controls the
access rights of the client), looks for a suitable server, and forwards the request, while
trying to balance the load of any replica of the server. Hence, the request of a clientC
might not be forwarded to the “best” server from the client’spoint of view. In this case,
H provides another server toC, however, the client may or may not commit to use it.

The simplest way to model this composed overlay network is toassume that the link
betweenC andH have QoS values expressing the access rights ofC. When a servers
meeting both the request ofC and the load constraints is found,H replies toC and tells
s to accept a (private) link fromC. Hereafter, we assume thath is the node address of
H. We detail the client first:

C κ pr c
def
= (ν r)(εκ[〈“connect”, c, r〉]@h.

(r, ?s, ?pr′, ?p).
If c pr′ < pr

then con{r,p}〈s〉.ε{p,r}[R]@s
else con{r,p}〈s〉.ε{p,r}[〈r, “to-much”〉]@s).

ProcessC requestsH to find a server and waits for the response. The request contains
c, the node address ofC, and a private namer. Namer can be thought of as the unique

marker of the request so that onlyC will acquire data corresponding to requestr. Pos-
sibly, H returns a response (marked withr) containing the server addresss, the price
pr′, and the passwordp for the private link. Finally,C establishes a private link withs
and, depending on the pricepr′ required by the server, either raises its requestR (’then’
branch) or notifiess that the service is too expensive (’else’ branch).

The definition ofH requires the following auxiliary processes.

Rd(T)
def
= (T).〈tT〉

Lts r i
def
= Rd(r, ?j).If s j ≤ i then True else False

ProcessRd(T) looks for a tuple matchingT and immediately re-generates the consumed
tuple; this is denoted bytT which is obtained fromT by removing all the ’?’ occurring
in its placeholders. Then, processLts r i , interpreting〈r, v〉 as a “cell” having addressr
and containing valuev, reads the value inr and establishes if it is less than/equal toi.

H
def
= !((“connect”, ?x, ?r).〈r, 1〉

Whileh Lth r nserv
do

(r, ?i).Rd(pref(x, i), ?l, ?pr.)
If h l ≥ max

then〈r, i + 1〉
else

(ν p)(ε[〈“newlink”, x, r, p〉]@pref(x, i).
ε[〈r, pref(x, i), pr, p〉]@x.
(x, ?v).accf (v,l)〈x〉.〈x, f (v, l)〉.
(pref(x, i), ?l, ?pr).〈pref(x, i), l + 1, pr〉)

od ε[〈r, “no-server-available”〉]@x).

ProcessH is continuously listening for a connection request. Once such a request is is-
sued from a client atx, H starts scanning the server list (nserv is the number of servers).
For each servers, nodeh contains a tuple〈s, l, pr〉 wherel is an estimation of the load
of s and pr is the price for usings. Also, for each clientx, h maintains a tuple〈x, κ〉
that reports the connection betweenH andx (as done in Section 2). Moreover,H uses
a functionpref that, given the client addressx and the indexi, yields thei-th server
“preferred” by the client. At thei-th iteration of the while loop,H reads the information
of the i-th server preferred byx and, if the load of such a server is too high, the cycle
is repeated provided that more servers are left (’then’ branch); otherwise, a password
p for a private link is generated and communicated to bothx and the selected server.
The server will accept a private link creation fromx so that the client owning the pass-
word p can perform a request ats. Finally, H re-establish a link withx according to
the new load of the servers by exploiting functionf and reflecting this changes in the
tuple corresponding tox (i.e., 〈x, f (v, l)〉), as in Section 2. Indeed, the mechanism of
load balancing is the one defined in Section 2, the only difference being that nowH is
the unique handler that manages the connections with the clients.

GivenH andC, the servers must simply wait for a connection request (issued from
H) and establish the private connection with the client:

S s
def
= !((”newlink”, ?x, ?r, ?p).acc{r,p}〈x〉....wait & execute....

ε[(s, ?l, ?pr).〈s, l − 1, pr〉)]@h)).

Once the request has been served,S simply updates the load ofs.
A net whereC, H andS work can be defined as follows.

‖ i=1,...,m xi :: C κi pri xi | !acc〈h〉 | conκ′i 〈h〉
‖ i=1,...,m h :: !con〈xi〉 ‖ h :: H ‖

‖ (ν s1, . . . , sn)(‖ j=1,...,n h :: !con〈sj〉 | 〈sj , l j , pr j〉 ‖ sj :: S)

where ‖ i=1,...,mNi shortensN1 ‖ . . . ‖ Nn.

The other solution touched upon at the beginning of this section can be achieved by
exploiting the possibility offered byKoS of “connecting” links to form paths between
nodes. More precisely, instead of connecting directly the client’s nodex and (the node
of) the selected servers, we can connecth andsso that the client’s request ats is routed
throughh.

6 Conclusion

We have formally definedKoS a process calculus that provides basic primitives to de-
scribe QoS requirements of distributed applications. We demonstrated the applicability
of the approach by specifying some expressive case studies.

Our research program is to provide a solid foundation to drive the design of lan-
guages and middleware having application-oriented QoS mechanisms. The work re-
ported here is a preliminary step in this direction. In termsof calculus design, the current
definition ofKoSassumes that links are the basic construct to manage QoS interactions
and cooperation. This is a reasonable assumption for several cases. For instance, in this
paper we handled the QoS composition between different overlay networks by suitable
links. However, one could interpret QoS composition of overlay networks in a more
general sense than adding suitable links. An interesting challenge for future research is
to extendKoS with more general mechanisms for composing overlay networks than
simple parallel composition via links.

There are a number of ways in which our setting can be extended. For instance,
it would be interesting to develop type systems which would allow determining QoS
properties of processes. We plan to extend types for access control of [7, 6] to deal with
QoS attributes. In particular, it would be interesting to exploit such types to capture
the notion of contract. Another direction for future research is developing observational
semantics forKoS based on the idea of observing QoS values. These abstract theories
could permit reasoning onKoS nets and comparing them on the basis of the perceived
QoS values.

References

1. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.Infor-
mation and Computation, 148(1):1–70, January 1999.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization.Journal of the ACM, 44(2):201–236, March 1997.

3. L. Cardelli and D. Rowan. Service combinators for web computing. Software Engineering,
25(3):309–316, 1999.

4. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E.Tuosto. A Formal Basis for
Reasoning on Programmable QoS. In N. Dershowitz, editor,International Symposium on
Verification – Theory and Practice – Honoring Zohar Manna’s 64th Birthday, volume 2772
of Lecture Notes in Computer Science, pages 436 – 479. Springer-Verlag, 2003.

5. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents interaction
and mobility. IEEE/ACM Transactions on Networking, 24(5):315–330, 1998.

6. R. De Nicola, G. Ferrari, and R. Pugliese. Programming access control: The KLAIM ex-
perience. InInternational Conference in Concurrency Theory, Lecture Notes in Computer
Science. Springer-Verlag, 2000.

7. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control.Theoretical
Computer Science, 240(1):215–254, June 2000.

8. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based Models of Internetworking Systems.
In T. Aichernig, Bernhard K. Maibaum, editor,Formal Methods at the Crossroads: from
Panaces to Foundational Support, volume 2757 ofLecture Notes in Computer Science, pages
242 – 266. Springer-Verlag, 2003.

9. A. Igarashi and N. Kobayashi. A generic type system for thePi-calculus.Theoretical Com-
puter Science, 311(1–3):121–163, Jan. 2004.

10. N. Kobayashi. Type Systems for Concurrent Processes: From Deadlock-Freedom to
Livelock-Freedom, Time-Boundedness. In J. van Leeuwen, O.Watanabe, M. Hagiya, P. D.
Mosses, and T. Ito, editors,Theoretical Computer Science: Exploring New Frontiers of The-
oretical Informatics, Proceedings of the International IFIP Conference TCS 2000 (Sendai,
Japan), volume 1872 ofLecture Notes in Computer Science, pages 365–389. IFIP, Springer-
Verlag, Aug. 2000.

11. G. Meredith and S. Bjorg. Service-Oriented Computing: Contracts and Types.Communica-
tions of the ACM, 46(10):41 – 47, October 2003.

12. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems.Journal of
Automata Languages and Combinatorics, 7(3):321–350, 2002.

13. U. Nestmann and R. Fuzzati. Unreliable failure detectors with operational semantics. In
Proc.ASIAN 2003, Lecture Notes in Computer Science. Springer-Verlag, 2003.

14. M. Papazouglou and D. Georgakopoulos. Special issue on service oriented computing.Com-
munications of the ACM, 46(10), 2003.

15. C. Priami. Stochaticπ-calculus.The Computer Journal, 38(6):578–589, 1995.
16. G. Theodorakopoulos and J. Baras. Trust Evaluation in AdHoc Networks. InWiSe ’04:

Proceedings of the 2004 ACM workshop on Wireless security, pages 1–10. ACM Press, 2004.
17. E. Tuosto.Non-Functional Aspects of Wide Area Network Programming. PhD thesis, Dipar-

timento di Informatica, Università di Pisa, May 2003. TD-8/03.

