A Basic Calculus for Modeling Service Level
Agreement*

Rocco De Nicold, Gianluigi Ferrad, Ugo Montanaf,
Rosario Pugliese and Emilio Tuosté

1 Dipartimento di Sistemi e Informatica,
Universita di Firenze, Via C. Lombrosg¥, 50134 Firenze — Italy
email:{denicola,pugliese}@dsi.unifi.it
2 Dipartimento di Informatica,
Largo Pontecorvo 1, 56127 Pisa — Italy
email:{giangi,ugo,etuosto}@di.unipi.it

Abstract. The definition of suitable abstractions and models for ifgng, un-
derstanding and managing Quality of Service (QoS) comgtrés a challenging
issue of the Service Oriented Computing paradigm. In thiepave introduce a
process calculus where QoS attributes are first class sbjdfet identify a mini-
mal set of primitives that allow capturing in an abstract vtz ability to control
and coordinate services in presence of QoS constraints.

1 Introduction

Service Oriented ComputingSOC) [14] has been proposed as an evolutionary
paradigm to build wide area distributed systems and apjits In this paradigm,
services are the basic building blocks of applicationsvies are heterogeneous soft-
ware components which encapsulate resources and deliverdnalities. Services can
be dynamically composed to provide new services, and thigraction is governed in
accordance with programmable coordination policies. ExXamof SOC architectures
are provided by WEB services and GRID services.

The SOC paradigm has to face several challenges like seceicgosition and
adaptation, negotiation and agreement, monitoring andriggcA key issue of the
paradigm is that services must be delivered in accordantteosntractsthat spec-
ify both client requirements and service properties. Thoesgracts are usually called
Service Level Agreements (SLA). SLA contracts put speampleasis on Quality of
Service (QoS) described as a set of non functional progect@cerning issues like
response time, availability, security, and so on.

The actual metric used for evaluating QoS parameters isiljependent on the
chosen level of abstraction. For instance, when designétgark infrastructures, per-
formance (with some probabilistic guarantees) is the mai8 @etric. When describ-
ing multimedia applications, visual and audible qualitiesuld be the crucial param-
eters. Instead, for final users, the perceived QoS is notgjusatter of performance

* Work partially supported by EU-FET Project AGILE, EU-FETojact MIKADO, EU-FET
Project PROFUNDIS, and MIUR project SP4 Architetture Saftev ad Alta Qualita di
Servizio per Global Computing su Cooperative Wide Area Nekw.

but also involves availability, security, usability of thequired services. Moreover, the
user would like to have a certain control on QoS parametersdier to customize
the invoked services, while network providers would likentve a strict control over
services. The resolution of this tension will be inheremtynamic depending on the
run-time context.

In our view, it is of fundamental importance to develop fotmmechineries to de-
scribe, compose and relate the variety of QoS parametatseth the formal treat-
ment of QoS parameters would contribute to the goal of degisbbust programming
mechanisms and the corresponding reasoning techniquestigally support the SOC
paradigm. In this paper we face this issue by introducingpagss calculus where QoS
parameters are used to control behaviours, i.e. QoS pagesraet first class objects.

The goal of the present paper is to identify a minimal set ofstacts that provide
an abstract model to control and coordinate services inepesof QoS constraints.
This differentiates our proposal from other approaches. In paaticptocess calculi
have been designed to model QoS in terms of performancesigsige, the probabilistic
n-calculus [15]). Other process calculi have addressedsthees of failures and failure
detection [13]. Process calculi equipped with powerfuktggstems have also been put
forward to describe the behavioral aspects of contractslfd,9].

Some preliminary results towards the direction of this paja& be found in [3, 4].
Cardelli and Davies [3] introduced a calculus which incagtes a notion of communi-
cation rate (bandwidth) together with some programmingtoists. In[17, 8, 4] a (hy-
per)graph model to control explicitly QoS attributes hasrbmtroduced. The graphical
semantics allows us to describe interactions in accordaitbethe agreed QoS level
as optimal paths in the model thus creating a bridge betwaenal models and the
protocols used in practice. Here, we elaborate on [4] withaim of bridging further
the gap between formal theories and the pragmatics of satdevelopment.

Fundamental to our approach is the notion of QoS values; av@l® is atuple of
values and each component of the tuple indicates a QoS diome$e values of the
fields can be of dierent kind, for instance, the value along the latency dineernsould
be a numerical value but the security values could have tme & sets of capabilities
indicating the permissions to perform some operations wargiesources, e.g. read or
write a file. Compositionality of QoS values is therefore g &ement of our approach:
the composition of QoS values will be a QoS value as well. énidene might want to
build a QoS value based on latency, availability and acdghssrof a service.

To guarantee compositionality of QoS parameters, we seallire QoS values to
be elements of suitable algebraic structures, caltatstraint semiringgc-semirings,
for short), consisting of a domain and two operations,atditive (+) and themulti-
plicative (-) operations, satisfying some properties. The basic iddaaisthe former is
used to select among values and the latter to combine valliesmirings were orig-
inally proposed to describe and program constraints pnabl]. Several semirings
have been proposed to model QoS issues. For instance, balger&hms for comput-
ing shortest paths in a weighted directed graph are basdukostructure of semirings
[12]. The modelling of trustness in an ad hoc networks explibie semiring structure
[16]. C-semiring based methods have a unique advantage pvbblems with multiple

QoS dimensions must be tackled. In fact, it turns out thaes@an products, exponen-
tials and power constructions of c-semirings are c-seras well.

Our process calculugfosS, builds on K.amm (Kernel Language for Agent Interac-
tion and Mobility) [5]. Kram is an experimental kernel programming language specifi-
cally designed to model and program wide area network agtjdies with located ser-
vices and mobility. Kamm naturally supports peer-to-peeprogramming model where
interacting peers (nodes inLkim terminology) cooperate to provide common sets of
services. K0S primitives handle QoS values as first class entities. Faaim®, an
overlay network is specified by creating nodasde(ty) and new links § ~ t) and
indexing them with the QoS valueof the operation. Thus, for instance the expression
s ~ t states thas andt are connected by a link whose QoS parameters are given by

The operational semantics #foS ensures that the QoS values are respected dur-
ing system evolution. Suppose for example that n@deuld interact by an operation
whose QoS value ig with nodet along the links ~ t. This interaction will be allowed
provided that the SLA contract of the link is satisfied, namel < «.

We shall illustrate the expressiveness of the calculusitiitgeveral examples. This
can appear as an exercise in coding a series of linguistigifprés into our calculus
notation, but it yields much more because the encodirfigs a practical illustration
of how to give a precise semantic interpretation of QoS mamamt. Indeed, the main
contribution of this paper is the careful investigation af@imal conceptual model
which provides the basis to design programming constraetS©C. We focus on the
precise semantic definition of the calculus because it imddmental step to design
programming primitives together with methods supporting torrect usages of the
primitives and the formal verification of the resulting apptions.

The rest of the paper is organized as follows. In the nexticeaete illustrate a
motivating example and, in Section 3, we introduce syntak samantic ofK0S. In
Section 4, we deal with expressivity issues and in the sules#gpne we present a
more complex scenario and show how it can be tackled by faigwur approach.

2 A motivating example

Before introducing the formal definition ¢§0S, we prefer to show its usefulness by
modelling a realistic, but simplified, example. Our purpbsee is to give a flavour of
the underlying programming paradigm. We consider a scemdreren servers provide
services tam clients and we focus on balancing the load of the serveren@liand
servers are located onftirent nodes; a generic client node has addeesghile a
generic server node has addrgs<lients issue requests to servers by spawning process
Rfrom their node to a server node. For simplicity, we abstirach the actual structures
of QoS values, and we assume that clients and servers “kneaie$i other and cannot
be created dynamically. Adding dynamicity is straightfard.

A generic client nodév;, fori € {1, ..., m}, is described by the following term:

Mi € c(sik) | .. | (S | ICs

Intuitively, M; represents a network component with addogssontaining tuples of the
form(s;, «j), for j € {1,...,n}, and running proces<}. Each tuplg(s;, «j) represents

the loadk; of the servers; that the client perceives, thus the whole set of tuples repre
sents a sort aflirectory servicecontaining the SLA contract with the available servers.
Operator ! is the replication operato€, represents an unbounded number of concur-
rent copies of procesS;. Finally, proces€; specifies the behaviour of the client and
is defined as follows:
Cs def (?u,). [Rl@u.con,suy.(u, v- 6).

Initially, the client selects a server by non-determiistly inputting a tuple by means
of the operation @). Once the input is executed, variableandv are instantiated
with the server name and its load, respectively. Afterw#nd, client tries to spawn
procesR to the selected server Execution ofs,[R]@u takes place only if a “suitable”
link toward u exists. What here is meant for “suitable” is that the lwaaf the client
must not exceed the value on the link. Then, since remoterspgwonsumes the links
traversed during the migration, the client attempts tostedaish a connection with
u by executingcon,s;{u). Notice that the operatiooon,s{u) is used by the client to
ask for a link with a QoS value increased of a quandityOnce the connection has
been established, the client updates its SLA view of theesetoad by inserting tuple
{u,v-8) into its local directory service.

A generic serveN;j, for j € {1,...,n}, is described as follows:

Ny € sy | ocnk) | | Gkl |

(Sasj) | ... | (S as).

Similarly to clients,N; encapsulates a directory service containing SLA data aheut
clients. This directory service is formed by tuples of thenfdc;, «/), fori € {1,..., m},
each recording the QoS valyeassigned to the link towards nodgand by the current
load of the server, represented by a tuple containing a alatwmber¢h). For any
clientc there is doad manager S jcs; which decides whether a link wit can be
re-established or not. ProceSsc sis written as follows:

S cs® (A).0).0f I < max

then(c, v).acci,y(c).<c, T (v, 1)).

The load manager repeatedly acquires the tiplécurrent load) and compares it with
the maximum admissible load (max). Then, the process deeithether to accept re-
guests for new connections coming from the client: the Imkrieated only wheh is
less than max. The QoS value of the new link is computed by etifumf and depends
on both the old QoS value and the current load.

Finally, we assume that proceRsepresenting clients service requests is a sequen-
tial process of the form

R %" (2x).(x+ 1)...actual request. . (%y).¢y — 1),

Namely,R has a prologue and an epilogue which respectively incresreamd decre-
ments the counter that measures the server load.

3 The calculus

This section introduce$oS a calculus that provides a set of basic primitives for
modelling and managing QoS values.70S term represents a net made ruddes
which model places where computations take place or whexéces can be allo-
catedaccessed. We assume as given a set of nédéanged over bys, t,...) that
are connected binks representing the middleware infrastructure, i.e., therattions
between two nodes can take place only if they are connecteddggjuence of links.
Links are weighted by “measures” that represent the QoSwafithe connections.

3.1 QoS Values as constraint semirings

We assume existence of a set@#S valueg, ranged over by, that forms aconstraint
semiring[2] (c-semiring.

Definition 1 (C-semiring). An algebraic structuréA, +, -, 0, 1) is a c-semiring if A is
aset 0,1 € A), and+ and- are binary operations on A that satisfy the following
properties:

— + (additive operation) is commutative, associative, idetapO is its unit element
andlis its absorbing element;

— - (multiplicative operation) is commutative, associatidistributes over, 1 is its
unit element, an@ is its absorbing element.

Operation+ induces a partial order oA defined asa <a b < a+b = b. The
minimal element is thu® and the maximal. a <4 b means thaé is more constrained
thanb.

An example of c-semiring i&w, min, +, +o0, 0), wherew is the set of natural num-
bers, the minimum between natural numbers is the additieeadion and the sum over
natural numbers is the multiplicative operation. Noticattih this case the partial order
induced by the additive operations is the inverse of thenamyi total order on natu-
ral numbers. Another example of c-semiring ¢g{A}), U, N, 0, A}), wherep(A) is the
powerset of a seA, andu andn are the usual set union and intersection operations.

K0S does not take a definite standing on which of the many c-seggiructures
to use. The appropriate c-semiring to work with should besehgfrom time to time,
depending on the kind of QoS dimensions one intends to mBa&w, we introduce
some c-semiring structures together with the QoS dimerthinhandle:

— ({true, falsg, v, A, false true) (boolean): Network and service availability.

— (Reak, min, +, +o0, 0) (optimization): Price, propagation delay.

— (Reak, max min, 0, +co0) (maxmin): Bandwidth.

— ([0, 1], max -, 0, 1) (probabilistic): Performance and rates.

— ([0, 1], max min, 0, 1) (fuzzy): Performance and rates.

— (2N, U, N, 0, Ny (set-based, wherd is a set): Capabilities and access rights.

C-semiring based methods have a unique advantage whereprehlith multiple
QoS criteria must be tackled. In fact, it turns out that caate products, exponentials
and power constructions of c-semirings are c-semiringsedls w

N,M = NETS

0 Empty net
| s P Located Process
| s~t Link
| (v9N Node restriction
| NJ|M Net composition
PQ = PROCESSES
0 Null process
| y.P Action prefixing
| (v9P Restriction
| P | Q Parallel process
| 1P Iteration
y = PREFIXES
node(t) Node creation
| congt) Connection request
| acG(t) Connection acceptance
| (T) Input
| Vi, ..., V) Output
| &[Plet Remote process spawning
T =e | v X | v | T,T INPUT TEMPLATES

Table 1.%K0S Syntax

3.2 Syntax

The syntax ofKoS is presented in Table 1. Other than the existenag, @xistence of
a set onamesV (ranged over by, sandt) is assumed. First-clasglues ranged over
by u andv, can be either QoS values or names.

The syntax for nets permits the (possibly empty) parall@hposition oflocated
processesindlinks. A located process :: P consists of a namse, called theaddress
of P, and the procesB running ats. A link s ~ t states thas andt are connected by
a link whose QoS value ie. The net ¢ 9N is a net that declaresas restricted irN,
which is the scope of the restriction.

The syntax for processes is standard. The syr@loekrloads the symbol for empty
nets; however, the contexts will clarify whether it refayptocesses or nets. Prefixes
encompass actions for

— creating a nodenpde(t)) or a connection rom another nodecon(t), acc.(t)),
— exchanging tuples of valuesT{{and{vs, ..., Vn)),
— remotely spawning a process[P]et).

Links are oriented, indeesi~ t allows a process to be spawned frsfo t but not the
viceversa. The creation of new links is obtained by syncising actionscon(t) and
acc.(s) performed as andt, respectively.

Communication involves exchange of tuples (i.e. finite ages) of values that are
retrieved via pattern matching. Input prefixes tesmplates Tnhamely finite sequences

of values or placeholders (written ag)?Execution of an output prefix causes gener-
ation of a tuple of valuesy, ..., v,. Both the empty template and the empty tuple are
denoted by. Hereafter, we let range over tuples of values and, given a template
and a tuple, we letT; andt; denote the-th element oflT andt, respectively.

The placeholder®binds the occurrences dafin the rest of the template, namely,
in ?2x, T, the scope of Ris T. The set bn() collects the names bound h while
fn(T) denotes the names having free occurrences;itheir definitions are standard.
We consider as equivalent those templates tHegrdnly for renaming of bound names.
The template-v tests for inequality, namely, it requires the matching éujl contain
a value diferent fromv (see Definition 7). The only binders of the calculus are the
placeholder 2 and the node restrictions. Note that node names might be QoS values
(e.g., for specifying access rights), hence, we write)ftt{ denote the names appearing
in k. Moreover, we require that QoS values do not bind node nathesgfore, brg)
is empty, for any QoS value We formally definefree andboundnames of nets and
processes as follows. In the following we write fnf (resp. bn(, _)) as an abbreviation
for fn(0) U fn() (bn() U bn(), respectively).

Definition 2 (Free and bound names)The free names of prefix actions are defined
as expectedn(y) = fn(x) U {s}, if y € {node(s), con(s),acc(s)}, in((T)) = in(T),
fn((vi, ..., vn)) = fn(vy) U ... U fn(v,) andfn(e[P]@s) = fn(x, P) U {s}. Bound names
of y are defined similarly, e.ghn((T)) = bn(T) andbn(g,[P]@s) = bn(P) (while in the
remaining cases is the empty set).

The setdn(_) andbn() of free and bound names of processes and nets are defined
accordingly. The only non-standard case is that for linkeeehwe letin(r ~ s) =
fn(k) U {s r} andbn(~ s) = 0.

As usual, processes or nets obtainedabgonverting bound names are considered
equivalent. Moreover, we assume the following structuoaigruence laws.

Definition 3 (Structural congruence).The relationrepC Px P is the least equivalence
relation on processes (containimgconversion and) satisfying the following axioms:

— (P, | ,0)is a commutative monoid;
—P=pP | IP.

The relation=C NxN is the least equivalence relation on nets (contaimirgpnversion
and) satisfying the following axioms:

(N, || ,0) is a commutative monoid;
if P=p Qthens:P=s:Q;

si:P | Q=s:P|s:Q;

s (v)P=(vt)(s:: P),ift #s;

— (v9(N||M)=N| (v9M, if s¢ fn(N);
— (v9)(vt)N = (vt)(v 9N.

The last axiom of Definition 3 states that the order of theriggins is irrelevant, hence
we can write ¢ sy, ..., Sy)Ninstead of ¢ 51) ... (v s5)N.

3.3 Semantics

We define the operational semantics/66S by means of a labelled transition system
that describes the evolution of nets. In the semantic ctausés useful to define a
function that, given a nel, yields the names that are used as node addresses in the net.

Definition 4 (Addresses)Letaddr be the function given by:

0, N=OVN=s~t
_J{sh M=s:P
addr(N) =1 2 4ar(M) \ (s}, N=(9M

addr(Nl) U addI‘(Nz), N = N || Na.

Notice thataddr(N) € fn(N), but not necessarilgddr(N) = fn(N), for instance if
N = s :: (t).0 then fnN) = {s t} while addr(N) = {s}. Basically,addr(N) collects
those free names &f that dfectively occur inN as address of some node.

Definition 5 (Localized Actions).Lety be a prefix, then théocalized prefixy@s is
defined as follows:

_[sexPy@t if y= e(P)@t
y@s = { Sy otherwise

The syntax ofocalized actions is given below:
a=y@s | slinkt | 7
We let fny@s) = fn(y) U {s} and bn{@s) = bn(y).

Definition 6 (Nets semantics)The operational semantics of nets is given by the rela-
tion - < N x (a x C) x N. Relation— is defined by the rules in Table 2 and the

following standard rules:

N —> M N=N > M =M
RES) ——~——— STR X
()(vs)Ni>(vs)|v| (sm%) N-2>M
K K
(04 ’
() N—N _ (bn@)nfn(M)=0 A
N[|M->N|M (addr(N’) \ addr(N)) N addr(M) = 0
K

Intuitively, N —> M states that the nét can perform the transitiomto M by exposing
K

the QoS value. Clearly, all local transitions (communications, nodeiok lcreations)
have unitary QoS value, while the only non-trivial QoS valappear on the transitions
that spawn processes or show the presence of links. Let esrgive detailed comments
on the rules in Table 2.

Rule (ink) states that a link within a net disappears once it has beeth 0hese
transitions are used in the premises of rulesste) and ganp) for establishing a path
between two nodes such that a remote evaluation can take. plac

Rule frer) accounts for action prefixing; node creation, howevergedess a spe-
cific treatment that is defined in ruledpe). The side condition ofeRer) also states that

K slink t

(LINK) s~t——0
K
Y@s
(PREF) s:vy.P —l—> s:: P,y ¢ {node(t), con(s), acc(s)}
d K
(NoDE) S:: nodq(t).Pno—lem)s:: Plls~t||t::0,s#t

N s con(t) N’ M tacg/(s) v
(con) 1 — 1 K<k
N|||V|—l>’N’|||V|’||S"‘t

(LEVAL) s g[Ql@s.P —Z> s:Pls:Q
1 exP)@t link r’
6—/>N’ M#)M’ K-k <k
(rROUTE) " e Pet B
NIIM ——— N’ || M’
K K
reP@t link
SN M—rl—n—t—:»M' K K" <k
(LAND) « — K
NIM——>N[M[t:P
K K
-
NS MES M M=o
(comm) 1 1

N||M—1>N’o-|| M’

Table 2. Network semantics

no link from s to itself can be created. Indeed, we assume that transiti@snvolve
only the local node have unitary QoS value and are alwaysletab

Rule (vopE) allows a process allocated sito use a nameas the address of a new
node and to create a new link frosio t exposing the QoS value The side condition
of (par) prevents that new nodes (and links) are created by usingessies of existing
nodes.

Rule con) adds a new link between two existing addressasdt; the link is created
only if the processes aandt satisfy the SLA contract. More precisely, the accepting
nodet is willing to connect only to those nodes that declare a QdseMawer thand’. If
this condition holds, a new link is added to the net, suchliak the QoS value exposed
by s. One can think of as asking for the connection witt leastsome characteristics

expressed by andt establishes the connection only when it can enforce theénegent
of s, namelyk < «’.

Rule @evaL) states that the local spawning of a process is always ethabiide rules
(routE) and ganp) control process migration and require more detailed ewgilans. A
remote spawning actios}[P]@t consists of the migrating proceBsthe arrival node
and a QoS value expressing tha® must be routed on a path exposing a QoS Vahte
mostk. Differently from the local spawning of processes, remote spayisinot always
possible, it is indeed mandatory that the net contains a gfdihks from the starting
nodes to the arrival nodd. Moreover, the SLA contract of the path betwesandt
must not exceed the valughat the spawner has declared. Notice that this semanticall
describes the SLA agreement on the mobility of processes.igiormally achieved
by rules goute) and ¢.anp). More specifically, rulefoute) states that, if the migrating
process can go through an intermediate noded a link fromr to a node”’ # t exists,
the QoS valug’ of the partial path frons to r composed with the valug’ of the link
fromr to r’ must be lower thar. If this is the case, a transition can be inferred stating
thatP, spawned frons, can go through’ exposing the QoS valué - «”. Rule ¢anp)
is similar to Route) but describes the last hop Bf namely when the target nodiés
reached. In this cas®,is spawned at, provided that the QoS value of the whole path
that has been found is lower than

Rule (comm) establishes that a synchronization takes place provitgdender and
receiver are allocated at the same node and that the terapldtae tuple match accord-
ing to the definition below. Hereafter, we us¢o denote a substitution, i.e. a map from
names to names and QoS values, afw’] to denote the composition of substitutions,
i.e. the substitution” defined as followss”’ (X) = ¢o”(X) if x € dom(g”), o7’ (X) = o°(X)
if x e dom() — dom(’).

Definition 7 (Pattern matching). A template T and a tuplematchwhen the following
function is defined

e f(T=e At=g)vV(T=VAt=V)

€ ifT=-vAt=v AVv£V

/) HT=XAt=v

olo’] FT=FT At=vt A =FV)=0cA =(To,t)=0

> (T, t) =

where the application of a substitution to a template;, s defined as follows:

& ifT =¢
To = v, T'o ifT=%xT Aoc(X)=V
7= X, T'o if T =x,T" A x¢ dom()

2% T o{*/x} if T =2xT'.
Under the conditions okpmm), the substitutiom« (T, t) is applied to the receiver. Note
that>< may not be defined, for instanee (—s, s) does not yield any substitution and,
therefore, the match in such a case does not hold.

1 The QoS value of a pat A 5. 5.0 2 s isdefined ag; - ... - k.

4 Examples

In this section we present some specification examples. ke th& presentation more
readable let us introduce some notational conventionst, Fire avoid writing trailing
0 processes, second, we writP]er instead ofe1[P]er and similarly fornodg(t),
comy(t) andacc(t).

Boolean expression8ooleans are encoded as processes that allocate a pair esnam
to a node:

Truer & (vte[t,] er
def

Falser = (v f, f)e[(f, f')]er.
The truth and the falsity are tested by checking that the samea pair are equal or
different, respectively. The following process tests for theadity of two names:

Testxyr aef (vt)(nodgt).c[Evalyr | (X)]at),

whereEval y r & (y).Truer | (-y).Falser. Proces§estspawns the tupléx) and the
Eval process onto a newly generated node so that the first or tobeadeomponent of
Evalhave exclusive access). Notice that only one of the components can consume
the tuple, indeed, either = y (and only the patterny] matches(x)) or x # y (and
only the pattern-ty) matchegx)). Finally, True or Falseallocates on node the truth
value corresponding to evaluationxf y. Assuming the encoding of booleans, we can
represent standard control structures suchfashen-else andwhile.

The encoding of boolean values is indeed an example of aatdmilogramming
metaphor for finding and handling services. Assume that we teedescribe é0ok-up
mechanism for discovering distributed services. For mstathewveb servicesechnol-
ogy allows deploying new services by gluing together thbse have been published.
Web service composition, however, requires a look-up phvhisge the available service
must be discovered. In the boolean example, procé8sesandFalseare the services
that have been published and composed together to provadestservice. Notice that
the look-up phase does not require the knowledge of thecname but only that of
the “schema” of the service. For instance, whenever a neve*gervice is published it
sufice to generate a new name and use it for building the “scheonahé true service
(i.e., a pair of two equal names).

Public, private, permanent and stable linksnks in K0S are public entities: when
available they can be exploited by all processes. Condigefioflowing K0S net:

N &g g3[Plaet || sAr [|r:com(t).ex[Qlat || t::accr),

where QoS values are the c-semiring of natural numbersNN&as three nodes, r
andt and, initially, onlys andr are connected by a link with QoS value 1. Noglis
trying to spawnP ont which is not possible because there is no path fedmt. Node
r is willing to spawn a proces® ont, as well; however; is aware that a link must be

first created. Nodesimply accepts requests for establishing a link frormitially, it is
only possible to synchronizmny(t) andacc(r) which, by applying ruledon) leads to

N s:: g3[Plet || sAr [r: efQlat | r At | t:O.

Now, applying ruleskrer), (Link) and {.anp) we derive
N’ —;> s:: g[Plat || sAT | r=z0 | t:Q.

Notice that the link betweenandt is consumed by the migration &f henceP cannot
reacht. However,N’ can also evolve dlierently, in fact, both the two spawning actions
are enabled, because the creation of the link betweerdt has also provided a path
from stot exposing the QoS value 3. Hence, by rulesi), (Link), (Route) and ganp)
we can also derive

N’ —;:» si:0 || riefQlet || t:P.

Noteworthy, the migration o preventsQ to be spawned because the link created by
has been used .

In general, this kind of interference should be avoided aigidan be done ifkoS
by expressingrivate linkswhich can be specified by exploiting the properties of c-
semirings. The intuition is that the use of a link is allowetdyowhether the traversing
process has the appropriate “rights”. If we represent acogbts as sets of names,
then a process must “know” all the names needed for travgethmlink. For instance,
consider the following net:

{r}
s grg[Plet|s—~ ¢S,

processP can traverse the linls ¢ because it “knows', that is the only name

required to traverse the link. Noteworttycould not traverses "Y' ¢ because it does
not expose name.

We consider the c-semirin® = (p:(S) U {S},glb,U, S, 0) to represent access
rights (recall thatS is the set of sites). It is straightforward to prove thais a c-
semiring; moreover, the order induced by the additive aperaf R is the inverse of
the setinclusion (i.,eX <Y < Y C X).

Therefore, a private link between the nodemdt can be specified as

vps:PlIs2t)t: Q).

indeed, in order to pass through lisk 2 t, a process must exhibit the “passwonl”
The knowledge op is handled by enlarging the scope of the restriction and conim
cating it.

We conclude by illustrating how one could implem@ermanentinks, i.e. links
that are always available, by exploiting replication:

s lcongt) || t:: 'acG.(s)

A slight variation arestablelinks, which are links existing until a given condition is

satisfied.

Stable Gt %" 1condt) | e[While G do acg(s) od 0]at

Cryptography By exploiting private links,’KoS can encode standard encryp-
tion/decryption mechanisms usually adopted for expressingrisgguotocols in pro-
cess calculi (see e.g. [1]). Consider the following net:

(vk,sﬂ)(i::PIIi‘Ak}&llsK::MIIS«‘AK}rIIr::Q), 1)

and assume that the only links frgim s are those appearing in (1). Net (1) aims at
representing the initiataiand the respondetrof a protocol that share a kéyAccording
to (1) a key is modelled by means of a pair made of a name andewbith roughly
speaking contains those messages that are encryptell.with

The intuition is that encrypting corresponds to allocatinghessage osc while

decrypting corresponds to the possibility of “jumping” srand reading a message or,

in other words, to the knowledge kffor traversing links N S Or S L4 r.

5 Composing Overlay Networks

We consider a scenario where a service is replicated overates of an overlay net-
work and can be invoked troughumiquehandlerH that manages the requests of the
clients. This kind of architectures is adopted from Int¢®ervice Providers (ISP) that
offer dial-up connection to end-users (EU). In this case adebdcunication company
(TC) handles the phone overlay networks. The EU connecteettrtearest” ISP server
by dialing a single (country-wide) number. The TC takes adrdispatching the call
to the closest ISP server on the overlay network. There ategst) two possible way
of connecting the EU and the ISP server. Either the TC estaddia direct connection
between the EU and the ISP, or the TC act as a gateway betweephdie overline net-
work and the ISP overlay network. Both solutions can be gagpressed ifiKoS in the
logical architecture of the system: the handemanages the requests (e.g., controls the
access rights of the client), looks for a suitable servet,fanvards the request, while
trying to balance the load of any replica of the server. Hetieerequest of a clier@
might not be forwarded to the “best” server from the clieptsnt of view. In this case,
H provides another server @ however, the client may or may not commit to use it.

The simplest way to model this composed overlay network &stume that the link
betweernC andH have QoS values expressing the access rights ¥¥hen a serves
meeting both the request 6fand the load constraints is founid replies toC and tells
sto accept a (private) link fror€. Hereafter, we assume thais the node address of
H. We detail the client first:

def
Ckprc = (vr)(gf{connect, C,r)]@h.
(r, ?s,?pr’, ?p).
If. pr' < pr
then con p(S).€pr[Rl@S
else con p(S).(pr[(r, “to-much’)] @9).

Proces< requestd to find a server and waits for the response. The request osntai
¢, the node address @f, and a private name Namer can be thought of as the unique

marker of the request so that orfywill acquire data corresponding to requesPos-
sibly, H returns a response (marked withcontaining the server addressthe price
pr’, and the password for the private link. FinallyC establishes a private link with
and, depending on the prigg’ required by the server, either raises its reqég&hen’

branch) or notifies that the service is too expensive (‘else’ branch).

The definition ofH requires the following auxiliary processes.

RAT) = (T).¢tn)

Ltgri % Rd(r, ?j).If ¢ j < ithen True else False

Procesfd(T) looks for a tuple matching and immediately re-generates the consumed
tuple; this is denoted bt which is obtained fronT by removing all the *?’ occurring

in its placeholders. Then, procdss r i, interpreting(r, v) as a “cell” having address
and containing value, reads the value inand establishes if it is less thyagqual toi.

H d:ef!((“connect; 2X,).(r, 1)

Whilg, Lty r nserv
do
(r, 7).Rd(pref(x, i), 2, ?pr.)
Ify, | > max
then(r,i + 1)
else
(v p)(e[{newiink”, X, I, py]@pref(x, i).
e[¢r, pref(x,i), pr, p)l@x.
(X, A).acCru (X)X, T(v,1)).
(pref(x, i), A, ?pr).(pref(x, i), + 1, pr))
od g[{r, “no-server-available)] @X).

ProcesdH is continuously listening for a connection request. Onadhsurequest is is-
sued from a client at, H starts scanning the server list (nserv is the number of sgve
For each serves, nodeh contains a tuplés, |, pr) wherel is an estimation of the load
of sand pr is the price for using. Also, for each clienk, h maintains a tupléx,)
that reports the connection betweldrandx (as done in Section 2). Moreovét,uses

a functionpref that, given the client addressand the index, yields thei-th server
“preferred” by the client. At thé-th iteration of the while loop reads the information
of thei-th server preferred by and, if the load of such a server is too high, the cycle
is repeated provided that more servers are left ('then’ dligrotherwise, a password
p for a private link is generated and communicated to bo#mnd the selected server.
The server will accept a private link creation fronso that the client owning the pass-
word p can perform a request at Finally, H re-establish a link withx according to
the new load of the servers by exploiting functibrand reflecting this changes in the
tuple corresponding ta (i.e., {x, f(v,1))), as in Section 2. Indeed, the mechanism of
load balancing is the one defined in Section 2, the orfigrince being that noW is

the unique handler that manages the connections with thetsli

GivenH andC, the servers must simply wait for a connection requestéd$tom
H) and establish the private connection with the client:

Ss def I(("newlink”, 2X, ?r, ?p).acq,,p)(x)....wait& execute...
el(s A, ?2pr).(s | -1, pr))]@h)).

Once the request has been sent&dimply updates the load &f
A net whereC, H andS work can be defined as follows.

.....
.....
.....

where || i1

.....

The other solution touched upon at the beginning of thiS@ectan be achieved by
exploiting the possibility fiered byX oS of “connecting” links to form paths between
nodes. More precisely, instead of connecting directly fret's nodex and (the node
of) the selected serverwe can connedtandsso that the client’s request ais routed
throughh.

6 Conclusion

We have formally define®& oS a process calculus that provides basic primitives to de-
scribe QoS requirements of distributed applications. Waalestrated the applicability
of the approach by specifying some expressive case studies.

Our research program is to provide a solid foundation toedtine design of lan-
guages and middleware having application-oriented QoSharésms. The work re-
ported here is a preliminary step in this direction. In teohsalculus design, the current
definition of oS assumes that links are the basic construct to manage Qu&atibas
and cooperation. This is a reasonable assumption for deas®@s. For instance, in this
paper we handled the QoS composition betweéieidint overlay networks by suitable
links. However, one could interpret QoS composition of taxenetworks in a more
general sense than adding suitable links. An interestiafjetrge for future research is
to extendX oS with more general mechanisms for composing overlay netsvtdr&n
simple parallel composition via links.

There are a number of ways in which our setting can be exterfet@dinstance,
it would be interesting to develop type systems which wolllchadetermining QoS
properties of processes. We plan to extend types for acoesstof [7, 6] to deal with
QoS attributes. In particular, it would be interesting tglext such types to capture
the notion of contract. Another direction for future res#eis developing observational
semantics fofkoS based on the idea of observing QoS values. These abstraciethe
could permit reasoning oK oS nets and comparing them on the basis of the perceived
QoS values.

References

10.

11.

12.

13.

14.

15.
16.

17.

. M. Abadi and A. Gordon. A Calculus for Cryptographic Paifs: The Spi Calculudnfor-

mation and Computatiqri48(1):1-70, January 1999.

. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-lshsenstraint satisfaction and opti-

mization. Journal of the ACM44(2):201-236, March 1997.

. L. Cardelliand D. Rowan. Service combinators for web cotimg. Software Engineering

25(3):309-316, 1999.

. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and'iosto. A Formal Basis for

Reasoning on Programmable QoS. In N. Dershowitz, editternational Symposium on
Verification — Theory and Practice — Honoring Zohar MannaZti6Birthday volume 2772
of Lecture Notes in Computer Scienpages 436 — 479. Springer-Verlag, 2003.

. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernahbuage for agents interaction

and mobility. IEEE/ACM Transactions on Networking4(5):315-330, 1998.

. R. De Nicola, G. Ferrari, and R. Pugliese. Programmingsgcontrol: The KLAIM ex-

perience. Innternational Conference in Concurrency Theokgcture Notes in Computer
Science. Springer-Verlag, 2000.

. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Eyjoe access controlTheoretical

Computer Scien¢e40(1):215-254, June 2000.

. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based Nsoofelnternetworking Systems.

In T. Aichernig, Bernhard K. Maibaum, editoformal Methods at the Crossroads: from
Panaces to Foundational Suppovblume 2757 of_ecture Notes in Computer Scienpages
242 — 266. Springer-Verlag, 2003.

. A.lgarashi and N. Kobayashi. A generic type system foRthealculus.Theoretical Com-

puter Scienceg311(1-3):121-163, Jan. 2004.

N. Kobayashi. Type Systems for Concurrent Processesn Fbeadlock-Freedom to
Livelock-Freedom, Time-Boundedness. In J. van LeeuweW&anabe, M. Hagiya, P. D.
Mosses, and T. Ito, editorSheoretical Computer Science: Exploring New Frontiers loé-T
oretical Informatics, Proceedings of the InternationalPFConference TCS 2000 (Sendai,
Japan) volume 1872 of_ecture Notes in Computer Scienpages 365-389. IFIP, Springer-
Verlag, Aug. 2000.

G. Meredith and S. Bjorg. Service-Oriented Computingnt€acts and TypesCommunica-
tions of the ACM46(10):41 — 47, October 2003.

M. Mohri. Semiring frameworks and algorithms for shettdistance problemslournal of
Automata Languages and Combinatorig$3):321-350, 2002.

U. Nestmann and R. Fuzzati. Unreliable failure detectdth operational semantics. In
Proc.ASIAN 2003Lecture Notes in Computer Science. Springer-Verlag, 2003

M. Papazouglou and D. Georgakopoulos. Special issuergits oriented computingcom-
munications of the ACM16(10), 2003.

C. Priami. Stochatig-calculus. The Computer JournaB8(6):578-589, 1995.

G. Theodorakopoulos and J. Baras. Trust Evaluation iHosdNetworks. InWiSe '04:
Proceedings of the 2004 ACM workshop on Wireless secpatyes 1-10. ACM Press, 2004.
E. TuostoNon-Functional Aspects of Wide Area Network ProgrammigD thesis, Dipar-
timento di Informatica, Universita di Pisa, May 2003. TD3.

