A Coordinated Architecture for the Agent-based Service Level Agreement
Negotiation of Web Service Composition

Mohan Baruwal Chhetril, Jian Lin', SukKeong Goh', Jun Yanz, Jian Ying Zhang', Ryszard
Kowalczyk'
]Faculty of Information and Communication Technologies
Swinburne University of Technology, Australia
{mchhetri, jlin, sgoh, jyzhang, rkowalczyk] @ict.swin.edu.au

2School of Information Technology and Computer Science
University of Wollongong, Australia
Jjyan@uow.edu.au

Abstract

Recent progress in the field of web services has
made it possible to integrate inter-organizational and
heterogeneous services on the web at runtime. If a user
request cannot be satisfied by a single web service, it is
(or should be) possible to combine existing services in
order to fulfill the request. However, there are several
challenging issues that need to be addressed before
this can be realized in the true sense. One of them is
the ability to ensure end-to-end QoS of a web service
composition. There is a need for a SLA negotiation
system which can ensure the autonomous QoS
negotiation of web service compositions irrespective of
the application domain. In this paper we propose
agent-based coordinated-negotiation architecture to
ensure collective functionality, end-to-end QoS and the
stateful coordination of complex services. We describe
a prototype implementation to demonstrate how this
architecture can be used in different application
domains. We have also demonstrated how the
negotiation system on the service provider’s side can
be implemented both as an Agent based Negotiation
System and as a Web Service based Negotiation
System.

1. Introduction

With recent advances in Web Service technology it
is possible to dynamically publish, discover and invoke
web services. The principal objective of the web
services effort is to facilitate an environment in which

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

service customers and providers can dynamically locate
and connect with each other, automatically set the
terms and conditions of invocation and then execute the
necessary actions according to the negotiated contract.
If a particular user request cannot be satisfied by a
single Web Service, then it is (or should be) possible to
combine existing services together to form a web
service composition which can then fulfill the request.

Service composition is the process of combining
several component services and bundling them together
to meet the specific needs of a user request. It has
potential benefits from both the web service provider’s
perspective and the consumer’s perspective. Some
benefits include rapid application development, service
reuse and complex service consummation for the
former and seamless access to a variety of complex
services for the latter [1]. The consumer need not be
aware of the actual composition of several
heterogeneous Web Services, since all the integration
logic is hidden from the user. These are the principle
on which Web Service Technology has been
developed.

A service composition life-cycle, in general, can be
characterized by five phases — planning phase,
definition phase, scheduling phase, construction phase
and the execution phase [2]. A service composition can
initially be described in abstract and then later be made
concrete and executable. An abstract service
composition consists of base service types without any
concrete bindings. The outcome of the construction
phase results in the concretization of the abstract
service composition, from a set of potentially available
component services.

YF]',F.

COMPUTER

SOCIETY

How an abstract service composition is created from
the user request is outside the scope of this paper and
our research efforts. Significant research efforts are
being carried out in this particular direction and in the
area of web service composition in general [1] [3] [4]
[26]. We are more interested in how an abstract service
composition can be transformed into a concrete
executable process provided we have the end-to-end
Quality of Service (QoS)' requirements for the
composition and a list of potential service providers for
each base service type. The research challenge is to
provide a mechanism for the autonomous selection of
suitable service providers for each service type within
the service composition while guaranteeing the end-to-
end (global) QoS.

Although Service Level Agreement (SLA) contract
formation and management has been the focus of
research for several years, it has mainly been limited to
SLA management for single service provision or, in the
case of web service compositions, the manual
configuration to determine the QoS constraints on
individual services. The SLA management for a service
composition which involves a single consumer and
multiple service providers is still an open research
issue. As other service composition related activities
become automated, having the negotiation between the
service provider and the service requestor conducted
via human agents goes against the very nature of Web
Service technology. Thus there is a recognized need for
an architecture which can support the autonomous
negotiation of QoS constraints for service
compositions. This paper presents an agent-based
approach for the coordinated negotiation and re-
negotiation of QoS constraints for service compositions
to guarantee end-to-end QoS.

The paper is organized as follow. The next section
briefly discusses related work in the areas of SLA
Management and Agent-based negotiation. Section 3
discusses the Adaptive Service Agreement and Process
Management (ASAPM) project [8], in the context of
which this research has been carried out. Section 4
discusses the negotiation of service compositions and
the need for coordination as well as the coordinated-
negotiation architecture. Section 5 describes the use-
case scenario which we have used to demonstrate our
coordinated-negotiation architecture. ~ Section 6

' The Quality of Service is a collection of metrics
providing qualitative and quantitative representation of
non-functional requirements. They are evaluated in
terms of concrete measures and specify the expected
service level offered by the service provider.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

discusses the implementation of the architecture and
section 7 concludes this paper.

2. Related Work

Research on SLA Management has been actively
carried out for the past couple of years [15]. This
research has generally focused on SLA specification
and definition languages and SLA creation, operation,
monitoring and termination. Web Service Level
Agreement (WSLA) [16] and Web Service Offerings
Language (WSOL) [18] are two approaches which
propose the SLA representation. WS-Agreement is a
specification of the Global Grid Forum (GGF) [19]
which specifies the agreement structure, a negotiation
protocol and a monitoring interface. Similarly, WS-
Negotiation is an XML based language which contains
the Negotiation Message, Negotiation protocol and the
Negotiation Decision Making process [24]. It also
provides a SLA template model for supporting
different types of business negotiations. Service
Negotiation and Acquisition Protocol (SNAP) [20] has
been proposed as a provision for resource management
framework for distributed systems. However, while
these standards are still evolving, they do have their
limitations. For instance, WS-Agreement only supports
two types of messages — offer and agree. Such simple
message types cannot support coordinated transactions
between multiple web services because QoS
negotiation involves different states other than offer
and agree such as propose, counter-propose, reject and
others. There needs to be a well-defined protocol to
enable such interactions which does not currently exist
in web services. Another major limitation of the major
approaches is that they are applicable only to single
service provision scenarios and cannot be used
automatically for service compositions.

The use of negotiation as a means of establishing
service contracts has been a topic of considerable
interest for quite some time now within the agent
community [5] [22]. Intelligent software agent
technology is an accepted mechanism in conducting
automatic negotiations [5] [6] [23] and Multiagent
systems have been proposed and used for the
automated negotiation of resource allocation in grid
environments [20] [21]. Given that agents are flexible
problem solvers they are able to make context-aware
and context-dependent decision about the scope and
nature of their interactions. Hence given the similar
environments in which web services and software
agents operate, web services can only benefit from the
features of multi-agent technology. Again, within the
community, this agent based negotiation has principally

YF]',F.

COMPUTER

SOCIETY

been in the context of one-to-one negotiation or one-to-
many negotiations but for the provision of a single
service. There hasn’t been much work done in the
negotiation of end-to-end QoS constraints. Our work is
a first step in this direction.

3. Background

The work describe in this paper is based on research
conducted in the context of the Adaptive Service
Agreement and Process Management (ASAPM) in
Service Grid Project (AU-DEST-CG060081) and the
EU FP6 Integrated Project on Adaptive Services Grid
(ASG) (EU-IST-004617). This project aims at
developing intelligent agent-based techniques and tools
to facilitate the adaptive service management and
process management in order to ensure collective
functionality, end-to-end QoS and the stateful
coordination of complex services. This project has two
principal areas of research namely adaptive service
agreement management and adaptive service process
management. The former includes automated service
agreement negotiation and re-negotiation, service
agreement lifecycle management and dynamic service
profiling (DSP) while the latter includes process
enactment, service agreement monitoring, process
enactment visualization, and mediated workflow re-
planning.
Figure 1 shows the overall architecture of ASAPM.
It sits between the application domain system and the
actual web service/grid service infrastructure. It focuses
on providing adaptive, transparent provision of
complex services based upon the user request. The
ASAPM architecture consists of four components:
® Negotiation Manager — is responsible for the
autonomous SLA negotiation and re-negotiation
for composite services

e SLA Lifecycle Management and Dynamic Service
Profiling — manages the SLA during their lifetime
and maintains up-to-date service profile which can
be used for SLA negotiation and re-negotiation

o Workflow Enactment, Monitoring and
Visualization — is responsible for the enactment of
the service composition, the monitoring of the
negotiated QoS parameters, and the visualization
of the service composition enactment.

® Mediated Workflow Re-planning — is responsible
for mediation, aimed at providing alternate plans
to satisfy the original user request if any
unrecoverable error occurs

The Application Domain System (ADS) is
responsible for planning the web service composition
in order to satisfy the user request that it receives. The

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Composition Planner provides ASAPM with the
application service workflow as well as the global QoS
requirements for SLA negotiation. The Negotiation
Manager can get the list of potential service providers
for each base service type within the composition from
the Service Registry which is part of the ADS. Is is
then the task of the Negotiation Manager to find
suitable candidates which satisfy the QoS constraints
for each service type while ensuring that the end-to-end
QoS is satisfied.

ASAPM

. ® SLA Lifecycle
Nr:gﬁgiﬂ::" Managemant and

d = Dynarmic Prafiling

" -
.::h:
| ,
Medigied Workfon Horkdiow Enactment
Re-planning Wisyslizsdion
¥

"Web Sendces Grid Services Ervironment

Figure 1: Overall Architecture of ASAPM

4. Negotiation of Web Service

Compositions

There are two possible ways in which SLAs can be
established for web service compositions. One is the
negotiate-all-then-enact mode in which SLAs are
established for all base service types within the
composition before the enactment of the first service.
The second mode is the step-by-step-negotiate-and-
enact mode in which each service type is negotiated for
and enacted straightaway. Both have their pros and
cons. As a first step, we have chosen the negotiate-all-
then-enact mode for service composition negotiation.

4.1. Coordinated Negotiation Architecture

The task of the Negotiation Manager is to find
suitable candidates for each service type within the
service composition so that the end-to-end QoS is
ensured i.e. it is responsible for the concretization of
the abstract service composition so that the process

YF]',F.

COMPUTER

SOCIETY

becomes an executable workflow plan. Figure 2 shows
the architecture we propose to achieve this.

Coordinator Agent
. B
e

Coordination Level

Negotiation Leve! 7

Megotiation Agent \I I'/ Megotiation Agent \I
(Service &) VRN (Service B) J
l‘\ —

P T —
el ; 1) e

I',;‘legotiation Agen;\' ﬁegot ation AQEI-\\?. I/Negotiation Agent) u{egot ation Agﬂr-n\
\ AN VAN AN geni)

Service
Provider B2

Service
Provider A2

Service

Provider A1 Provider B1

Service ‘

Figure 2: Coordinated-Negotiation
Architecture

From a functional view point, the SLA negotiation
of a service composition involves two aspects. One
aspect is the negotiation between the service consumer
and service providers for the QoS constraints of a
single service type within the composition. The other
aspect is the coordination of these concurrent one-to-
many negotiations so that the end-to-end QoS
constraints are satisfied. Hence there are two levels of
operation — at the coordination level and the
negotiation level. The coordinated-negotiation of a
service composition can be supported by a Multi-Agent
System (MAS).

At the coordination level, the MAS has the
Coordinator Agent (CA) which is responsible for the
negotiation of the service composition as a whole. It
interacts with the Composition Planner (CP) of the
ADS to receive the abstract service composition
definition as well as the end-to-end user QoS
requirements. It then analyses this abstract service
composition and decomposes it into base service types.
A list of potential providers for each service type is
retrieved from the Service Registry (SR) of ADS. Thus
primary phase of coordinated negotiation involves
analyzing the service composition and the user
requirements which results in a decentralized,
distributed architecture. The CA creates a cluster of
Negotiation Agents (NA) which can be modified and
destroyed as required. While the CA has an infinite
life-cycle and the knowledge of the global constraints,
the lower level NAs have a finite life-cycle and only
local level knowledge.

The NAs act as local problem-solvers which have
specific roles and predefined capabilities which enable
them to fulfill these roles. They act to select the best
service provider for the particular base service type

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

they represent. In doing so, they indirectly contribute to
the wider problem solving initiative. Each NA receives
the local QoS constraints for the service type they are
negotiating along with a list of potential service
providers. For example, in Figure 2, NA for Service A
will negotiate with two providers (Provider Al and A2)
and NA for Service B will negotiate with two providers
(Provider B1 and B2) under the supervision of the CA.
Each NA is required to negotiate with the service
providers within the stipulated negotiation time-out and
a proposal time-out which is provided to it by the CA.

4.3. Role of the Coordinator Agent

In general, the CA is responsible for the analysis of
the service composition with a focus of mapping the
overall QoS requirements onto the atomic service level
QoS requirements i.e. QoS requirements for each
service type within the composition. It is also
responsible for the coordination of the negotiation for
different services in the composition, with the selection
of the best combination. The main responsibilities of
the CA can be listed as follows:

1. Map the QoS requirements of the user request onto
the QoS requirements of all services within the
composition

2. Create a cluster of NAs corresponding to each
service type within the composition

3. Provide these NAs with local-level QoS
constraints, the negotiation timeout and the
proposal timeout

4. Coordinate the NAs to negotiate with potential
service providers for various services in the
service composition in parallel

5. Redistribute the local-level QoS constraints if
overall QoS constraints are not met

6. Coordinate the re-negotiation of QoS constraints in
the case of service failure or QoS violation

7. Collaborate with the ADS as well as the other
components of the ASAPM system.

4.4. Single Service Negotiation

Single service QoS Negotiation refers to the process
by which a NA selects and contracts a service provider
from a list of potential providers. The key concepts in
automated negotiation are — negotiation protocols,
negotiation objects, and the decision making model [9].
The negotiation protocols define the rules which
govern the negotiation including how and when it ends.
The negotiation objects are the different parameters of
negotiation such as price, time etc which can be
predefined using a negotiation template [10]

YF]',F.

COMPUTER

SOCIETY

acceptable by both sides. The decision making model is
used for evaluating and generating offers and counter-
offers. It is independent of the negotiation protocol and
uses a learning mechanism which models the agent’s
behavior based upon the opponent’s previous offers. In
order that the negotiation outcome is mutually
acceptable, it is necessary that the negotiation is
cooperative and competitive.

The NA caries out one-to-many negotiations with
multiple service providers using the reserve values for
the local QoS constraints given to it by the CA. it is
constrained by a negotiation timeout (the negotiation
time available) and the proposal timeout (the time it
can wait for a response from a service provider for its
initial call for proposal).

4.5. Coordinated Negotiation Protocol

The negotiation protocol refers to a set of rules
which define the boundaries within which the
participants can interact. It covers the permissible types
of participants; the negotiation states (e.g. call for
proposal, negotiation closed), the events that cause the
change of negotiation states, and the valid actions of
the agents in the different states of negotiation. In this
research we have used the Iterated Contract Net
Protocol (ICNP) which is one of the most widely used
negotiation protocol provided by the Foundation of
Intelligent Physical Agents (FIPA) [11]. ICNP supports
recursive negotiation and allows for multi-round
iterative negotiation to find a compromise. By
exchanging modified proposals and counter-proposals,
a more acceptable negotiation result is likely to be
reached. While the ICNP protocol is used for the
interaction between the actual negotiating agents, the
interaction between CA and NA also follows the FIPA
ACL performatives.

messages exchanged between the NAs of the requestor
(client) and the service provider. Figure 3 and 4 show
the interaction between the CA and the NA, both when
the end-to-end QoS constraints are satisfied and when

they aren’t.

ACL Performative ACL Message Content
CFP (NA-> NAgp) Initial Call for Proposal
PROPOSE (NAgp > Offer made by Provider to
NAc) Requestor

REJECT (NAgp > NAQ)

Reject message if Provider is not
interested in negotiating with
Requestor

UNKNOWN (NAgp <>
NAC)

Message sent by either party if
message content is not
understood

ACCEPT_PROPOSAL
(NAc=> NAgp)

Message sent to Provider once
proposal has been accepted by
Requestor

REJECT_PROPOSAL
(NAc> NAg)

Message sent if proposal is not
acceptable by Requestor

INFORM (NAgp & NAQ)

Message sent by Provider when

Requestor accepts its proposal

FAILURE (NAgp > Message sent by Provider if
NA¢) some error occurs after it
receives ACCEPT_PROPOSAL

ACL Performative ACL Message Content
REQUEST (CA~> e Reserve values (local QoS
NA) constraints)

Negotiation timeout
Proposal timeout

INFORM (NA-> CA) Negotiation results

Selected provider details

CONFIRM (CA > Confirmation that selected provider
NA) is to be contracted

Table 1: List of ACL Performatives exchanged
between CA and NA

Table 1 shows the ACL messages exchanged
between the CA and the NA while Table 2 shows the

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Table 2: List of Performatives exchanged
between NA for Client and the Service
Provider

5. Use Case Scenario Description

The use case scenario which we have chosen for the
implementation of the coordinated negotiation
architecture is called the Application on Demand
(AOD) System. In this scenario shown in Figure 5, a
user can request for access to a computer application
via the Internet. The user provides the following
information as input — IP address, Throughput (in MB),
Availability (in percentage), Latency (in milliseconds)
and the Maximum cost (in dollars). This information is
given as input to the Application Domain System
(which is the ISP). The ADS creates a composite web
service based upon this user request and forwards this
information to the ASAPM system.
The workflow plan generated by the ADS consists
of three service types:
® Provide_Access_Service - web service which
provides access from the Customer Premise
Equipment (CPE) to the Provider Edge (PE).

e Provide_VPN_Service — web service which
provides VPN connectivity from the PE to the
actual host hosting the requested application.

YF]',F.

COMPUTER

SOCIETY

Coordingior NegEngine(Requestor) NegEngine(Provider) SLAContractor
I | | }
| | Initial CFP sent | "
| | to all Providers I 1
I I | |
|l 1. Reserve Values I 2. Inltial CFP : 1

- I

3. Negotiation |

The Coordinator Interacts Proposal N
with 'N' Negotiation Engines e e —— = "
dapending upon tha composition I
of the web servica Check Reply :
. 1 Counter Proposal 1

| I

| [Best Deal reached] |

| — — |

I I

5. Relurm Best Deal ' :

] e — = ——— -

[> 4. Select Best Overall Deal

I

I

L

6. Check overall QoS

7. Trigger SLA Contract

Figure 3: Interaction between CA and NA in case of successful negotiation of global QoS

| I I
| I |
I 1. Reserve Values | 2 Initial CFP |
| 1 |
|
|
Proposal
" ————————————
The Coordinator interacts)
with "N’ Negatiation Engines Check Reply 3. Negotiation
depanding upon the composition A
of the web service . 4 Counter Proposal -
|
: L] [Best Deal reached] -
I
!

5. Ratumn Best Daal

6. Check overall QoS
7. Amended Reserve Values

> 4, Select Best Overall Deal
-1

8, Modified CFP

Repeat
Step 3

Figure 4: Interaction between CA ;w NA in case of failed negotiation of global QoS

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)

1530-0803/06 $20.00 © 2006 IEEE

IF,F.F.

COMPUTER

SOCIETY

® Provide_Application_Access — web service
which provides
application

access to the requested

o Host 2
S

Figure 5: Application on Demand (AOD)
System

In the simplest scenario, the composite workflow
plan as generated by the ADS will look as shown in

Figure 6.
Provide Access Provide VPN
Service Service

Figure 6: Composite Workflow Plan

Provide
Application
Access

After receiving the workflow plan and the user
request, the Negotiation Manager of ASAPM retrieves
a list of prospective providers for each service type
within the composition from the Service Registry of the
ADS. The CA is responsible for negotiating the overall
(end-to-end) QoS parameters. It creates the
corresponding NAs for each service type. In this
scenario, since there are three service types the Ca
creates three corresponding NAs. It then splits the
global or end-to-end QoS amongst the three NAs. As a
starting point, we have used an equal split of the QoS
values amongst all the NAs. The CA passes the
following data to each NA:

e Reserve values for each negotiable attribute

e List of prospective service providers (and their

corresponding agent location /id)

¢ The negotiation timeout

e The proposal timeout

Once the CA has created the NAs and provided
them with all the data necessary for carrying out the
negotiation, it waits for the reply from each NA. The
NAs carryout one-to-many negotiations with the
Service Providers’ NAs until a favorable outcome is

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

reached or the negotiation timeout is reached. They
then return the negotiation results back to the CA.

When the CA has received all the negotiation
results, it compares them to see if they satisfy the
global QoS. If the global QoS is satisfied, it passes this
information on to the SLA Manager which then
contracts each service provider. It is then the task of the
Enactment, Monitoring and Visualization component to
enact the workflow plan in the predefined order while
monitoring the actual values against the contracted
values. The user is provided connection to the host
which is offering the request application. However, if
the global QoS is not satisfied, then the CA has to re-
distribute the reserve values amongst the NAs and
return them to the NAs which again try to negotiate
with all the service providers.

Note: Since this is an initial prototype of the
Coordinated Negotiation Architecture, we have
demonstrated a simple scenario in which the global
QoS is satisfied.

6. Implementation of the Coordinated-
Negotiation Architecture

The Negotiation Manager has been implemented
using the FIPA compliant JADE Agent Framework
[12] and WS2JADE [13] [14], a toolkit which enables
the integration of JADE agents and web services. There
are two types of QoS Negotiation scenarios — one in
which the NAs representing the user (part of the
Negotiation Manager of ASAPM) directly negotiates
with NAs representing the service provider (external to
the ASAPM), and another in which the NAs
representing the user negotiate both with Negotiation
Agents and with the Negotiation Web Services using
the WS2JADE toolkit which sits on top of the JADE
framework. Figure 7 shows a scenario in which both
types of negotiation are carried out. The NA for
Service A negotiates directly with the Service Provider
A-1’'s NA using ACL Messaging and with the
Negotiation Web Service of Service Provider A-2 via
the Proxy Agent. In this case, the mapping from the
ACL Message to SOAP message is handled by the
Proxy Agent.

6.1. Direct Negotiation between Agents

Figure 8 shows the exchange of messages between
the CA and the NA at the coordination level, as well as
the exchange of messages between the NAs at the
negotiation level. It is a screenshot of the output of the
Sniffer Agent which is provided by the JADE platform

YF]',F.

COMPUTER

SOCIETY

for visualizing the message exchange between JADE
agents.

JADE Coordinator Agent
WSZJADE
ACL Meszaging
ACL
Negotiation Agent Messaging Proxy Agent
(Service &) (Senice A-2)
ACL Messaging S0AP Messaging
Negatiation Agent HNegatiaton Web Service
(Semvice A-1) Senice A2

Service Provider A-1 Service Provider 4.2

Figure 7: NA for Service Consumer negotiating
with NA (for Service Provider A-1) and NWS
(for Service Provider A-2) simultaneously

In Figure 8, the CA passes the list of providers and
local QoS to the NA. This is indicated by the INFORM
message at the start (A full list of the performatives
exchanged between the agents is shown in Tables 1 and
2). This NA then issues a CFP to the list of providers it
receives from the CA i.e. three in this case. Each
provider responds with their own initial proposal which
the NA collects. If none of the offers are satisfactory, it
issues a modified CFP to all providers. If any provider
does not respond within the proposal timeout, that

particular provider is dropped out of the negotiation
process. This exchange of messages (proposal, counter-
proposals) continues until a favorable outcome is
achieved as indicated in the figure. The NA then
returns this result back to the CA along with the
selected Provider ID.

6.2. Negotiation Web Service

One of the primary reasons why we implemented the
negotiation system as a Web service is to address the
issue of interoperability among multiple systems. Most
negotiation support systems have been implemented as
pure MultiAgent systems. We want to demonstrate the
flexibility of our negotiation system in which the NAs
can not only negotiate with NAs on the service
provider’s side, but with Negotiation Web Services as
well. This provides service providers with the
flexibility to expose their negotiation capabilities either
as web services which can be discovered, or as an
agent-based system. The Negotiation Web Services
(NWS) provide uniform interfaces for negotiation
without disclosing the internal implementation. The
underlying implementation could either be agent-based
or non-agent based as long as it follows the ICNP. Like
any other web service, a NWS can be published and
discovered using standards such as UDDI and invoked
using standards such as SOAP.

IE!P:&&H i
Coordinator passes list of T CRPas] ¢

)]

providers and local Qos

> ———— |nitial CFP

PROFOSE 3534

FROPOSE 364 |

3

¢ Initial Set of

Proposals
|
cFPasi() = modified CFF
® -
CFP388(J e
PROPOSEREO |
PROPFOSESS1 ()
]
CF P304 ¢ 3 -
Megotiator passes PROPOSE:385(|)] Megotiatar finds an
successful negotiation acceptable offer,
result hack to FEOFOSE 3T [informs provider
Coardinatar ACCEPLPROPOSALZDE() and makes a
haaking

Figure 8: Sniffer output showing the message exchange between the CA and the NAs

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

YF]',F.

COMPUTER

SOCIETY

” =

File Actions Tools Remote Platforms Help

BEEGCEEENEEETTRE]
T L vWwoASLETIL LIS

in-Container

RMA@WSAgent List

df@wvSagent List

Whlanager@wwsAgent List

ams@wWwsAgent List

@ CoordinatorAgent@waAgent List

2 NegotiationAgent-A@WSAgent List

MegotiationAgent-B@E@wsAgent List

i MegotiationAgent-C@wwSAgent List

3 ProxyAgent-SeniceA2@wsAgent List

¢ B2 Container-1
MegotiationAgent-ServiceAl@yWsAgent List

(AgentList [WS List [Configuration

L
o ﬁ Prowyagent-Services?

o é MegotiatiomebService

WisAgent List

D hitp:Mocalhost 808 0axisiservicesiMegotiation?wsdl

Figure 9: Screenshot showing the CA, NAs for Service types A, B and C as well as the Proxy Agent
for the Negotiation Web Service offered by Service Provider A2.

7. Conclusion and Future Work

Service Oriented Computing (SOC) is emerging as a
paradigm that utilizes services as fundamental elements
for developing distributed applications. It promises
organizations the ability to integrate their systems in a
seamless manner by composing distributed business
applications i.e. service compositions with minimal
effort both within and across organizational
boundaries. The challenge then, given a user
specification, an abstract service composition and a set
of component Web Services (for each service type
within the composition), is to find the best combination
of component Web Services which exactly match or is
‘as close as possible’ to the user specification.

In this paper, we have shown an agent based
approach to address this challenge. We have presented
coordinated-negotiation architecture for the negotiation
of each individual service type within the composition
while ensuring that the end-to-end QoS constraints of
the composition are satisfied. We have presented a
two-layered approach which enables the reuse of this
architecture in any application domain. Moreover, in
order to address the issue of interoperability, we have
implemented the negotiation systems on the provider’s
side as a Web Service so that the ASAPM system can
negotiate either with intelligent agents or with
Negotiation Web Services.

We have used the negotiate-all-then-enact approach
for the negotiation of the service composition as a
starting point. We would like to formalize the protocol
for the coordinated negotiation which involves two
layers of interaction. This paper has not discussed the

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

decision making strategies both at the negotiation level
and at the coordination level. Future research work will
be focused in developing strong and complicated
decision making mechanisms at both levels. A more
complete prototype will be developed once we have
addressed these issues, so that we can demonstrate the
overall functionality of the ASAPM System in
providing adaptive service agreement and adaptive
service management by integrating the Negotiation
System with the other components.

8. Acknowledgement

This work is partially supported by the Adaptive
Service Agreement and Process Management
(ASAPM) in Services Grid project (AU-DEST-
CG060081) and the EU FP6 Integrated Project on
Adaptive Services Grid (ASG) (EU-IST-004617). The
ASAPM project is proudly supported by the Innovation

Access Program - International Science and
Technology established under the Australian
Government’s innovation statement, Backing

Australia’s Ability.

9. References

[1] N. Milanovic, and M. Malek, “Current Solutions for Web
Service Compositions”, IEEE Internet Computing, 2004, pp.
51-59

[2] J. Yang, M.P. Papazoglou, “Service Component for
Managing Service Composition Life-Cycle”, Information
Systems, Elsevier, 2004, pp. 97-125

YF]',F.

COMPUTER

SOCIETY

[3] M. Matskin, P.Kungas, J. Rao, J. Sampson, S.A. Peterson.
“Enabling Web Services Composition with Software
Agents”, in the proceedings of the Ninth IASTED
International Conference on Internet and Multimedia
Systems and Applications, IMSA 2005, Hawaii, USA, ACTA
Press, 2005, pp. 93-98

[4] Adaptive Services Grid Project, available online at
http://asg-platform.org/cgi-bin/twiki/view/Public

[5] P. Faratin, C. Sierra, and N.R. Jennings, “Negotiation
decision functions for autonomous agents”, Robotics and
Autonomous Systems, 24 (3-4), 1998, pp. 159-182

[6] G. Weiss, “Multiagent Systems — A Modern Approach to
Distributed Artificial Intelligence”, MIT Press, 1999 pp. 619

[7] Foster, N. R. Jennings, and C. Kesselmann, “Brain meets
Brawn: Why Grid and agents need each other”, in
proceedings of Third International Conference on
Autonomous Agents and Multi-Agent Systems, New York,
USA, 2004

[8] Adaptive Service Agreement and Process Management
(ASAPM) Project, available online at
http://ciamas.it.swin.edu.au/tiki/tiki-index.php

[9] N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C.
Sierra and M. Wooldridge, “Automated Negotiation:
Prospects, Methods and Challenges”, International Journal
of Group Decision and Negotiation, 2000

[10] C. Bartolini, C. Preist, and N.R. Jennings, “A Software
Framework for Automated Negotiation”, SELMAS 2004,
LNCS 3390, 2005, pp. 213-235

[11] Foundation for Intelligent Physical Agents available
online at http://www.fipa.org/

[12] Java Agent Development Framework available online at
http://jade.tilab.com/

[13] Web Services to Agents: WS2JADE available online at
http://www.it.swin.edu.au/centres/ciamas/tikiindex.php?page

=ws2jade-proj

[14] X. T. Nguyen, R. Kowalczyk, M. B. Chhetri, and A.
Grant, “WS2JADE: A Tool for Run-time Deployment and
Control of Web Services as JADE Agent Services”, in
Software Agent-Based — Applications, Platforms and
Development Kits. Whitestein Technologies AG, 2005

[15] M. Calisti, M. Klusch and R. Unland (Eds.) “Software
Agent-Based Applications, Platforms and Development Kits”
Whitestein Technologies AG, 2005.

[16] H. Kreger, “Fulfilling the Web Services Promise”, in
Communication of the ACM, 46(6), 2003, pp. 29-34.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

[17] A. Keller and H. Ludwig, “Defining and monitoring
service level agreements for dynamic e-business”, in
Proceedings of the 16th System Administration Conference
(LISA 2002), November, 2002, Philadelphia, USA

[18] C.K. Hung, H. Li, J. Jeng, “WS-Negotiation: An
Overview of Research Issues”, in the Proceedings of the 37
Hawaii International Conference on System Sciences, 2004

[19] V. Tosic, B. Pagurek, K. Patel, “WSOL — A language
for the Formal Specification of Classes of Services for Web
Services”, in the Proceedings of ICWS 2003, CSREA Press
2003. pp. 375-381.

[20] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H.
Ludwing, J. Pruyne, J. Rofrano, S. Tuecke and M. Xu, “Web
Service Agreement Specification (WS-Agreement) 1.17,
2004, available online at
http://www.gridforum.org/Meetings/GGF1 1/Documents/d
raft-ggf-graap-agreement.pdf

[21] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and
S. Tuecke, “SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management” in
Distributed Systems, 8th Workshop on Job Scheduling
Strategies for Parallel Processing, Edinburgh, Scotland, July
2002."

[22] L. Nassifi, J.M.Nogueira, M. Ahmed, R. Impey, A.
Karmouch. “Agent-based Negotiation for Resource
Allocation in Grid” in the Proceedings of the Fourth
International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, 2005

[23] J. Brzostowski, R. Kowalczyk, “On Possibilistic Case-
based Reasoning for Selecting Partners for Multi-attribute
Agent Negotiation” in the Proceedings of the 4th
International Joint Conference on Autonomous Agents and
MultiAgent Systems, Utrecht, Netherlands, 2005

[24] 1. Rahwan, R. Kowalczyk, and H. Pham. “Intelligent
Agents for Automated One-to-Many Ecommerce
Negotiation” in Proceedings of the 25" Australasian
Computer Science Conference,Melbourne, Australia, pages
197--204, 2002.

[25] C.K. Hung, H. Lei, J. Jeng, “WS-Negotiation: An
Overview of Research Issues” in the Proceedings of the 37m
Annual Hawaii International Conference on System
Sciences, Hawaii, USA, 2004

[26] I. Mueller, R. Kowalczyk, “Service Composition
through Agent-based Coalition Formation” in Proceedings of
the Workshop on WWW Service Composition with Semantic
Web Services (WSCOMPSO0S5) held in conjunction with the
2005 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology,
Compiegne (France), September 2005. pp. 34 - 43.

YF]',F.

COMPUTER

SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

