
OptBPEL: A Tool for Performance Optimization
of BPEL Process

Sheng Chen, Liang Bao, and Ping Chen

Software Engineering Institute, Xidian University.
Xi’an, 710071, China

chensheng cs@yahoo.com, baoliang@mail.xidian.edu.cn,
chenping@sei.xidian.edu.cn

Abstract. The Business Process Execution Language (BPEL) is now a
de facto standard for specifying and executing business process for web
service composition and orchestration. As more and more web services
are composed using BPEL, tuning these compositions and gain better
performance becomes increasingly important. This paper presents our
approach for optimizing the BPEL process and introduces OptBPEL, a
tool for performance optimization of BPEL process. The approach starts
from the optimization of synchronization structure concerning link in
BPEL. After that, some concurrency analysis techniques are applied to
obtain further performance improvement. Finally, we give some experi-
ments and prove the efficiency of these optimization algorithms used in
OptBPEL.

Keywords: Performance Optimization, OptBPEL, Synchronization
Analysis, Concurrency Analysis, Optimization Algorithms.

1 Introduction

Service-Oriented Architecture (SOA) is now a prevalent architectural style for
creating an enterprise IT architecture that exploits the principles of service-
orientation computing to achieve a tighter relationship between the business
and the information systems that support the business [1].

With the growing adoption of service oriented computing, Web services com-
position is an emerging paradigm for enabling application integration within and
across organizational boundaries. Business Process Execution Language (BPEL)
[2] is now a promising and de facto language describing the Web services com-
position in form of business process.

BPEL supports concurrency and synchronization, hence BPEL processes may
suffer from deadlocks and time-dependent data races [3] due to the erroneous
use of flow and link like any other multi-threaded programs. For these reasons,
while orchestrating processes, business modelers may hesitate to use concurrent
paradigm, they prefer to invoke services sequentially even they could be executed
concurrently. In this paper, we propose OptBPEL, a tuning tool for performance
optimization of BPEL process. It first reads a BPEL process and performs some

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 141–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 S. Chen, L. Bao, and P. Chen

synchronization analysis on the link structure in process, generates a refined
BPEL process. After that, the refined process is transformed by applying some
concurrency analysis techniques and gains further optimization promotion.

2 Tool Description

Fig. 1 depicts the role of OptBPEL in the design and execution of BPEL process.
The BPEL process may be manually written or generated by a BPEL design
tool, e.g. ActiveBPEL Designer [4]. OptBPEL takes the BPEL code as input
and performs some synchronization related optimization (in synchronization op-
timizer), generates the refined BPEL process. After that, concurrency related
optimization (in concurrency optimizer) is applied to this refined BPEL process
and gives the final optimized BPEL process. In section 3 and 4, we describe
these two types of optimization that currently supported by OptBPEL.

Fig. 1. The architecture of OptBPEL

3 Synchronization Optimization

In this section, we focus on the optimization opportunities with respect to the
link construct in BPEL. These opportunities can categorized into three types:
namely refining synchronization granularity, removing unnecessary link and aug-
menting concurrency.

When optimizing a process, it is critical to guarantee that the original process
and its optimized version have equivalent semantics. Since this issue may take
pages to describe formally, in this paper, we concentrate on the data race and
deadlock aspect. If optimization operations that are related to link only don’t
induce data race and deadlock, then we can safely say that the optimized process
is equivalent to the original one.

3.1 Transform BPEL Process to BSG

The approach we exploited focuses on activity segment [5] rather than activity
itself, in order to reduce complexity and thus enhance efficiency. BPEL uses flow
and link to express concurrency and synchronization respectively. While the
flow could be modeled as fork and join, the link could be modeled as wait and
notify, as the semantics of them stated in BPEL specification [2]. To concentrate

OptBPEL: A Tool for Performance Optimization of BPEL Process 143

on how we tune the process, we intentionally omit the details as how to handle
the transition condition of the link and the join condition of activity.

The activity segments and their relation are captured by abstract graph
model, which we call BPEL Segment Graph (BSG), is a directed graph G =<
S, E >. Where the non-empty set of segments S contains all the segments in
G, the edges set E expresses the relation among them. We classify the edges
into two types: the first is sequential edge represented by SEQ used to express
sequential relation; the second, and more important type is the synchronization
edge represented by SYN used to express synchronization dependencies.

The BSG of a BPEL process can be established statically by the virtue of
BPEL synchronization semantics and that BPEL can not create thread dynam-
ically [2]. Koenraad [6] provided great details about how to construct series-
parallel tack graph for parallel program, the construction of BSG for a BPEL
process is kind of similar to that.

3.2 Optimization Algorithm

A deadlock can not arise during the optimizing process due to the fact that any
type of the three optimization operations that impairs the synchronization of
the process may in turn incur data races. If any two segments in the BSG will
not conflict in variable access, then the process is free from data race.

Two legs of the race detection between two segments are their concurrency and
variable sharing. Whether two segments are concurrent or not can be obtained by
deciding they are reachability in BSG. Given two segments, if there exist a path
from one segment to the other, then they are ordered. Otherwise, they are concur-
rent. When two concurrent segments access the same variable, and, at least one
access is write, then the race occurs. Since BPEL can not create variable dynam-
ically, the read/write variables set of a segment can calculated statically [2].

The ”Link Optimizing” algorithm, which takes BSG as its parameter and
optimizes it, sketches the optimizing process. The algorithm terminates when no
optimizing can be done any more. During each iteration of while, we inspect
each SYN edge in bsg for optimizing opportunities. In the part marked (1), we
survey the edge if it can be removed, if we get it, then no further optimizing is
need. Otherwise, in part (2), we try to refine it. We keep on refining a SYN edge
until it can be removed or it can not be refined any more. In part (3), we deal
with the augmenting of concurrency.

4 Concurrency Optimization

4.1 Process Modeling and PDGs

In order to apply static analysis to a BPELprocess,we must first convert the BPEL
process into its equivalent representation of TCFG. As described in [7], the trans-
formation is straightforward. Note we distinguish the interaction nodes (represen-
tation of reply, receive and invoke activities) and calculation nodes (representation

144 S. Chen, L. Bao, and P. Chen

Input: BSG bsg
Output: Optimized bsg
while 1 do

foreach SYN edge se in bsg do
let t and h be the tail and head node of se respectively;
if exist a path from t to h besides se then // (1)

remove se from bsg;
else if no node in bsg conflict with h then // (2)

heads = (s) | (h, s) ∈ E in bsg;
add a SYN edge from t to each node in heads, remove se; continue;

end
seq nodes=the set of nodes that are reachable from h by sequential edges
merely and are not reachable from t, excluding h;
if no node in bsg conflicts with none of seq nodes then // (3)

delete the sequential edges entering and leaving h;
end
if no optimizing operation is done during this iteration then break;

end

Algorithm 1. Link Optimizing

Fig. 2. The TCFG representation of BPEL process

of other activities). This distinction is meaningful because the experiment result
in [8] shows that the time cost of execution of interaction nodes is at least 5–10
times higher than that of calculation nodes. Fig. 2 shows an example of TCFG, the
interaction nodes are represented by rectangular boxes and the calculation nodes
by rounded boxes.

To obtain a program dependence graph (PDG) representation of this process,
we need to insert control and data dependency that model the partial ordering
on activities in the BPEL process that must be followed to preserve the semantic
of the original process, [8] gives a detailed description.

4.2 Node Partitioning and Merging

In this section, we describe a simple algorithm called merge-reorder partitioning
algorithm. The aim of this algorithm is to determine the best partition at which

OptBPEL: A Tool for Performance Optimization of BPEL Process 145

Fig. 3. Time cost model

each calculation node must be executed in some interaction nodes in order to
minimize the total execution time of the BPEL process.

Before giving the description of the algorithm, we first define the time cost
model of the execution. Fig. 3 shows the time cost under different (basic) situa-
tion (Note T(Ai) represents the time cost of the execution of activity Ai).

Merge-reorder algorithm. An informal description of the merging and re-
ordering algorithm is as follows:

1. Locate a control node, in the PDG whose child nodes are all leaf nodes. For
all nodes that have the same control dependence condition on, repeat steps
2 through 6. Continue till all control nodes have been processed.

2. Merging: identify the set of dependence edges E, that pertain to a depen-
dence between siblings with the control dependence condition chosen in step
1, such that at least one of the sibling is a calculation node. Pick an edge
in E and merge the source and destination nodes of the edge. The resultant
dependence of the merged task is the union of the component nodes.

3. When a calculation node gets merged with an interaction node, the combined
node is an interaction node. When a calculation node gets merged with an-
other calculation node, the combined node is also marked as a calculation
node.

4. Reordering: for all configurations generated in step 4, using the time cost
model to choose the merging configuration that likely to yield the minimum
time cost value. For all partitions that only have one single calculation node,
merge them into other different partitions averagely.

5. Exhaustively consider all merging configurations of siblings that can be gen-
erated by merging some subset of the dependence edges in E. Since the size
of E for a single region is usually small, this exhaustive search is usually
feasible in practice.

6. Once a region (subgraph) has been merged, we treat the whole subgraph
as a single node for the purpose of merging at the next higher level. The
dependence of the merge is a union of all dependence.

This algorithm is revised from the one in [8], the main difference between them
is that in [8], author finds the partitions to maximize throughput, whereas the

146 S. Chen, L. Bao, and P. Chen

objective function we used here is to minimize completion time, another differ-
ence is that the our algorithm must create partitions such that each partition
has exactly one interaction node and zero or more calculation nodes.

5 Performance Evaluation

Our experimental setup for testing optimized orchestration is as follows. We use
a cluster of Intel Pentium based Windows machines (2.8G, 512MB RAM) con-
nected by a 100 Mb/s LAN. Each test case we use runs on ActiveBPEL+Axis2
and RCbpel+RCWS respectively. RCbpel is a portable engine which is BPEL
specification compliant developed by our research center implemented in C++,
and RCWS is a web service container implemented by means of hybrid program-
ming in C++ and Python. The reason why we use two settings is to demonstrate
that performance enhance brought by OptBPEL is generic and not BPEL en-
gine dependent, rather to compare execution duration and resource consumption
between them.

Since BPEL is a relatively new language, there are currently no standardized
BPEL benchmarks that we could use in our performance evaluation. However, we
have tested many BPEL process including these taken from real-world, such as
banking system. Fig. 4(a) presents the result of the optimization of travel reserve
process (note the letter R represents the RCbpel engine and A represents the
ActiveBPEL engine in these figures), Fig. 4(b) shows the optimization result of
online book purchase process. The gain is minor when average service response
time is relatively short, this is because the gain is offset by lengthy and frequent
network connecting to some extent. However, when average service response time
is long, as is the most case of real services, and the network connecting impact
is negligible, we see drastic performance enhancement.

Fig. 4. Experimental results

OptBPEL: A Tool for Performance Optimization of BPEL Process 147

Fig. 4(c),(d) show the optimization result by OptBPEL of two complex BPEL
processes, the left one is a banking process and the other is a real-life train
ticket purchase process, both them consist of hundreds of invoke and receive
activities and twisted control flow. We once more see a significant performance
improvement after the optimization by OptBPEL. The performance gain, which
is average service response time correlated, ranges from 15% to 57%. When
the process is complicated, there is always, as can be seen in banking process
and ticket purchase process, bundles of performance optimization opportunities.
OptBPEL taps and exploits all these opportunities, and thus speeding up the
process dramatically.

6 Related Works

There has been considerable research effort paid to BPEL. WofBPEL [9] trans-
lates BPEL processes to Petri nets and imposes existing Petri nets analysis
techniques to perform static analysis on processes, [10] modifies the CWB to
support BPE-calculus by means of PAC to ensure that each link has one source
and target activity exactly, and to guarantee that the process is free of dead-
locks. Mads [11] describes some region-based memory techniques for programs
that perform dynamic memory allocation and de-allocation, which is similar with
our merge-reorder algorithm.

A mathematical performance model of BPEL process is addressed in [12], thus
we may capture a deeper understanding of the performance of a process; on the
other hand, it does not mention how to optimize a process.

Much work has been done on automatic parallelization of sequential programs
based on PDGs, e.g. [13]. In contrast, this paper focuses on the use of PDGs in
partitioning of composite web service applications for reducing execution time
of BPEL process. Although the IBM Symphony project [8] employs a similar
way of partitioning composite web services, its final goal is to implement the
decentralized orchestration, which is a totally different problem.

7 Conclusions and Future Work

This paper presents our approach for tuning and optimizing the BPEL pro-
cess and introduces OptBPEL, a tool for performance optimization of BPEL
process. The approach starts from the architecture of OptBPEL, which contains
two optimizers, namely synchronization optimizer and concurrency optimizer re-
spectively. Then two important analysis methods, synchronization analysis and
concurrency analysis, are introduced. We argue the efficiency of these algorithms
used in OptBPEL and give some experiments to prove it.

Our further work will focus on the following three issues: 1) in some specific
situations(e.g. grid computing), the resources, particularly computing resources,
may be restricted. While optimizing under these circumstances, we will take the
constraints into account. 2) the approach imposed in synchronization optimizer
will emphasize on activity level rather than activity segment level since the

148 S. Chen, L. Bao, and P. Chen

current algorithm misses some optimizing opportunities; and 3) the elaborate
time cost model of BPEL execution is needed and more efficient merge-reorder
algorithm deserves a deeper observation.

References

1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and direc-
tions. In: 4th International Conference on Web Information Systems Engineering
(WISE), pp. 3–12. IEEE Press, New York (2003)

2. Jordan, D.: Web services business process execution language version 2.0. OASIS
Specification (2007)

3. Savage, S., Burrows, M., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data race
detector for multi-threaded programs. ACM Transactions on Computer Systems 15,
391–411 (1997)

4. Active-Endpoints: Active Endpoints Corp. (2007),
http://www.active-endpoints.com/active-bpel-designer.htm

5. Christiaens, M., Bosschere, K.: Trade: a topological approach to on-the-fly race
detection in java programs. In: Java Virtual Machine Research and Technology
Symposium (JVM), Usenix Association (2001)

6. Audenaert, K., Levrouw, L.: Space efficient data race detection for parallel pro-
grams with series-parallel task graphs. In: 3rd Euromicro Workshop on Parallel
and Distributed Processing, pp. 508–515. IEEE Press, New York (1995)

7. Yuan, Y., Li, Z.J., Sun, W.: A graph-search based approach to bpel4ws test gen-
eration. In: International Conference on Software Engineering Advance (ICSEA),
pp. 16–22. IEEE Computer Society Press, Los Alamitos (2006)

8. Nanda, M., Chandra, S., Sarkar, V.: Decentralizeing execution of compostite web
services. In: 19th Object-Oriented Programming, System, Languages, and Appli-
cations (OOPSLA), pp. 170–187. ACM Press, New York (2004)

9. Ouyang, C., Wil, M.P., van der Aalst, Breutel, S.: Wofbpel: A tool for automated
analysis of bpel processes. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 484–489. Springer, Heidelberg (2005)

10. Koshkina, M., Breugel, F.: Modelling and verifying web service orchestration by
means of the concurrency workbench. TAV-WEB Proceedings/ACM SIGSOFT
29–5 (2004)

11. Tofte, M., Talpin, J.-P.: Region-based memory management. Information and Com-
putation 132, 109–197 (1997)

12. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of ws-bpel-based
web service compositions. In: IEEE Services Computing Workshops (SCW), pp.
140–147. IEEE Computer Society Press, Los Alamitos (2006)

13. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems 9
(1987)

http://www.active-endpoints.com/active-bpel-designer.htm

	OptBPEL: A Tool for Performance Optimization of BPEL Process
	Introduction
	Tool Description
	Synchronization Optimization
	Transform BPEL Process to BSG
	Optimization Algorithm

	Concurrency Optimization
	Process Modeling and PDGs
	Node Partitioning and Merging

	Performance Evaluation
	Related Works
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

