
X. Zhou et al. (Eds.): APWeb 2006, LNCS 3841, pp. 702 – 707, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Study on QoS Driven Web Services Composition

Yan-ping Chen, Zeng-zhi Li, Qin-xue Jin, and Chuang Wang

Department of Computer Science and Technology,
Xi’an Jiaotong University, 710049, Xi’an China

yanping@tom.com, lzz@mail.xjtu.edu.cn
wangchuang1103@sina.com

Abstract. Providing composed Web Services based on the QoS requirements
of clients is still an urgent problem to be solved. In this paper, we try to solve
this problem. Firstly, we enhanced the current WSDL to describe the QoS of
services, and then gave a way to choose the proper pre-exist services based on
their QoS.

1 Introduction

Web Service is a hotspot in the research of SOA as the best realization of SOA [1].
There are several problems in Web Service frame needed to be studied such as service
composition, data integration of services, security of services1, etc. However, all
these existing problems are aroused by the composition [2]. The task of composition
is to combine and link existing Web services to create new Web services. Lots of
researchers have paid their attentions to the service composition. SELF-SERV [3] is a
platform that can provide composed service, but SELF-SERV emphasizes only on
functional composition and ignores the QoS requirements of clients. A way to
compose components based on QoS is proposed in [4], but it gives no details about
how to describe the QoS of a service. In distributed environment, different service
components may possess the same functions, and references [5-7] provide WSOL
(Web Service Offering Language) that can change services at run time by dynamic
switching in different service constrains. DAML-S [8] aims to define ontologies for
service description that will allow software agents to reason about the properties of
services.

The above approaches solve some issues in composed Web Services from
different views, but none of them can give a whole and realizable way to provide
composed Web Services based on clients’ QoS. To describe QoS requirements of
clients, we proposed a new Web Service description language-EWSDL (Enhanced
Web Service Description Language), and optimized concurrent Web Service frame
with an evolved role of provider to meet non-functional requirements of clients to
realize compositions.

The remainder of this paper is organized as follows. In section 2 we give an enhanced
Web Service description language-EWSDL and the composition selection algorithm.
The paper is concluded in section 3.

 Study on QoS Driven Web Services Composition 703

2 Web Service Description Model

2.1 QoS Property of Web Services

There are many failed projects because of ignoring non-functional properties of
software [9]. Definitions of non-functional properties of software are various and have
no unified definition [10]. However, there are still some broadly accepted views about
the non-functional properties. Generally speaking, the non-functional properties of
software should include performance, reusability, maintainability, security, reliability,
and availability. In Internet, we call the non-functional property as QoS property [13].

If a service provider only takes functional requirement of clients into account
without considering non-functional requirements when providing the service, the
provided service will not be accepted by clients at runtime. How to assure QoS of
services is a stringent problem for service providers. Now there are two different ways
to solve this problem. One is syntax-based approach extending the current WSDL with
more elements, and the other is to develop a new language based on semantic, such as
XL, OWL-S. Both ways intend to add more information of the service when descript
the service. But the language based on semantic is more complex. So, in this paper we
extend WSDL to support more QoS descriptions.

WSDL2.0 describes three functional properties of Web Service: what to do, where to do,
and how to do. However, WSDL cannot describe non-functional properties of services
[11]. So, WSDL cannot be used to automatic service lookup and large-scale reuse and
composition. Because of these defections, WSDL should be extended to include more
information. In addition, only when including the non-functional properties it is integrity.

Essentially, how to describe and quantitative analyze non-functional properties of
software is a complex problem and is still needed to solve, so how to describe the
non-functional properties of Web Service has no existing way. Many researchers have
paid their attentions to this problem. V.Tosic proposed a Web Service Offering
Language[5-7](WSOL) to extend WSDL by adding new mark, such as price, time, etc.
In essence, WSOL only provides some disperse, predefined, and limited property plate,
so it lacks of flexibility Some non-functional properties are given in [12], such as
availability, channels, charging style, settlement, payment obligations, etc. The author
also indicates that the non-functional properties of Web Service are actually the QoS
properties actually. A model for Web Service discovery with QoS is given in [13], it
gives some definitions of QoS properties, but these properties are not from the view of
managing composed Web Services. In this paper we explore an enhanced Web Service
description language according to the need of managing the QoS properties of
composed Web Service.

2.2 Description Model of Web Service

Definition 1. Description model of Web Service. Let S be the description model of

Web Service which can be expressed as S={Func，QoS}，where, Func denotes the
functional properties of S, and QoS denotes the non-functional properties of S.The
functions of Web Service is described by the portTypes of WSDL, in order to describe
the QoS properties, a tOperationInst element is added to tport element of WSDL.

704 Y.-p. Chen et al.

Considering that the QoS properties of Web Service should be independent to the
domain of services and they also should be quantifiable, we use a vector in seven dimens-
ions to describe the QoS of a Web Service (both element service1 and composed service)

responseTime represents the response time of a element service;
availability represents the probability of the service can be used correctly;
concurrency represents the maximum ability to support concurrent transactions;
expireTime represents the expire time of a service, and the reliability of a service

can be ensured before the expireTime,
price represents the money the client should pay for this service,
fine represents service provider(client) should compensate client(provider) for

breaking the contract between them. Commonly, the fine has a linear relation with the
price,

securityLevel represents the security level of a service.
For a composed service CS it also possesses the same parameters, but in a CS, these

QoS parameters cannot be calculated by a simple mathematical function such as sum.
For example, responseTime of CS is not the sum of responseTime of every element
services when existing concurrent process in CS. Followings give a way to calculate the
QoS parameters of CS.

ResponseTime, considering that there exists concurrent service in composed Web
Service, response time of composed service is not the sum of responseTime of all the
element services, it should be the sum of critical route in execution process. CPA[15] is
an algorithm to find the critical route.

ResponseTime = CPA (m21 Service,...,Service,Service),

Availability= ∏
=

m

1i
iyavalibilit ,

Concurrency = min (concurrency 1 ,concurrency 2 ,..., concurrency m),

ExpireTime = min (expireTime 1 , expireTime 2 ,..., expireTime m),

Price = U
m

1i
iprice

=
,

Fine = A*Price，the client and the provider negotiate to get A,

SecurityLevel=min(securityLevel 1 ,securityLevel 2 ,...,securityLevel m).

These QoS properties are not independent, for example, a correlation between price
and fine. This is why composition according to clients’ QoS requirements is a difficult
problem.

2.3 Composition Selection Algorithm

Definition 2. Service Class. Let A be a set of Web Services which have been registered
into the Composer, and these services can be divided into several subsets according to

1 Web Services that participate in the composition are all called element services. In this paper,

there are no essences differences between the element service and the composed service except
for the granularity.

 Study on QoS Driven Web Services Composition 705

the different functions, and each Web Service of A belongs to one subset at least, and
the differences among services which belong to a same subset only are the QoS
properties. Noticed, all the Service Classes form an overlay of A not a partition.

It is a hard work for the service composer to provide a composition Web Service to
clients according to their QoS requirements based on the following two reasons: first,
there are no standard measurement of all these QoS properties, second, QoS properties
are not independent, and one QoS property may favor/feed back others.

So, the multi-dimensional of the QoS properties cannot be merged into one
dimension, we proposed a Composition Selection Algorithm, which relies on the
following assumptions:

1) Clients’ SLA is the QoS of the composed Web Services;
2) Composed services and element services use the same glossary;
3) The required QoS of clients can be pressed as a vector (ResponseTime *

c ,

Availability ,*
c Concurrency ,*

c ExpireTime ,*
c Price ,*

c Fine *
c , Security

Level *
c);The requirements of clients usually fall into a range not a certain value, so

we must define the relation between composed service and the required QoS
(requirement) of clients;

4) The composition logic is predefined, and the aim is to simplify the composition
and pay more attention to QoS.

There are many ways to solve the multi-object programming [16,17,18], and in our
prototype, we used the following method.

Step1, Construct programming matrix mnijaA ×=)(, and normalize A to

mnijrR ×=)(using proper ways;

Step2, Calculate mnijrR ×=)(to get mnijrR ×

••
=)(, where

∑
=

•
=

n

1i
ij

ij
ij

r

r
r ， ., MjNi ∈∈

Step3, Get the information entropy jE of every QoS,

,, Mjrlnr
n ln

1
E ij

n

1i
ijj ∈−=

•

=

•

∑

Step4, Get weight vector),...,,(m21 ωωωω = , where

∑
=

−

−
=

m

1k
k

j
j

El

E1

)(
ω ,

706 Y.-p. Chen et al.

Step5, Synthesis QoS of every scheme is defined as

∑
=

=
m

1j
jiji rz ωω)(， ,Ni ∈

Step6, Sorting and selecting a scheme are according to)(ωiz (Ni ∈).

3 Conclusion and Future Directions

The studies on Web Service management focus on two aspects, one is the
self-management of the element Web Service; the other is the management of
composed services [5-7]. The QoS properties are independent on above two aspects due
to different targets. In this paper, we aim to manage the QoS of composed Web
Services and propose a new service description language based on current WSDL, and
then propose a composition selection algorithm.

Short-term goals of our research contain three parts: firstly, we will extend the
current UDDI to support EWSDL; secondly, we will add a monitor to the prototype
E-WsFrame. The monitor can collect and analyze service data and make judgment
when client or provider violates the agreement between them. Finally, we will order the
candidate services by some algorithms to reduce composition price.

Acknowledgements

This research was sponsored by the National Science Foundation of China NSFC under
the grant No. 90304006 and Research Fund for Doctoral Program of Higher Education
of China (No.2002698018).

References

[1] IBM dW 2004 special，http://www-128.ibm.com/developerworks/cn/.
[2] YUE Kun, WANG Xiao-ling, ZHOU Ao-ying. Underlying Techniques for Web Services:

A Survey. Journal of software ,2004，15(3):428-442.
[3] Boualem Benatallah, Marlon Dumas, Quan Z. Sheng, Anne H.H. Ngu. Declarative

Composition and Peer-to-Peer Provisioning of Dynamic Web Services. Proceedings of the
18th International Conference on Data Engineering (ICDE.02).

[4] LIAO Yuan, TANG Lei, LI Ming-Shu. A Method of QoS-Aware Service Component
Compositon. Chinese Journal of computers, 2005,28(4):627-p634.

[5] Esfandiari, B., Tosic, V. Requirements for Web Service Composition Management, in
Proc. of the 11th HP-OVUA Workshop, Paris, France, June 21-23, 2004.

[6] Tosic, V., Patel, K., Pagurek, B. WSOL - Web Service Offerings Language, in Proceedings
of the Workshop on Web Services, e-Business, and the Semantic Web - WES Bussler, C.et
al.(eds.), Toronto, Canada, May 2002.

[7] Tosic,V, Ma, W, Pagurek, B, Esfandiari,B. Web Services Offerings Infrastructure (WSOI)
– A Management Infrastructure for XML Web Services. In Proc. of NOMS (IEEE/IFIP
Network Operations and Management Symposium) 2004, Seoul, South Korea, April 19-23,
2004, IEEE, 2004, pp. 817-830.

 Study on QoS Driven Web Services Composition 707

[8] Chakraborty D, Joshi A, Yesha Y, Finin T. GSD: A novel group-based services discovery
protocol for MANETS. In: Proc. of the 4th IEEE Conf. on Mobile and Wireless
Communications Networks. 2002.

[9] Finkelstein A, Dow ell J. A Comedy of Errors: the London Ambulance Service case Study.
Proceedings of the 8th International Workshop on Software Specification and Design.
1996. 2-4.

[10] YANG Fang-chun, LONG Xiang-ming. An Overview on Software Non-Functional
properties Research. Journal of Beijing University of Posts and Telecommunications,
2004,27(3):1-11.

[11] WSDL 2.0. http://www.w3.org/TR/2005/WD-wsdl20-primer-20050510/ .
[12] JUSTIN O’SULLIVAN. What’s in a Service? Towards Accurate Description of

Non-Functional Service Properties. Distributed and Parallel Databases,2002, 12:117–133
[13] Shuping Ran. A Model for Web Services Discovery with QoS. ACM SIGecom Exchanges,

2003, 4(1):1-10.
[14] McCall J.A.,Richards P.K.,Walters G.F. Factors in software quality. RADC:Technical

report RADC-TR-77-363,1977.
[15] M. Pinedof. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 2001.
[16] CHEN Ting, Programming Analysis. Science Press. Peking. 1987.
[17] WANG Xiao-ping, CAO Li-ming. genetic algorithm- theory, application and realization.

Xian Jiaotong University press. Xian, 2002.
[18] Hwang C L, Yoon K. Multiple Attribute Decision Making and Applications. New York:

Springer-Verlag, 1981.

	Introduction
	Web Service Description Model
	QoS Property of Web Services
	Description Model of Web Service
	Composition Selection Algorithm

	Conclusion and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

