BoPi — a distributed machine for experimenting Web Services technologies

Samuele Carpineti
Dept. of Computer Science

University of Bologna, Italy

Abstract

BoP1i is a programming language with a runtime sup-
port that allows the distribution and the execution of pro-
grams over the network. The language is a process calculus
with XML values and datatypes, and with a pattern matching
mechanism for deconstructing values. The compiler gives a
typesafe bytecode in the form of an XML document, that may
be deployed on the network. What comes out is a simple,
statically typed, and formally defined core BPEL language
with a basic query mechanism supplied by patterns.

1 Introduction

The BoPi project (www.cs.unibo.it/BoPi) has
two main motivations. The first one is to provide a dis-
tributed implementation of the asynchronous m-calculus. In
asynchronous m-calculus, a program (or process) has a col-
lection of channels, and it executes through interaction over
these channels. A natural distributed setting is to let each
channel belong to a single location. For instance, there is
one location for the channels x, y, z and another for u, v. A
service x(w).P goes in the first location; it waits to receive
formal parameter w and then continues with P. If a ser-
vice request T|v] should arise anywhere else in the system,
it knows where to find the matching input resource. This
basic scheme has been extensively studied (the 7, calcu-
lus [1], the local pi calculus [2], and is used in previous dis-
tributed prototypes (the join calculus [3], Microsoft Biztalk
Server [4]).

However, we immediately face the problem of input
capability, which is the ability in the (asynchronous) -
calculus, to receive a channel name and subsequently ac-
cept input on it. Consider the example x(u).u(v).Q. This
program is located at (the location of) x, but upon reaction
with T[w] it produces the continuation w(v).Q{%/,,} — and
this continuation is still at , whereas it should actually be
at w. Solving the problem of input capability is a key chal-
lenge in distributing the m-calculus. The join calculus, the
local pi calculus and the 71, calculus simply disallow input

Cosimo Laneve
Dept. of Computer Science

University of Bologna, Italy

Paolo Milazzo
Dept. of Computer Science

University of Pisa, Italy

capability, on the grounds that it seems un-implementable.
That is, in a term 2(u). P, the P may not contain any inputs
on channel u. Biztalk offers input capability when run over
a reliable message service (MSMQ) but not otherwise. Im-
plementation details of Biztalk have not been published; in
this respect this paper may be seen as a formal alternative
implementation.

We solve the input capability problem in BoP1i using the
theory of linear forwarders [5]. The solution consists of al-
lowing just a limited atom of input capability — the linear
forwarder. A linear forwarder x—oy is a process which al-
lows just one message on = to be turned into a massage
on y. (A linear forwarder x—oy may be safely considered
as just the m-calculus process z(u).g[u].) To illustrate how
linear forwarders encode input capability, consider the term
2(u).u(v).Q. Then it is encoded as

z(u).(u) (u—ov” | ' (v).Q)

where the input u(v) has been turned into a local input v’ (v)
at the same location as x, and where the forwarder allows
one output on u to interact with v’ instead. The key ob-
servation is that the linear forwarder u—ou’ is easy to im-
plement: it is just a packet containing two IP-addresses and
directed to the location of u. Using this mechanism, the
BoPi machine admits to import a remote (BoP1i) service
and to perform inputs on it.

The second motivation of the BoPi project is to design
a distributed machine running applications that may be ex-
ported to the web (web services). For this reason we use the
W3C standards WSDL and XML for describing interfaces and
values, respectively. BoPi programs may construct XML
documents and, by means of a pattern matching mechanism,
deconstruct them. The compiler performs a semantic analy-
sis (omitted in this paper, see [6]) guaranteeing that invalid
documents can never be produced. The design of the BoPi
datatype and pattern languages, as well as most of the al-
gorithms regarding these features, have been strongly influ-
enced by the XDuce [7] and CDuce [8] prototypes — two
functional languages with native XML datatypes. We refer
to [6] for a detailed discussion.

A major technical difficulty in the BoPi datatype lan-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

guage (with respect to XDuce and CDuce) is that values, as
in XML, may contain endpoint references that are channels
where values can be sent. An endpoint reference is repre-
sented by the Uniform Resource Identifier (URI in the fol-
lowing) of the WSDL interface describing the schema of the
values it accepts. The semantics rules, which are omitted in
this contribution (we refer the reader to [9]), expose an en-
vironment that is partially supplied by local service declara-
tions and partially by the global environment. The mainte-
nance of this environment means that communications also
gather information about the schemas of the channels con-
tained in the message. A related problem is found in the
algorithm matching a document against a pattern (pattern
matching). The algorithm checks if the document conforms
the schema specified in the pattern and returns a set of vari-
able bindings. As in XDuce, pattern matching in BoP1 is
implemented using top-down tree automata, but the pres-
ence of URIs inside values increases the complexity of the
algorithm. In particular, verifying if a channel matches a
pattern, requires to check if the schema of the channel is
a subschema of the one specified in the pattern. This, in
general, requires exponential time in the size of the tree au-
tomata of the pattern [10] and may significantly degrade the
run-time efficiency of possible implementations. To allevi-
ate this problem we add some restrictions on schemas that
make subschema verification polynomial [9].

The result of our motivations — the BoPi machine —
is a formally specified distributed machine running pro-
grams that are (statically typed m-calculus) processes with
XML values, datatypes, and patterns. Channels in the BoP1i
machine have an associated WSDL document defining their
schema and two interfaces: a HTTP interface for not-BoPi
clients and a BoP1i one for the others. They are first class
entities that can be dynamically created and passed to other
services that can use them for sending requests. Anticipat-
ing some of the syntax of the BoP1i language, consider, for
instance, the following service:

new response:<ok[] + notok[]> in
s! (book ["BoPi"], date["8-10-2004"],
reply-to[response])
response? (. result)

Reading every -! (-) as a service invocation and every
-? (-) as a waiting for a value, the example above cre-
ates the channel response where it receives the result of
an invocation. The server accepting the request may either
reserve the book and reply to the response channel or,
as the following code does, pass the channel to another ser-
vice that sends the notification to the client:

s? (book [string title], datelstring xI,

reply-to[AnyChan y])
// reserve the book
notifier! (notifyToly])

As it stands, the BoP1 machine is a programming technol-
ogy for defining and experimenting web services. Com-
pared to an emerging standard, the BPEL language [11],
the BoP1i language has mostly the same operations, except
for exception handling and transactions. These operations
are definitely relevant for web services, but their formal ac-
count and runtime support is outside the scope of this paper.
A discussion of this issue is done in the conclusions.

This contribution is structured as follows. Section 2 is
an informal introduction to the language constructs through
examples. Section 3 specifies the bytecode language and
defines the schema of the instructions. Section 4 describes
the architecture of the BoPi machine, and in particular the
channel manager and the virtual machine. Section 5 de-
scribes the loader directives. We conclude in Section 6. The
formal details about the BoPi language and its semantics
are omitted. The reader is referred to [9].

2 The BoPi programming language

We introduce the basic elements of the BoPi program-
ming language: values and expressions, schemas, patterns,
and processes. We also discuss type checking and pattern
matching.

2.1 Values and expressions

Values are fragments of XML documents. A value can be
an integer, a string, a channel literal — a Uniform Resource
Identifier —, or a (possibly empty) sequence of labelled el-
ements. Labelled elements are values tagged with a label.
For example:

msg["hello"], doc[2]

is a document fragment containing a sequence of two el-
ements labelled msg and doc, and containing the string
"hello" and the integer 2, respectively. The value void
represents the empty sequence. Non empty sequences
never contain void, that is msg["hello"], void,
doc [2] is not valid.

Channel literals may be channels of BoPi machines or
not. In any case these literals have the shape:

http://www.BoPi.it/chanl.wsdl

namely the URI of the WSDL interface. The WSDL file con-
tains the location where the service is available and the kind
of messages it accepts. These information are used by the
runtime environment for pattern matching and communica-
tions.

Expressions extend values with variables, equality tests,
and standard operators for strings and integers. In order to
build complex terms, expressions include sequence and la-
belling operators. For instance

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

ali - jl, bl"the",x]

is an expression evaluating to a sequence of two labelled el-
ements where the first contains the difference of the value
of the integers variables i, j and the second contains the
concatenation of the string "the" and the one stored in x.
If the variable x is bound to the value void, the concatena-
tion evaluates to the string "the".

In the following, values as a [void] are shortened into

al].
2.2 Schemas

Schemas describe collections of values that are struc-
turally similar. For example,

alint], blstringl]*

describes all the documents with an a-labelled element con-
taining an integer, followed by zero or more b-labelled el-
ements containing a string. Schemas may be grouped by
means of unions:

alint] + b[string]*

describes the documents consisting either of a a-labelled el-
ement containing an integer or of a sequence of b-labelled
elements containing strings. It is possible to abstract away
from the name of the label using ~. Therefore, the schema

" [int]

describes the documents consisting of an element with any
label and containing an integer. Moreover, the schema:

("\a) [int]

describes documents consisting of an element with any la-
bel apart from a and containing an integer. As for values,
schemas as a [void] will be shortened into a [].

BoPi schemas depart from XML DTDs or XML Schema
for the so-called channel schema. A channel schema is writ-
ten using the channel constructor < - >. For example

<int>

describes the set of channel literals carrying integers.

In BoPi schemas are well-formed and determined.
Roughly, a schema is determined if the arguments of the
union operator (+) have disjoint set of labels. Therefore
schemas like:

alint] + alstring]

are forbidden. This constraint is for avoiding expensive run-
time checks in the pattern matching algorithm.

Schemas include schema names that are bound by global
definitions such as:

def t = alint] + b[string]*

Recursion and mutual recursion is admitted in def U= S,
provided S is well-formed. Roughly, S is well formed if
schema names occur either within labelled elements or at
the end of a sequence [9]. For example

def t = docl[t]
def s doc2([], s

are well-defined, while
def t = t, docl[int]

is not legal. This restriction makes schemas correspond to
regular tree grammars instead of context free tree gram-
mars [10]. As a consequence, the subschema relation, used
for type checking, is decidable in BoP1i, whilst it is unde-
cidable for context free tree grammars. Recursion can be
used to derive the schemas collecting all the values and all
the channel values. Let

def Empty = Empty

be the schema describing an emptyset of values. Then the
schema describing every channel value is <Empty>, while
the schema describing every value is:

def _ = (int + string + <Empty> + ~[_])*

2.3 Patterns

Patterns allow the deconstruction of values using match-
ing. Patterns are mostly schemas annotated with variables.
These variables are replaced at run-time by values, accord-
ing to a pattern matching algorithm. For example

alint il, bl_ j]

is a pattern that matches sequences of a a-labelled value
containing an integer, and of a b-labelled value with
any content. When the pattern matching succeeds, i
is bound to an integer, and j to the content of the b-
labelled value. For instance, the above pattern matches
witha [5], blc["hello"]], binding i to 5, and j to
c["hello"]. Channel patterns specify the type of the
channel literals to match. For instance,

<all> x

matches every channel literal carrying values of schema
a []. It also matches every channel literal carrying values
all + bl[]. The reason for this is that matched channels
can be used only for sending values and a channel carry-
ing values of schema a[] + b [] can be safely used for
sending values of schema a [].

A pattern as

(al<string>] + b[<Empty>]) x

matches with all the values having either a label a contain-
ing a service of type string or a label b containing any

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

service.

Patterns in BoP1 are linear with respect to variables and
unambiguous. Linearity means that, in s x, t vy, vari-
ables x and y do not clash. Therefore, if the pattern match-
ing algorithm succeeds, by linearity it yields exactly one
binding for each variable. Unambiguity entails that there
is always a unique substitution for unifying a pattern with
a matching value (the pattern matching algorithm is deter-
ministic [9]). For instance

(alint] + wvoid) v, (alint] + void) w

is ambiguous because there are two possible substitutions
for v and w when the matching value is a [5] (one binding
vtoal[5] and w to void and another binding v to void
andwtoal[5]).

2.4 Processes

Processes are the computing entities of the BoP1i pro-
gramming language. Interactions between processes is
achieved by asynchronous message passing. The output of
a value V on a channel u is written in BoP1i:

u! (V)

The output is non-blocking: the sender does not wait un-
til the receiver really reads the message. Elaborated forms
of communication, such as rendez-vous, must be explic-
itly programmed by using the continuation passing style.
When V contains channels, a process receiving V may use
the channels for sending values: using them for receiving
messages is disallowed in BoPi — only the output capabil-
ity is transferred. The BoPi runtime inspects the channel
to grep details about its implementation. Such details let to
localize the service and to use the right protocol for outputs.
The operation for receiving messages is

u?(F). P

where P is the scope of the binders in the pattern F. BoPi
allows inputs on a channel only when it is created by the
process or it is a parameter of a process constant definition
(see below). When a value of an output on u matches with
the pattern F, the continuation Po is triggered, where o is
the substitution yielded by the pattern matching algorithm.
The operation is always exhaustive: the pattern F matches
every possible value carried by u. Names like u in u! (V)
and u? (F) are called subjects in the following.

A process may wait simultaneously on different chan-
nels through the select statement — an operation similar
to the select in socket programming, to the “pick activ-
ity” in BPEL, and to the input-guarded choice in m-calculus.
The select statement groups several input-guarded pro-
cesses and allows the progress of at most one of them. For
instance, in the following code, either the u or the v branch

will progress, but not both.

select
{ u?(int x). P}
{ v?(string y). 0Q }

In this paper, for simplicity, we require inputs underneath
select to regard channels on the local machine. (The theory
of linear forwarder and our current prototype also support
the general form of select.)

The parallel execution of processes is specified by the
spawn statement. For example:

spawn{ P } Q

executes P and Q in parallel. The spawn operator is the key
to define a useful derived operation: u! (E) . P means the
process spawn{ u! (E) } P.

Channels may be created dynamically as in
new u:<S> in P

where S defines the schema of the values that can be sent
and received over u. The scope of the declaration is re-
stricted to P. Creating a channel amounts to define an URI
address, as discussed in Section 2.1. In addition to what said
before, if the channel must be published in a UDDI registry,
the above declaration may be completed with further argu-
ments, such as the name of the registry and the protocol
for accessing to the service. On the contrary, if the chan-
nel must be used locally (it is never extruded in P) then the
WSDL interface may omit the protocol (concrete) part.

Processes may parse the received values and tests
whether their schemas are (subschema of) one of a list of
schemas. This operation is defined by the mat ch operator.
Tests are performed in sequence, so that the first matching
option will be performed, and the second will be executed
only if the first one fails, and so on (first match semantics).
The match operation can be used for testing the real schema
of a received channel as in the following example:

u? (<b[l> x).

match x with {
| <all + b[l> v -> P
| <bl]l + cll>v ->0Q
| <Emptys> v -> R

}

According to the pattern matching rules, x may carry mes-
sages that include (but are not limited to) those of schema
b[]. Henceforth, in order to choose the right branch of
the match, the pattern matching algorithm must verify
whether the actual schema of the received channel x is a
subschemaof <a[] + b[]l>orof<b[] + c[]>. This
verification is expensive to be performed at runtime (as we
said, it has exponential cost). In order to avoid an expen-
sive pattern matching, schemas have been constrained to be
well-formed and determined, thus supporting a subschema

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

algorithm with polynomial cost [6].
In BoP1i it is also possible to define process names:

let A(F ; F') =P

The scope of the process name A is the entire file whilst the
scope of variables in the patterns F and F’ is only P. The
formal parameters of A are partitioned into two parts by the
semicolon. The pattern F is actually a sequence of chan-
nels, while F’ can be any pattern. Channels in F can be
used — in P — with both input and output capabilities (the
type system enforces schema equivalence rather than a sub-
schema relation). Channels in F’ can be only used with
output capability, as in the following example of a forward-
ing process:

let fwdInt (<int> u ; <int> v) =
u? (int j). v!(3)

Missing the argument u, the process should always forward
a message from a given channel, fixed once for all, to an-
other. Thus reducing flexibility.

We conclude with a bit more elaborated process. It
defines a permanent photo printing service. Requests carry
the photo to be printed and the kind of printing service
(either color or black and white):

def OrderT=order [photo[.], (color[] + bwl[])]

let PrintPhoto (<OrderT> print ; wvoid) =
print? (order [photo[. pl,
(color[] + bw[]) how]).
spawn{ PrintPhoto (print ; void) }
match how with {
| color[] -> cPrinter! (p)
| bwl[] -> bwPrinter! (p)

}

2.5 Type checking and the subschema relation

The BoPi compiler prevents a number of runtime type
errors mostly regarding communications, invocations, and
pattern matching. In particular, the compiler verifies that,
for every

u! (E), the schema of E is a subschema of .S, where <S>
is the schema declared for u.

u? (F) . P, the schema of F is a superschema of S, where
<S> is the schema declared for u.

A(E ; E’), the schema of E is a sequence of channel
schemas which are equivalent to the schema of the
channels in the first pattern of the declaration of A;
the schema of E’ is subschema of the schema of the
second pattern of the declaration of A.

match E with {(|F; -> P;)‘€!"}, the schema of
E is a subschema of the union of the schemas of pat-

terns F;, ¢+ € 1..n (exhaustivity). The compiler also
warns the user if the schema of some pattern F; is am-
biguous or if it is a subschema of the union of the
schema of the previous patterns (irredundancy).

These checks are performed by a subschema relation.
The details of this relation and the underlying theory are
in [6].

3 The BoPi bytecode

A BoPi program is compiled into a bytecode that is an
XML document. As a consequence, bytecodes can be safely
transmitted on the network allowing remote execution of
processes.

The bytecode, although similar to the BoPi language,
has three important differences. First of all, bytecodes use
integers instead of variables. Integers represent indexes of
the local memory. The second difference is for evaluating
expressions. To this aim a store instruction saving par-
tial results is used. The third difference is that bytecodes
are flat. Thus scopes and sequentiality are implemented by
means of jump and terminate instructions (see below).

A bytecode program is a sequence of BoPi schema dec-
larations, followed by a sequence of process constant dec-
larations. BoPi schema declarations are identified by the
element def. This element has an attribute name defin-
ing the schema constant and contains the XML representa-
tion of the schema. For example, the declaration def U=
alint, string] is compiled into:

<def name="U">

<label name="a">
<sequences><int/><string/></sequence>
</labels>

</def>

Patterns are compiled by using the same elements of
schemas plus the element bind. This element has an at-
tribute target defining the index of the variable to bind.
The content of bind is the schema to match. For example,
the pattern int x is compiled into:

<bind target="1"><int/></bind>

where 1 is the index of x in the local memory.

Process constant declarations are identified by the
process element. This element has two attributes: the
name of the process, and the maximum size of the environ-
ment. A process contains a sequence of elements. The
first two are BoP1i patterns, the rest — the body — is a se-
quence of instructions.

BoP1i instructions are defined by the set of XML elements
listed below:

<jump />t is an empty element with an attribute
steps defining the number of instruction to skip.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

<terminate/> is an empty element which terminates
the execution of the process.

<send />t is an empty element with two at-
tributes: ch defines either the subject name or its in-
dex in the local memory; value defines the index
of the argument in the local memory. For example
<send ch="1" value="2"/> defines an output
of the value stored in 2 on the channel stored in 1.

<recv ...>...</recvs>: is an element with an at-
tribute ch that defines either the subject name or its
index in the local memory. The content is a pattern.

<select> </selects>: is an element contain-
ing a sequence of case elements. The content of each
case element is a recv element followed by a jump
to the proper continuation.

<new ...>...</news: is an element with an attribute
target defining the index of the name in the local
memory. The content is a BoP1i schema.

<match> </matchs>: is an element with an at-
tribute value defining the index of the variable con-
taining the argument. Its content is a sequence of pairs:
the first element is the pattern, the second is a jump to
the proper continuation.

<spawn .../>: is an empty element with an attribute
steps defining the number of instructions of the
spawned process.

<invoke .../>: is an empty element with three at-
tributes: name defines the process constant; first
defines first argument of the invocation; second de-
fines the second argument of the invocation.

<store ...>...</store>: evaluates an expression
and writes the result into the variable defined in the
attribute target. The content is the bytecode of the
expression.

The result of the compilation of PrintPhoto is the
following bytecode program.

<process name="PrintPhoto" envSize="4">
<pattern>
<bind target="0">
<chan><type name="OrderT"/></chan>
</bind>
</patterns>
<pattern>
<bind target="1"><void/></bind>
</patterns>
<recv ch="0">
<sequences
<label name="order">
<bind target="2"><any/></bind>
</label>

<bind target="3">
<choice>
<label name="color"/><label name="bw"/>
</choice>
</bind>
</sequence>
</recv>
<spawn steps="2"/>
<invoke process="OrderT" first="0" second="1"/>
<terminate/>
<match value="3">
<patterns><label name="color"/></patterns
<jump steps="1"/>
<pattern><label name="bw"/></patterns>
<jump steps="3">
</match>
<send name="cPrinter" value="2"/>
<terminate/>
<send name="bwPrinter" value="2"/>
<terminate/>
</process>

When the bytecode is loaded, it is verified and serialized.
The object code that is interpreted by the BoPi virtual ma-
chine is an array of instructions. In the case of the bytecode
of the Print Photo example we obtain the following ar-
ray.

process Name=PrintPhoto (<OrderT> 0; void 1)
envSize=4

0.rcv(order[_ 2], (bw[]+color([]) 3)

spawn +2

call PrintPhoto 0 1

terminate

match 3 with color[]->jump+l bwl[]->jump+3

cPrinter.send(2)

terminate

bwPrinter.send(2)

terminate

O 0 J o0 Ul b WN

4 The BoPi architecture

The BoP1i architecture is distributed: it is composed by
a number of instances of runtime environments running at
different locations and interacting by exchanging messages
over channels. Each BoPi runtime, as illustrated in Fig-
ure 1, consists of two main components running as threads:
the channel manager and the virtual machine.

The channel manager interfaces the network to the vir-
tual machine. It handles messages sent and received on lo-
cal channels and delivers messages to remote machines.

The virtual machine executes several threads simultane-
ously, by interpreting the corresponding bytecode instruc-
tions (every thread corresponds either to a loaded process or
to a spawned one). It consists of a pool of environments of
running threads plus the bytecodes that they are executing.
In what follows, we discuss the two components separately.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

Forwarders / Remote (BoPi) Outputs Remote values Forwarders / Remote (BoPi) values

TLoca] Inputs T Local Outputs T New

} J APIL
Tlmpuu }Oulpuls INew Channel Manager |

Ready Pool Waiting Pool

Stack Stack
Frame Frame

PC PC

Env

Thread
Thread

Env

[pc_]
Env

PC
Env

Programs Pool

Bytecode
Instructions
Bytecode
Instruction:

VMLoader |——

BoPi Runtime

Programs
__Trograms_|

Figure 1: BoPi: The runtime

4.1 The virtual machine

The BoPi virtual machine includes two main Java
threads: the first waits for new bytecode fragments coming
from the loader, and the second schedules the execution of
BoPi threads and interprets bytecode instructions. The data
structures of the virtual machine are stored in three pools:
the programs pool, containing the bytecodes of the running
threads, the ready pool, containing threads ready to be in-
terpreted, and a waiting pool containing threads blocked on
some receive or select instruction. In order to guarantee safe
updates, these pools are protected by mutexes.

Loading a program on a BoP1i virtual machine amounts
to adding the code to the programs pool and to creating and
initializing some new threads in the ready pool. The ini-
tialization sets the program counter and the environment of
each thread. The scheduler selects the first thread of the
ready pool (which is a queue) and executes it for a fixed
number of instructions or until it blocks. After the execution
the thread is enqueued at the end of the ready pool. (This
round-robin policy, in combination with the FIFO policy of
channel manager queues, guarantees fair executions.)

A thread is executed by interpreting its bytecode. The
input and output operations are forwarded to the channel
manager. In case of inputs — a receive or a select opera-

tion — a thread identifier is passed to the channel manager
and the thread is moved to the waiting pool. The thread is
moved from the waiting pool to the ready pool directly by
the channel manager when a message satisfying the input
request is received. The following method is provided by
the virtual machine in order to permit the channel manager
to unblock the waiting thread:

void wakeup (Threadid id, XMLnode value,

int n): takes the id of the thread, the received
value value and an integer n identifying the channel
that has reacted. It wakes up the thread id, stores
value into its stackframe, and sets the program
counter according to n. This n is 1 if the blocking
operation was a receive; otherwise it is the ordinal of
one input within a select.

In case of a spawn, a new thread is created, initialized
with a reference to the environment of the current thread
and with the address of the first instruction of the spawned
process. The new thread is added to the ready pool. We re-
mark that the use of the same environment for both the cur-
rent thread and the new thread is consistent because BoPi
variables are read-only. In particular, since the values of
variables never change, it is not necessary to copy the envi-
ronment of the current thread to the new thread: variables
can be accessed by dereferentiation.

4.2 The channel manager

The channel manager is responsible for the creation and
deletion of channels. It manages the input and output oper-
ations and performs marshalling and unmarshalling of data.
We discuss these operations one by one.

Channel creation. InBoPi, channels may be created dy-
namically; a channel is identified by a globally unique name
carrying either the host name or the IP-address of the ma-
chine where it has been created and a channel ID. The cre-
ation of a new channel amounts to define a queue for stor-
ing pending input requests and outputs waiting to be con-
sumed (given the exhaustiveness of the receive statement,
every nonempty queue contains either outputs or inputs).
A channel may be also created on a remote host (see Sec-
tion 5). This operation blocks the creator thread until an
acknowledgement for the creation is received.

In order to support web services access standards, the
channel manager creates a WSDL file defining two interfaces
(in WSDL terminology, two bindings): an HTTP interface
and a BoP1i interface. (Other protocols will be managed in
future versions of the prototype.) The HTTP interface, im-
plemented as a CGI script, waits for HTTP requests com-
municated via POST and carrying a value. When a value
arrives, it is passed to the local channel manager. The BoPi

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

interface defines the IP address and the port where a BoPi
channel manager is waiting for network packets. We will
specify the format of these packets in the following para-
graph “Interfaces of the channel manager”. For example,
the PrintPhoto service may have the following WSDL
interface (the schema Order is omitted):

<!--ABSTRACT PART-->

<message name="OrderMsg">

<part name="body" element="Order"/>

</message>

<portType name="PrintPhotoPT">

<operation name="orderPhoto">
<input message="OrderMsg"/>

</operation>

</portType>

<!--CONCRETE PART: HTTP SERVICE-->

<binding name="httpB" type="PrintPhotoPT">

<http:binding verb="POST"/>

<operation name="orderPhoto"s>
<http:operation location="printPhoto"/>
<inputs>
<mime:content type="application/xml"/>
</input>

</operation>

</binding>

<service name="PrintPhotoService">

<port name="PrintPhotoPT" binding="httpB">
<http:address location=

"www .example.com/orderPhoto"/>

</port>

</service>

<!--CONCRETE PART: BOPI SERVICE-->

<binding name="BoPiB" type="printPhotoT">

<bopi :binding/>

<operation name="orderPhoto">
<bopi:operation location="chanl"/>
<input>
<mime:content type="application/xml"/>
</input>

</operation>

</binding>

<service name="PrintPhotoService">

<port name="OrderT" binding="BoPiB">
<bopi:address location=

"bopi://www.example.com"/>
</port>
</services>

The abstract part of this service defines the supported
operations (i.e. the schema of the channel), whilst the con-
crete part defines the locations and the transport protocols
that must be used for communicating with the service.

Channel deletion. The deletion of a channel amounts to
delete the corresponding queue. (Deletion is performed for
channels which become garbage.)

Channel outputs. When a value for a remote channel is
received by the local channel manager, it forwards such
value to the corresponding channel manager over the net-
work. When the received value is for a local channel u,
then the channel manager

1. verifies that the schema of the value conforms with the
schema of u (only for messages arriving from the net-
work). In case the two schemas are at odd, a (type)
error message is emitted in the same communication;

2. checks if there are inputs waiting in the queue of u. If
there are inputs then the message is forwarded to the
stack frame of the receiver and the input is dequeued.
Otherwise the message is enqueued.

The type checking in the first step is necessary because the
BoPi channel manager accepts delivery of values that have
not been produced by BoPi processes (type errors cannot
occur in communications of BoP1 programs).

Channel inputs. When an input request for a local chan-
nel u is received, the channel manager checks if there are
values in the queue of such a channel. If a value is found, it
is sent back to the thread which performed the input opera-
tion. Otherwise, the input request is enqueued.

It is worth to recall that, in the BoP1i language, a pro-
cess cannot input on received names. Notwithstanding this
restriction, a program may have free inputs on remote chan-
nels (see the loader directives new or import in Sec-
tion 5). In this case the channel manager creates a linear
forwarder on-the-fly [5]. In particular, assuming u to be
the remote channel, a new local channel v, with the same
schema as u is created, and the linear forwarder process
u—ov is sent to the remote channel u.

When an input request is due to a select operation,
the queues of the channels are inspected one by one. This
is possible because inputs underneath a select concern lo-
cal channels only. If there is a value in one of them, that
value is sent back to the receiver. If there is no value, input
requests are linked in a list and are added to the correspond-
ing queues. When a value is enqueued in a queue of these
linked channels, it is forwarded to the receiver thread and
every input in the list is removed.

Interfaces of the channel manager. The channel man-
ager may accepts packets directly from the network (the de-
fault port is 2047). These packets are delivered by other
BoPi machines and specify the operation that must be exe-
cuted. In particular, there are three kind of packets:

"SND" ; CHAN; LENGTH; DATA: This packet describes a
send on CHAN of the bytestream specified by DATA.
The field LENGTH defines the size of the bytestream.

"FWD" ; CHAN1; CHAN2: This packet describes a for-
warder. It informs that a message on CHAN1 must be
forwarded to the remote channel CHAN2.

"NEW" ; REPLY_CHAN ; LENGTH ; SCHEMA: This pmkm
describes a remote channel creation. The channel man-
ager creates a new channel whose schema is SCHEMA

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

and communicates its name by sending a message on
REPLY_CHAN. The field LENGTH defines the size the
bytestream SCHEMA.

The interface of the channel manager to the virtual ma-
chine is a Java API consisting of (1) a set of objects rep-
resenting abstractions for channels (Channel), schemas
(Schema), and XML documents (XMLNode), and (2) the
following set of methods:

Channel newChan (Schema S): returns a channel
object representing a new local channel which handles
messages of schema S;

void snd(Channel chan, XMLnode data):
sends the XML document represented by data over
chan. We recall that the behavior of the send depends
on the locality of the subject channel;

void rcv(Channel chan, Threadid id):
takes a channel chan, and a continuation (the thread
identifier) id. It implements the receive operation as
described above. We recall that, in case of remote
receive, a new channel u is created, a linear forwarder
chan—ou is produced, and the id is enqueued in the
queue of u;

void select (Channel[] cvector, Threadid
id): takes a nonempty list of channels and the
continuation (the thread identifier). It implements the
select operation as described before;

Channel getReference (String name): returns
a reference to the channel “name” that can be either a
BoPi channel or a not BoPi channel. This method is
invoked to get the IP address of free channel names;

void delete (Channel chan): deletes the speci-
fied channel from the channel manager.

Marshalling and unmarshalling. Two basic operations
of the channel manager are marshalling of XML messages
from the virtual machine to the network and unmarshalling
of bytestream messages arriving from the network. When a
value is sent to a remote channel (a remote URI), it is mar-
shalled into a bytestream before transmission. For example,
marshalling takes the value a["hello"] and gives the
document <a>hello. However marshalling loses
type informations of values. For instance both a [5] and
a["5"] are marshalled into <a>5. Henceforth, un-
marshalling cannot be merely the inverse of the marshalling.
For this reason BoPi schemas are restricted to be a sub-
class of the regular tree languages such that marshalling
is an injection. In particular, schemas like a [int] +
a [string] in which the two parts differ only on the base
types (not in the structure) are forbidden. More formally,

the disambiguating machinery is obtained by refining the
notion of determined schema in [6] — this issue is over-
looked in this contribution.

5 The loader

A BoPi program may be a process or a sequence of
process constant declarations. A loader loads programs
onto one or more BoPi machines, and triggers the corre-
sponding processes or invoke a process constant therein,
according to the directives of a loading file. A sample
loading file is:

location SELLER = www.seller.com:2047

location STORE = www.store.com:2047

seller = new <OrderT>@SELLER

store = new <StoreT>@STORE

bank = import
http://www.bank.it/checkCC.wsdl:CheckT

fedEx = import
http://www.fedEx.it/shipTo.wsdl:ShipT

load SellerCode.Seller (seller; bank, store,

fedEx) @SELLER
load StoreCode.Store(store; void)@STORE

The location directives define BoPi machines by
giving the URI and the port numbers where they are wait-
ing for bytecode. It is assumed that an instance of the BoP1i
run-time is running on the hosts addressed by such direc-
tives. The new directive delegates the loader to create a
channel at a given location (it uses the ability of the channel
manager to create new channels, both locally and remotely);
this directive has additional parameters for publishing the
channel in a UDDI repository. The import directive im-
ports an existing channel — a free name — declaring its
schema. The load directive tells the loader to upload a
piece of bytecode to the defined locations and to trigger
the suitable process constant definition. In the above exam-
ple the local SellerCode file containing bytecode is up-
loaded to the location SELLER, and the local StoreCode
file is uploaded to location STORE. When the bytecode is
uploaded the process constants named Seller and Store
are invoked. The parameters written in these invocations are
typecheked if compatible with the process constant defini-
tion.

It is worth to notice that, according to the BoPi loader
syntax, in the above example, only Seller can use the
channel seller as subject of an input. However both
Seller and Store may use store for receiving data.
If the loader file is extended with the lines

location SELLER’ = www.shops.com:2047
load SellerCode.Seller (seller; bank, store,
fedEx) @SELLER’

we will have the same service running in two different

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

machines (located at SELLER and at SELLER’), and
virtually sharing the same input/output queue of the
channel seller. In BoPi this sharing is implemented
by means of linear forwarders that avoid distributed con-
sensus by centralizing the inputs of a channel on a single
channel manager that is located in the machine of the first
declaration (in the above loading file, the one running at
SELLER). An alternative declaration is to import a free
BoPi channel, therefore allowing several agents to use the
channel as subject of inputs. For example, the declaration
of the new channel store in the loading file above may be
replaced by the following import instruction:

store = import bopi
http://www.BoPi.it/chanl.wsdl:StoreT

While it is possible to import a BoPi channel — the bopi
attribute of the import directive — and use it with input
capability, this is forbidden for generic imported channels
because such channels may be handled by not-BoPi
machines, thus not using forwarders. Then the line:

store = import
http://www.store.it/buy.wsdl:StoreT

is refused by the loader because store is used with input
capability but its machine is not a BoPi one (it lacks the
attribute bop1i attribute).

Declarations in the loading file are typed. This allows
type checking at loading time. For instance, it is an error
to load a program and invoking a process constant with ar-
guments whose schemas are not subschema of the formal
parameters. It is also error if the schema of the imported
channels is not equivalent to the schema of the channel as
used by the program. This amounts to download the type of
every imported channel at loading time. In case of problems
a loading type error is manifested.

6 Conclusions

A distributed implementation — the BoPi machine — of
the asynchronous m-calculus with XML datatypes and pat-
tern matching has been discussed. The resulting language
seems helpful for programming web services, and this mo-

A second extension concerns dynamic XML data, namely
those data containing active parts that may be executed on
clients’ machines. This is obtained by transmitting pro-
cesses during communications, feature called process mi-
gration. The BoPi machine already allows program de-
ployments on the network at loading time. This is mostly
due to the fact that bytecodes are XML files. The step to-
wards runtime deployment is quite short: it suffices to intro-
duce a new schema, the bytecode schema, and admit chan-
nels carrying messages of such schema. This is for instance
the approach taken in [6].

References

[1] R. Amadio, “An asynchronous model of locality, failure, and
process mobility,” in COORDINATION 1997, vol. 1282 of
LNCS, pp. 374-391, Springer-Verlag, 1997.

[2] M. Merro and D. Sangiorgi, “On asynchrony in name-
passing calculi,” in ICALP 1998, vol. 1443 of LNCS,

pp- 856-867, Springer-Verlag, 1998.
(3]

C. Fournet and G. Gonthier, “The reflexive chemical abstract
machine and the join-calculus,” in POPL 1996, pp. 372-385,

ACM, ACM Press, 1996.

[4] Microsoft. Corporation, “Biztalk server.” At

http://www.microsoft.com/biztalk/.
(5]

P. Gardner, C. Laneve, and L. Wischik, “Linear forwarders,”
in CONCUR 2003, vol. 2761 of LNCS, pp. 415 — 430,

Springer-Verlag, 2002.

[6] A. Brown, C. Laneve, and L. Meredith, “PiDuce:
A process calculus with native xml datatypes.” At

www.cs.unibo.it/BoPi, 2004.

[7] H. Hosoya and B. C. Pierce, “XDuce: A statically typed
XML processing language,” ACM Transactions on Internet

Technology (TOIT), vol. 3, no. 2, pp. 117-148, 2003.

V. Benzaken, G. Castagna, and A. Frisch, “CDuce: an XML-
centric general-purpose language,” in 8th ACM SIGPLAN
ICFP-03, pp. 51-63, ACM Press, 2003.

S. Carpineti, C. Laneve, and P. Milazzo, “The BoPi machine:
a distributed machine for experimenting Web Services tech-
nologies.” Full version. At www.cs.unibo.it/BoP1i, 2005.

(8]

(9]

tivates our XML idioms, such as XM, Schema and WSDL [10] H Comon et al., “Tree automata techniques and applica-
for types and interfaces, respectively. tl(:)ns.”zl(%)(t);vww .grappa.univ-1ille3.fr/tata, Oc-

Although the present BoPi language is expressive tober, ’
enough to model a number of interesting applications, there (11] E Curbera et al., “Business process execution
is place for studying extensions. The first one is to equip language . for ~web services (bpel4w's 1_'0)'” At
the language with primitive error handling and transactional ‘év WD" g%%‘;bm'Com/develOpemorkS/websemcesmbmry/wS'

mechanisms. These mechanisms deserve a thorough theo- pet '
[12] C. Laneve and G. Zavattaro, “Foundations of Web Transac-

retical analysis and a careful implementation because they
use time constraints and allow to coordinate processes lo-
cated on different machines. We refer to [12] and the refer-
ences therein for an initial investigation about transactions
in the setting of BoP1i.

10

tions,” in FOSSACS’05, vol. 3441 of LNCS, pp. 282-298,
Springer-Verlag, 2005.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05)
1550-4808/05 $ 20.00 IEEE

