
Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Complexity Analysis of BPEL Web Processes

Jorge Cardoso

Department of Mathematics and Engineering
University of Madeira, 9050-390 Funchal, Portugal

jcardoso@uma.pt

Phone: +351 291 705 150, Fax: +351 291 705 199

Abstract. Several organizations have already realized the potential of using
WS-BEPL, the Process Execution Language for Web Services, to model the
behavior of Web services in business processes. WS-BPEL provides a model
for describing simple or complex interactions between business partners. In
some cases, WS-BPEL process designs can be highly complex, due, for exam-
ple, to the vast number of Web services carried out in global markets. High
complexity in a process has several undesirable drawbacks, it may result in poor
understandability, more errors, defects, and exceptions leading to processes re-
quiring more time to be developed, tested and maintained. Therefore, excessive
complexity should be avoided. Processes which are highly complex tend be less
flexible, since it is more complicated to make changes to the process. The major
goal of this paper is to present two metrics to analyze the control-flow complex-
ity (CFC) of WS-BPEL Web processes. The metrics are to be used at design-
time to evaluate the complexity of a process design before implementation ac-
tually exists.

Keywords. Web services, Web processes, BPEL, Business processes, work-
flows, complexity.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

1 Introduction

In a competitive e-commerce and e-business market, Web processes can span both
between enterprises and within enterprises (Sheth, Aalst et al. 1999). A Web process
(Cardoso and Sheth 2005) is a process that models complex interactions among or-
ganizations and represents the evolution of workflow technology. While workflows
invoke tasks and activities, Web processes invoke Web services. The most well-
known language to model Web processes is BPEL (WS-BEPL 2005), and the W3C
standard to model Web services is WSDL (Christensen, Curbera et al. 2001). While
organizations want their Web processes to be simple, modular, easy to understand,
easy to maintain and easy to re-engineer, in cross-organizational settings these proc-
esses have an inherent complexity.

To achieve effective process management, one fundamental area of research that
needs to be explored is the complexity analysis of Web processes (Cardoso 2005).
Studies indicate that 38% of process management solutions will be applied to redes-
igning enterprise-wide processes (source Delphi Group 2002). Recently, a new field
of research for processes has emerged. This new field – termed process measurement
– presents a set of approaches to the quantification of specific properties of processes.
Important properties to analyze include the estimation of complexity, defects, process
size, effort of testing, effort of maintenance, understandability, time, resources, and
quality of service. Process measurement is still in its infancy and much work has yet to
be undertaken.

Complexity is closely related to flexibility, one of the key enablers of innovation
for organizations. Flexibility and complexity are guiding principles in the design of
business processes and are in general, inversely related. Processes with a low com-
plexity are normally more flexible since they have the capability to quickly change to
accommodate new products or services to meet the changing needs of customers and
business partners. Complex Web processes are more prone to errors. For example, in
software engineering it has been found that program modules with high complexity
indices have a higher frequency of failures (Lanning and Khoshgoftaar 1994). Surpris-
ingly, in spite of the fact that there is a vast literature on software measurement of
complexity, Zuse (Zuse 1997) has found hundreds of different software metrics pro-
posed and described, while almost no research on process complexity measurement
has yet been carried out. The only significant work that can be mentioned is the cohe-
sion and coupling metric developed to analyze workflows, proposed by Reijers and
Vanderfeesten (Reijers and Vanderfeesten 2004).

In our previous work (Cardoso 2005), we have presented a control-flow complexity
(CFC) metric to analyze tri-logic workflows (Cardoso and Cravo 2006). The metric
was intended to be used during the development of processes to improve their quality
and maintainability. Due to the widespread adoption of WS-BEPL (WS-BEPL 2005),
more than 30 enactment engines and editing tools have already been developed, we
feel however, that it is important to develop complexity metrics to evaluate the com-
plexity of WS-BPEL (or simply BPEL) processes. Since we believe that no holistic

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

metric exists to analyze the complexity of Web processes, we recognize that several
metrics need to be developed to characterize specific perspectives of Web processes.

There are three elements that are fundamental for the definition of any measure-
ment: entity, attribute, and metric. The entities involved in our measurements are
BPEL processes. A process can be measured according to different attributes. The
attribute that we will target and study is the complexity associated with BPEL proc-
esses. Attributes such as time, cost, and reliability have already received some atten-
tion from researchers (Cardoso, Miller et al. 2004; Cardoso 2005). The metric that we
will study is the control-flow complexity.

This paper is structured as follows: Section 2 presents the various perspectives of
process complexity. Section 3 gives brief introduction to WSDL Web services and
BPEL Web processes. In section 4, we present the metric that we have developed to
evaluate the control-flow complexity of BPEL processes. Section 5 presents the re-
lated work. It will be seen that while a significant amount of research has been carried
out to quantify the complexity of programs in software engineering, the literature and
work on complexity analysis for business processes are almost inexistent. Finally,
section 6 presents our conclusions.

2 Web process complexity and flexibility

The flexibility of a process is characterized by a ready capability to adapt to new,
different, or changing requirements. According to the IEEE Standard Glossary of
Software Engineering Terminology (IEEE 1992), “flexibility is the ease with which a
system or component can be modified for use in applications or environments other
than those for which it was specifically designed.” Following this definition, we view
flexibility as the ease of change of a process due to modifications in the environment
or in initial requirements. For example, in software engineering, it has been suggested
that a way to measure flexibility relies on measures that compute the impact of
changes in programs (Li and Offutt 1996). Curtis (Curtis 1979) suggests that
“…software complexity determines … how much effort will be required to modify
program modules to incorporate specific changes.” If a process is complex then it may
contain a considerable number of complex components, such as switches, flows,
whiles or picks. Adding, removing, or changing an activity from a process requires
studying a number of particular cases for which the activity may depend on. The study
and analysis of these cases is what makes the process difficult to change, and therefore
inflexible. In our view, the more cases a process has the more difficult is to change a
process. Being able to handle a large number of cases, as the reviewer states, does not
make the process flexible, but makes it complete for a particular domain.

In networked supply chains, process flexibility can be classified into three levels
(Ferrara, Hayden et al. 2003). These levels of flexibility require the ability to modify
and customize processes, and change processes in real time. The basic property of a
process is that it is case-based (Aalst 1998). This means that every task is executed for
a specific case. Complex processes tend to be less flexible since they support more
cases than simple processes and, therefore, having to take into account all the cases

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

makes it difficult to make changes. For example, eligibility referral (Anyanwu, Sheth
et al. 2003) and enrollment processes (CAPA 1997) are complex due to the many
cases that exists in each process, which are the results of the complex logic in health-
care and educational organizations. Because of the many tasks that are required to
handle each case, to change such processes requires considering a vast number of
cases which makes the adaptation of the process complex.

Because flexibility should be a concern during development, the control-flow com-
plexity measures should be considered for use during Web process construction or
reengineering to follow complexity trends and maintain predefined flexibility levels. A
significant complexity measure increase during testing may be the sign of a brittle,
nonflexible or high-risk process. Since processes have the tendency to evolve over
time by modification, a process can easily become fragile with age. This compels us to
use techniques, such as complexity analysis, to assess the system’s condition. Com-
plexity metrics can provide information concerning the cost and time required to make
a given change to a process in order to make it more flexible.

We define Web process complexity as the degree to which a process is difficult to
analyze, understand or explain. It may be characterized by the number and intricacy of
Web services’ interfaces, transitions, conditional and parallel branches, the existence
of loops, roles, activity categories, the types of data structures, and other process char-
acteristics (Cardoso 2005).

There is no single metric that can be used to measure the complexity of a process.
Based on previous work which identified recurring, generic patterns in workflows,
namely Workflow Control Patterns (Aalst, Hofstede et al. 2003), Workflow Data
Patterns (Russell, Hofstede et al. 2005), and Workflow Resource Patterns (Russell,
Aalst et al. 2005) which characterize the range of control-flow, data, and resource
constructs that might be encountered when modeling and analyzing workflows, we
identify three main complexity perspectives (Figure 1): control-flow complexity,
data-flow complexity, and resource complexity. Since we consider that the type, inter-
nal structure, and interface of an activity are also important when computing the com-
plexity of a workflow, we also consider the complexity of activities. Activities can
have different levels of complexity since they can be classified into four distinct types
(Russell, Aalst et al. 2005): atomic, block, multiple-instance and multiple-instance
block. While in this paper we will focus on control-flow complexity, we will present
the main ideas behind each complexity perspective as well.

Activity complexity. This view on complexity simply calculates the number of activi-
ties a process has. While this complexity metric is very simple, it is very important to
complement other forms of complexity. The control-flow complexity of a process can
be very low while its activity complexity can be very high. For example, a sequential
process that has a thousand activities has a control-flow complexity of 0, whereas its
activity complexity is 100. This metric was inspired by lines-of-code (LOC) metric
used with a significant success rate in software engineering (Jones 1986).

Control-flow complexity. The control-flow behavior of a process is affected by con-
structs such as splits, joins, loops, and ending and starting points. Splits allow defini-
tion of the possible control paths that exist in a process. Joins have a different role;

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

they express the type of synchronization that should be made at a specific point in the
process. A control-flow complexity model needs to take into account the existence of
XOR-split/join, OR-split/join, AND-split/join, loops, etc (Cardoso 2005).

Figure 1. Complexity analysis perspectives

Data-flow complexity. The data-flow complexity of a process increases with the
complexity of its data structures, the number of formal parameters of activities, and
the mappings between activities’ data. A data-flow complexity metric can be com-
posed of several sub-metrics which include: data complexity, interface complexity,
and interface integration complexity (Cardoso 2005). While the first two sub-metrics
are related to static data aspects (data declaration), the third metric is more dynamic in
nature and focuses on data dependencies between the different activities of a process.

Resource complexity. Activities in a process need to access resources during their
executions. A resource is defined to be any entity (e.g. human resources, IS resources,
and IT resources) required by an activity for its execution, such as a document, a data-
base, a printer, an external application, or role (Du, Davis et al. 1999; zur Mühlen
1999). Resources, such as actors and roles, can be structured in the context of an or-
ganization. The structure that is used to shape the different types of resources can be
analyzed to determine its complexity. This analysis can help managers to lower ad-
ministrative costs and better optimize resource utilization.

3 BPEL Web processes

The emergence of e-commerce has changed the foundations of business, forcing man-
agers to rethink their strategies. Organizations are increasingly faced with the chal-
lenge of managing e-business systems, Web services, and Web processes. Web ser-
vices and Web processes promise to ease several current infrastructural challenges,
such as data, application, and process integration. With the emergence of Web ser-

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

vices, a process management system becomes essential in order to support, manage,
and enact Web processes, both between enterprises and within the enterprise (Sheth,
Aalst et al. 1999).

A BPEL process is composed of a set of Web services put together to achieve a fi-
nal goal. As the complexity of a process design increases, it can lead to poor quality
and be difficult to reengineer. High complexity in a process may result in limited un-
derstandability and more errors, defects, and exceptions leading processes to needing
more time to be developed, tested and maintained. Therefore, excessive complexity
should be avoided. For instance, critical processes, in which failure can result in the
loss of human life, requires a unique approach to development, implementation and
management. For this type of process, typically found in healthcare applications
(Anyanwu, Sheth et al. 2003), the consequences of failure are very serious. The ability
to produce processes of higher quality and less complexity is a matter of endurance.

3.1 Web services

Web services are modular, self-describing, self-contained applications that are acces-
sible over the Internet (Curbera, Nagy et al. 2001). Currently, Web services are de-
scribed using the Web Services Description Language (Chinnici, Gudgin et al. 2003),
which provide operational information. The Web Services Description Language
(WSDL) specifies the structure of message components using XML Schema con-
structs. A WSDL document contains a set of XML definitions describing Web ser-
vices using four major elements, which include: input and output messages, data types,
port types, and bindings. These elements are illustrated in the following code segment:

<message name="getTermRequest">
<part name="term" type="xs:string"/>
</message>
<message name="getTermResponse">
 <part name="value" type="xs:string"/>
</message>

<portType name="glossaryTerms">
 <operation name="getTerm">
 <input message="getTermRequest"/>
 <output message="getTermResponse"/>
 </operation>
</portType>

While in this paper we do not evaluate the data-flow complexity of BPEL proc-
esses, the study of data-flow complexity involves the analysis of XML Schema data
types and the analysis of input and output messages of a Web service (i.e., operations).

3.2 Web processes

While in some cases Web services may be utilized in an isolated form, it is natural to
expect that Web services will be integrated as part of Web processes or workflows.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

The most prominent solution to describe Web processes is WS-BPEL (Process Execu-
tion Language for Web Services) (WS-BEPL 2005). BPEL provides a language for
the formal specification of business processes to facilitate the automated process inte-
gration in intra-organization, inter-organization, and the business-to-business settings.
BPEL resulted from the combination of WSFL (Leymann 2001) and XLANG (Thatte
2001) languages and uses Web services (Christensen, Curbera et al. 2001; Chinnici,
Gudgin et al. 2003) as its external communication mechanism and XML Schema
(XMLSchema 2005) for its data model.

BPEL is a XML-based language for describing the logic to control and coordinate
Web services participating in a process flow. It directly addresses business process
challenges such as control flow (branch, loop, and parallel), manipulation of data
between Web services, asynchronous conversations and correlation, long-running
nested units of work, faults, and compensation.

A Web process with a high control-flow and data-flow complexity may indicate a
higher probability of failure (in software engineering it has been found that program
modules with high complexity indices have a higher frequency of failures), increase
maintenance costs, and indicate poor understandability.

4 Control-flow complexity

From our perspective there are two independent approaches to develop a CFC metric
to analyze business processes: a top-down and a bottom-up approach. The top-down
approach starts by formulating a set of general/generic metrics common to various
business process languages (such as BPEL, BPMN (BPMN 2005), Meteor (METEOR
2006), etc). These metrics are then applied to specific business process languages to
evaluate their applicability and if necessary missing control flow elements can be
added to the general metric. In the second approach, i.e. the bottom-up approach, we
start by analyzing specific business process languages and formulate specific CFC
metrics. Once a reasonable set of business process languages have been analyzed it is
then possible to devise general/generic metrics that can be suitably applied to the
business process languages analyzed. In our work, we follow the second approach. We
already have analyzed and derived specific metrics to three business process modeling
languages (Cardoso 2005; Cardoso 2005; Cardoso 2005; Cardoso 2005). A future step
will be to aggregate the commonalities of the various different metrics obtained and
devise a generic CFC complexity model.

4.1 The CFC metric

A BPEL process definition contains the process logic—the steps that will be followed
and outlines which Web services will be executed to achieve a goal or objective. Each
step is called an activity. A process always starts with the process element and relates
a number of activities. In the process element there has to be one activity specified. In
BPEL a process is defined as follows:

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

<process name="process_name">
...
 activity
</process>

The formal definition of a process P is P = {a}, where ‘a’ is an activity. The con-
trol-flow complexity of a BPEL process P is simply the complexity of its activity:

PaaCFCPCFC BPEL
Act

BPEL
ocess ∈=),()(Pr

In the following sections we will show how to calculate the complexity of the vari-

ous types of activities that may be associated with a process.

4.2 Basic activities

BPEL supports two categories of activities: basic and structured activities. Basic ac-
tivities represent primitive constructs and are used for common tasks. Basic activities
can be further classified into three categories: (1) activities for calling and receiving
messages from Web services (e.g. <invoke>, <receive>, and <reply>), (2) activities
for controlling a process (e.g. <wait> and <terminate>), (3) activities for manipulating
data (e.g. <assign>). The behavior of each basic activity is as follows:

• <invoke>. Invoking a web service

• <receive>. Waiting for the client to invoke the business process through send-
ing a message

• <reply>. Generating a response for synchronous operations

• <assign>. Manipulating data variables

• <throw>. Signaling faults and exceptions

• <wait>. Waiting for some time

• <terminate>. Terminating the entire process

• <empty>. An activity that does not do anything

The <receive>, <pick>, <reply>, and <invoke> activities are called message activi-

ties since they communicate with the outside world. As an example, let us see the use
of the <receive> activity:

<receive
 partnerLink="Registar"
 portType="Registration"
 operation="registerStudent"
 variable="student" />

This activity waits for an incoming message. This element allows a business proc-
ess to do a blocking wait for a particular message to arrive. In our example, the activ-
ity is used to wait for the Registrar’s office answer after registering a student using the
registration system. Since basic activities do not involve an interaction or relationship
with other activities, we assign to all of them a complexity value of 1 (one).

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

activity basic a is ,1)(aaCFC
BPEL

Act
=

In our perspective, assigning a value to a variable, receiving or replying to a mes-
sage, or terminating a process has the same complexity from a control-flow perspec-
tive. This is because the control-flow complexity captures the control-flow in a proc-
ess and basic activities do not include any control-flow semantics. This fact will be-
come perceptible when we study the complexity of structured activities.

4.2 Structured activities

Structured activities offer a way to structure a BPEL process. Structured activities are
more complex and provide simple programmatic control over which steps will be
executed in a business process. Structured activities include <case> statements,
<while> loops, parallelism constructs such as <flow>, and sequential constructs such
as <sequence>. Since the control-flow complexity of each structured activity differs,
we need to analyze each activity individually to account for the semantics and particu-
larity of their behavior.

• <sequence>. Structures a set of activities to be invoked in an ordered se-
quence

• <switch>. Provides a construct to choose one activity among a collection of
activities, i.e. it implements branches

• <while>. Defines the notion of loops. This construct executes an activity re-
peatedly until its associated Boolean condition is no longer true

• <flow>. Enables the concurrent execution of activities. It defines a set of ac-
tivities that will be invoked in parallel

• <pick>. Waits on a set of events for one of them to occur and executes a cor-
responding activity. It allows the selection of one of a number of alternative
paths

Structured activities can contain a series of other activities that can be either struc-

tured or basic activities. Structured activities prescribe the control-flow of a business
process. The control-flow complexity for each structured activity is calculated as fol-
lows:

Sequence. A BPEL sequence activity contains a list of activities which are to be exe-
cuted in lexical order, i.e. the order they are placed within the sequence element (i.e.
<sequence>). The sequence activity stops when all activities within it are done.

<sequence attributes>
 activity+
</sequence>

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

As illustrated in the previous fragment, a sequence has one or more activity. The

formal definition of a sequence S is S = {a1, a2, ..., an}, where ai, i∈{1,...,n}, are activi-
ties. The control-flow complexity of a sequence of activities is calculated has follows:

sequence a is ,)()(SaCFCSCFC

Sa

BPEL

Act

BPEL

Act ∑
∈

=

From our viewpoint, the control-flow involved in a sequence of activities is mar-
ginal because all the activities are invoked in sequence. Therefore, we express this fact
by simply adding the control-flow complexity of the activities of a sequence.

Switch. A BPEL switch structured activity is a construct for introducing conditions
based on the evaluation of a Boolean expression. According to (Aalst, Barros et al.
2000), this BPEL construct can be classified as an exclusive choice. The exclusive
choice structure defines a point in the process where a certain flow is taken, based on
a decision. Most programming languages, such as C, Java, and Perl provide exclusive
choice structures. In BPEL the representation of a switch activity is the following:

<switch attributes>
 elements
 <case condition="bool-expr">+
 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
</switch>

As illustrated in the previous fragment, the <switch> activity consists of an ordered
list of conditions specified by a <case> element followed by one optional otherwise
element. The activity specified in a <case> element is executed when the Boolean
expression associated with the case is true. When none of the cases are true, the activ-
ity in the <otherwise> element is executed. The formal definition of a switch Sw is Sw

= {a1, a2, ..., an}, where ai, i∈{1,...,n}, are activities. The control-flow complexity of a
switch of activities is calculated has follows:

|Sw|nSwaCFCnSwCFC

Swa

BPEL
Act

BPEL
Act == ∑

∈

 switch, a is ,)(*)(

In our perspective, the control-flow introduced by a switch activity is significant.
The switch with ‘n’ conditional activities leads to the exclusive execution of ‘n’ dis-
tinct activities. The control-flow complexity metric for the switch is calculated by
multiplying the number of activities in a switch (denoted as |Sw|) by the sum of the
control-flow complexity of all the activities. The sum of the control-flow complexity
of all the activities is multiplied by |Sw| to express the effect that Boolean expression
(conditions) have on the complexity of an ordered set of activities. The complexity is
linearly dependent on the number of Boolean expressions.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

While. The while structured activity offers the possibility to execute an activity in an
iterative way. The activity in a while structure is executed as long as the Boolean
expression in the condition attribute is true. This construct is also implemented by
most programming languages. BPEL represents a while activity in the following way:

<while condition="bool-expr" attributes>
 activity
</while>

The formal definition of a while W is W = {a}, where ‘a’ is an activity. The con-
trol-flow complexity of a while is calculated has follows:

WaaW

aCFCaCFCWCFC
BPEL

Act

BPEL

Act

BPEL

Act

∈

+=

 activity,an is activity, structured whilea is

),(*)2)((
2

log)(

In our perspective, the control-flow introduced by a while activity is directly de-

pendent on the control-flow complexity of the activity affected by the while. This
means that the more activities covered by a while, the greater the complexity. For
example, if a while element is applied to a basic activity, such a <invoke>, the control-
flow complexity is log2(1+2)*1 = 1,6. This makes sense since the complexity of the
basic activity <invoke> is 1 and the <while> increases the overall local complexity. If
for example, the while element is applied to a sequence composed of two basic activi-
ties, the control-flow complexity is log2(2+2)*2 = 4. Figure 2 shows a graph that de-
picts the increase of complexity of a while activity applied to a sequence activity com-
posed of a variable number of basic activities ranging from 1 to 20. The control-flow
complexity varies linearly with the number of basic activities in the sequence.

BPEL While CFC

0

25

50

75

100

1 5 9 13 17

basic activities in the sequence

C
F

C

CFC(W)

Figure 2. Variation of the CFC of a while activity controlling a sequence activ-

ity with basic activities

Figure 2 clearly shows that the complexity of a while structure is linearly dependent
on the number of activities that the while covers.

Flow. Concurrency and synchronization of activities is offered by the flow activity.
According to (Aalst, Barros et al. 2000), this BPEL construct corresponds to a parallel
split. The flow activity enables the creation of splits and joins (Aalst 1998). This pat-
tern defines the structure of a process which is split into several threads of control, all

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

executed concurrently in parallel. The order in which they are processed is not de-
fined.

<flow attributes>
 elements
 <links>?
 <link name="ncname"/>+
 </links>
 activity+
</flow>

The flow activity offers allows the synchronization (join) of activities within the
flow. A flow activity is completed when all its activities are completed. The formal

definition of a while F is F = {a1, a2, ..., an}, where ai, i∈{1,...,n}, are activities. The
control-flow complexity of a flow activity is calculated as follows:

linksboundary cross l |,F| activity,an is activity, structured flow a is

)()!*()(

==

−= ∑
∈

naF

aCFClnFCFC

Fa

BPEL

act

BPEL

Act

Since the most fundamental semantic effect of grouping a set of activities in a flow

is to enable concurrency, in our perspective, the control-flow introduced by a flow
activity is directly dependent on the different ways of arranging the distinct activities
in a sequence (permutations). These permutations bring the notion of activity inter-
leaving to our control-complexity metric. For example, if we have a flow structure
with two activities (A and B) there exist 2! possible interleaving execution sequences:
A followed by B, and B followed by A. Using this rationale, the control-flow com-

plexity of a flow should be ∑
∈

=

Fa

BPEL
act

BPEL
Act aCFCnFCFC)(!*)(, n=|F|. Analyzing the

semantics of the flow activity, we can examine that BPEL enables the expression of
synchronization dependencies between activities using the link construct (<links>). A
link construct specifies a dependency between a source activity and target activity as
illustrated in Figure 3.

Figure 3. Cross boundary links

The figure shows that links can cross the boundaries of structured activities. There
is a link that starts at activity C in sequence Y and ends at activity F, which is directly
nested in the enclosing flow. The example also illustrates that sequence X must be

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

performed prior to sequence Y because X is the source of a link named that is targeted
at sequence Y. In this example it becomes clear that the rationale followed previously
does not hold when links are present. The example demonstrates that having three
activities (sequence X, sequence Y, and the basic activity F) we do not have 3! possi-
ble interleaving execution sequences. In fact, we only have one sequence, X followed
by Y, and Y followed by F. To take into account the existence of links in flow struc-
tured activities, we subtract from the number of activities the number of cross bound-
ary links. The number of possible interleaving executions is therefore (n-l)!, where l is
the number of cross boundary links of a flow.

Pick. A choice based on information from the outside is offered by the pick activity.
Pick provides a construct comparable with a switch activity, except that rather than the
decision being based on a Boolean expression, it is based on messages coming (<on-
Message>) from a given business partner, or alternately, the expiration of a time-wait
object (<onAlarm>) whose expiration will trigger the pick. The <pick> activity speci-
fies that a business process should await the occurrence of one event in a set of events
(<onMessage> or <onAlarm> events). The <pick> activity has the following structure:

<pick createInstance="yes|no"? attributes>
 elements
 <onMessage partnerLink="ncname" portType="qname"
 operation="ncname" variable="ncname"?>+
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?/>+
 </correlations>
 activity
 </onMessage>
 <onAlarm
 (for="duration-expr" | until="deadline-expr")>*
 activity
 </onAlarm>
</pick>

The first event to arrive that is identified in the <pick> completes the pick struc-
tured activity. Only one of the activities in the body of the pick takes place. The con-
trol-flow complexity of a pick activity is calculated as follows:

events# activity,an is activity, structured flow a is

,)(*)12()(

=

−= ∑
∈

naF

aCFCnPkCFC

Pka

BPEL

Act

BPEL

Act

From our viewpoint, the control-flow introduced by a pick structured activity is di-
rectly dependent on the set of events that may be generated at a given time. This
means that the more frequently events are specified in a pick structure, the greater the
control-flow complexity of the pick. As we have stated, the pick activity waits the
occurrence of one of a set of events and then performs the activity associated with the
event that occurred. If more than one of the events occurs, then the selection of the
activity to perform depends on which event occurred first. A first approach would
suggest treating the complexity of the pick activity in the same way as the complexity

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

of the switch activity, since as we have mentioned previously, they are comparable
and similar. A closer analysis of the semantics of the pick activity reveals that if sev-
eral events occur almost simultaneously there is a race and the choice of the activity to
be performed is dependent on both timing and implementation of the BPEL process
enactment engine. Therefore, to capture the semantics of the pick, we compute all the
possibilities of ‘n’ (n>0) events occurring at the same time. This can be calculated
using the power set of the number of events (n=#events) specified in the pick, minus
one (1), i.e. 2n-1. We remove one unit since the pick activity is only triggered when at
least one event occurs at a given time. The control-flow complexity of a pick structure
is dependent on the set E of events {e1, e2,…, en} that the structure can respond to,

more precisely on the pick structure dependent on |P(E)- Ø|, where P is the power

set.

4.3 Interpretation of CFC values

One important question that needs to be investigated and answered is what the mean-
ing of a given CFC metric is. For example, what is the significance of obtaining a CFC
of 16 for a given process? We believe that if organizations and the research commu-
nity start using our CFC metric it will become apparent that when certain levels of
CFC are reached processes become too complex and unmanageable. Our metric was
partially inspired in McCabe complexity metric (McCabe 1976; McCabe and Butler
1989; McCabe and Watson 1994) – a well-known and widely used metric – for soft-
ware engineering. We believe that the interpretation of the CFC will follow a similar
path of the one taken by McCabe metric. For example, when using McCabe complex-
ity metric, the limit of 10 indicates a simple program, without much risk. A complex-
ity metric between 11 and 20 designates a more complex program with moderate risk.
A metric between 21 and 50 denotes a complex program with high risk. Finally, a
complexity metric greater than 50 denotes an untestable program with a very high risk.
We expect that limits for the CFC will be obtained and set in the same way, using
empirical and practical results from research and from real world use.

5 Scenario

In this section, we describe a scenario to explain and illustrate the need for CFC
analysis during the design and aging of a process.

A major bank has realized that to be competitive and efficient it must adopt a new
and modern information system infrastructure. Therefore, a first step was taken in that
direction with the adoption of a BPMS (Business Process management System) to
support its business processes. Since the bank supplies several services to its custom-
ers, the adoption of a BPMS has enabled the logic of bank processes to be captured in
BPEL schema. As a result, a part of the services available to customers are stored and
executed under the supervision of the management system. One of the BPEL schema
supplied by the bank is the loan process (process P1) depicted in Figure 4.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Figure 4. The loan process (version 1)

To represent our process we use the Business Process Modeling Notation (BPMN)
(BPMN 2005) since it provides a modeling notation that is easy to use by business
process analysts and developers. BPMN can be viewed as a bridge between the mod-
eling and execution of a business process. Particularly, it is possible to generate BPEL
execution definitions from BPMN processes.

Process P1 is very simple and it is composed of only four activities. The Fill Loan
Request activity allows clients to request a loan from the bank. In this step, the client
is asked to fill in an electronic form with personal information and data describing the
loan being requested. The second activity, Check Educational Loan, determines if the
loan request should be accepted or rejected. When the result of a loan application is
known, it is e-mailed to the client using the Notify Educational Loan Client activity.
Finally, the Archive Application activity creates a report and stores the loan applica-
tion data in a database record.

As this first business process gains acceptance within the bank, since it improves
service to customers at several levels, allows significant cost savings, and improves
communication amongst employees, the managers of the bank decided to add more
services to be supported by the loan process. It was decided to support, not only edu-
cational loans, but also home and car loans.

Before making any changes to the process, a control-flow complexity analysis is
carried out. To make our example simpler, we assume that each activity in the process
is a BPEL basic activity of the type invoke or receive (see section 4.1). The outcome
of the analysis indicates that the process has a very low complexity, i.e. 4,

 sequencea is SaCFCaCFCPCFC
BPEL

Act

Sa

BPEL

Act

BPEL

ocessPr ,4)(*4)()(1 ===∑
∈

Processes with a low complexity have the capability to quickly change to accom-

modate new products or services to meet the changing needs of customers and busi-
ness partners. Based on the complexity analysis results, the process was changed (the
new version is reference P2), having now the structure illustrated in Figure 5.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Figure 5. The loan process (version 2)

The new process (version 2) is composed of nine activities. Because complexity
was a concern during the development of the new process it still maintains a complex-
ity which is within an acceptable range. The outcome of the CFC analysis indicates
that the process has a complexity of 21,

)(2PCFC
BPEL

ocessPr =

∑
∈

=

1

)(
Sa

BPEL

Act
aCFC

∑∑
∈∈

++=

32

)()()(
Sa

BPEL

Act

BPEL

Act
Sa

BPEL

Act
aCFCSwCFCaCFC

1)(2 ++= SwCFC

BPEL

Act

1))()()((*32

654

++++= ∑∑∑
∈∈∈ Sa

BPEL

Act
Sa

BPEL

Act
Sa

BPEL

Act
aCFCaCFCaCFC

 211)222(*32 =++++=

For the twelve months that followed the design and implementation of the second

version of the process several small changes have been introduced to the process.
Unfortunately, since the changes were done incrementally and each one had a small
impact to the structure of the process, complexity analysis was not carried out during
the process redesign. As a result, the process’ structure is the following (Figure 6).

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Figure 6. The loan process (version 3)

The process has evolved over time by modification and may have become fragile
with age. Therefore, it is necessary to use techniques, such as complexity analysis, to
assess the system’s condition. A high complexity may be the sign of a brittle, non-
flexible, or high-risk process. The outcome of the CFC analysis indicates that the
process has a complexity of 49, i.e. 2+3*(5+4+4)+1+3!+1. Since a high complexity
was identified the process needs to be reengineered to reduce its complexity.

As another example, let us consider that we have a process a flow element with 4
outgoing transitions. One solution to reduce the complexity of the process would be to
replace the flow element with a switch element with two outgoing transitions, where
each outgoing transition has a flow element with 2 outgoing transitions. The control-
flow complexity would drop from 24 (i.e., 4!) to 4 (i.e., 2*2!). Of course making this
reengineering undertaking would depend on the business process under analysis.

6 Related work

While a significant amount of research on the complexity of software programs has
been done in the area of software engineering, the work found in the literature on
complexity analysis for Web processes and workflows is almost inexistent. Research
in software engineering has produced various measurements for software. Among
others are lines-of-code (Park 1992), Halstead’s measure (Halstead 1977), McCabe’s
measure (McCabe 1977), the COCOMO model (Boehm 1981) and the Function-Point
method (Garmus and Herron 2000). There is a vast literature on software metrics
which represents the result of the measurement of the development, operation and
maintenance of software in order to supply meaningful and timely management infor-
mation. Zuse (Zuse 1997) has found hundreds of different software metrics proposed
and described for software measurement.

The most important research on complexity analysis for Web processes and work-
flows can be found in (Reijers and Vanderfeesten 2004; Cardoso 2005; Cardoso 2005;
Cardoso 2005; Cardoso 2005). In (Cardoso 2005; Cardoso 2005; Cardoso 2005; Car-
doso 2005), a control-flow metric is presented to analyze the complexity of tri-logic
workflows (Cardoso and Cravo 2006). The metric is based on the idea of counting the

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

number of new states generated from the introduction of control-flow patterns, such as
XOR-splits, OR-Splits, and AND-splits in a process. In (Cardoso 2005) the impor-
tance of analyzing the complexity of processes that model team works, communication
and collaboration to accomplish significant work and projects is studied. Workflow
management systems are a specific type of systems that can be used to capture col-
laboration and group works processes and thus supports the creation of teamwork and
enable collaboration. In some cases, collaboration and group work processes can be-
come highly complex. Therefore, complexity analysis is important. In (Cardoso 2005)
a study is made to evaluate the control-flow complexity measure in terms of proper-
ties. Weyuker’s properties must be satisfied by any complexity measure to qualify as a
good and comprehensive one. In (Cardoso 2005) it is argued that a control-flow met-
ric alone cannot capture the full complexity of a process. Therefore, an important
metric that should also be investigated is the data-flow complexity. This contribution
raises a set of questions concerning the development of a data-flow complexity metric
for Web processes and proposes solutions to some of the challenges. In (Reijers and
Vanderfeesten 2004), Reijers and Vanderfeesten propose a cohesion and coupling
metric developed to analyze workflows. While their work does not take the viewpoint
of complexity analysis, it can be easily reformulated to make cohesion and coupling a
specific complexity perspective.

7 Future work

In order to empirically validate the complexity metrics that we have described, ex-
periment need to be carried out. An empirical study is an experiment that compares
what we believe to what we observe. Such an experiment will play a fundamental role
in our work. Zelkowitz and Wallace (1998) stress the importance of using experimen-
tal models for validating metrics. The authors suggest experimentation as a crucial
part of the evaluation of new metrics. Validation models mainly deal with data collec-
tion, experimentation, and data analysis. The information gathered from observation is
analyzed and the results are used in determining the validity of a new metric. In our
case, an experiment needs to involve several roles, such as business process managers,
business analysts, and process implementers. The data collected from the empirical
experiment can then be statistically analyzed to determine the existence, or not, of a
correlation between the complexity metrics we propose and the ratings of our subjects.

Another important issue that needs to be investigated and answered is what are both
the meaning of a given complexity metric (for example, what is the significance of the
control-flow complexity of 16) and the precise number to use as a complexity limit in
a process development. This answer will be given from empirical results only when
organizations have successfully implemented complexity limits as part of their process
development projects. For example, when using McCabe complexity metrics (McCabe
1976), the original limit of 10 indicates a simple program, without much risk, a com-
plexity metric between 11 and 20 designates a more complex program with moderate
risk, a metric between 21 and 50 denote a complex program with high risk. Finally, a
complexity metric greater than 50 denotes an untestable program with a very high risk.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

We expect that limits for control-flow complexity will be obtained and set in the same
way, using empirical and practical results from research and from real world imple-
mentation.

In order to follow a bottom-up approach to develop a generic metric for process
modeling languages, it is necessary to analyze the CFC complexity of additional lan-
guages. Only once a reasonable set of business process languages have been analyzed
it is then possible to devise general/generic metrics that can be suitably applied to the
business process languages analyzed. The most well-known languages that still need
to be studied include WSFL (Leymann 2001), BPML (BPML 2004), YAWL (Aalst
and Hofstede 2003), and BPMN (BPMN 2005).

8 Conclusions

The complexity of BPEL processes is intuitively connected to effects such as flexibil-
ity, understandability, usability, testability, reliability, and maintainability. Therefore,
it is important to develop measures to analyze the complexity of processes so that they
can be reengineered to reduce their complexity. Since flexibility is the ease with which
a process can be modified for use in applications or environments other than those for
which it was specifically designed, processes with a low complexity tend to be more
flexible.

Our work presents an approach to carrying out BPEL process complexity analysis
using measurement strategies. We have discussed the issues related to the develop-
ment of a control-flow complexity metric. The metrics introduced are worth exploring
further, since Web processes and Web services are becoming a reality in e-commerce
and e-business activities.

In this paper we propose a control-flow complexity metric to be used during the de-
sign of processes. This metric is a design-time measurement. They can be used to
evaluate the difficulty of producing a BPEL process design before implementation.
When control-flow complexity analysis becomes part of the process development
cycle, it has a considerable influence on the design phase of development, leading to
further optimized processes. Complexity analysis can also be used in deciding whether
to maintain or redesign a process. As known from software engineering, it is a fact that
it is cost-effective to fix a defect earlier in the design lifecycle than later. To enable
this, we have introduced the first steps to carrying out process complexity analysis.

References

Aalst, W. M. P. v. d. (1998). "The Application of Petri Nets to Workflow Manage-
ment." The Journal of Circuits, Systems and Computers 8(1): 21-66.

Aalst, W. M. P. v. d., A. P. Barros, et al. (2000). Advanced Workflow Patterns. Sev-
enth IFCIS International Conference on Cooperative Information Systems.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Aalst, W. M. P. v. d. and A. H. M. t. Hofstede (2003). YAWL: Yet Another Work-
flow Language (Revised Version). Brisbane, Queensland University of
Technology2003.

Aalst, W. M. P. v. d., A. H. M. t. Hofstede, et al. (2003). "Workflow Patterns." Dis-
tributed and Parallel Databases 14(3): 5-51.

Anyanwu, K., A. Sheth, et al. (2003). "Healthcare Enterprise Process Development
and Integration." Journal of Research and Practice in Information Technol-
ogy, Special Issue in Health Knowledge Management 35(2): 83-98.

Boehm, B. (1981). Software Engineering Economics, Prentice Hall.
BPML (2004). Business Process Modeling Language. 2004.
BPMN (2005). Business Process Modeling Notation - http://www.bpmn.org/.
CAPA (1997). Course Approval Process Automation (CAPA). Athens, GA., LSDIS

Lab, Department of Computer Science, University of Georgia.
Cardoso, J. (2005). About the Complexity of Teamwork and Collaboration Processes.

IEEE International Symposium on Applications and the Internet (SAINT
2005), Workshop - Teamware: supporting scalable virtual teams in multi-
organizational settings, Trento, Italy, IEEE Computer Society.

Cardoso, J. (2005). About the Data-Flow Complexity of Web Processes. 6th Interna-
tional Workshop on Business Process Modeling, Development, and Support:
Business Processes and Support Systems: Design for Flexibility, Porto, Por-
tugal.

Cardoso, J. (2005). Control-flow Complexity Measurement of Processes and Weyu-
ker's Properties. 6th International Conference on Enformatika, 26-28, Octo-
ber 2005, Budapest, Hungary, International Academy of Sciences.

Cardoso, J. (2005). Evaluating Workflows and Web Process Complexity. Workflow
Handbook 2005. L. Fischer. Lighthouse Point, FL, USA, Future Strategies
Inc.: 284-290.

Cardoso, J. (2005). Evaluating Workflows and Web Process Complexity. Workflow
Handbook 2005. L. Fischer. Lighthouse Point, FL, USA, Future Strategies
Inc.: 284.

Cardoso, J. and C. Cravo (2006). Verifying the logical termination of workflows (ac-
cepted for publication). 5th Annual Hawaii International Conference on Sta-
tistics, Mathematics and Related Fields, Honolulu, Hawaii, USA.

Cardoso, J., J. Miller, et al. (2004). "Modeling Quality of Service for workflows and
web service processes." Web Semantics: Science, Services and Agents on the
World Wide Web Journal 1(3): 281-308.

Cardoso, J. and A. P. Sheth (2005). Introduction to Semantic Web Services and Web
Process Composition. Semantic Web Process: powering next generation of
processes with Semantics and Web services. J. Cardoso and A. P. Sheth.
Heidelberg, Germany, Springer-Verlag. 3387: 1-13.

Chinnici, R., M. Gudgin, et al. (2003). Web Services Description Language (WSDL)
Version 1.2, W3C Working Draft 24, http://www.w3.org/TR/2003/WD-
wsdl12-20030124/.

Christensen, E., F. Curbera, et al. (2001). W3C Web Services Description Language
(WSDL), http://www.w3.org/TR/wsdl.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Curbera, F., W. Nagy, et al. (2001). Web Services: Why and How. Workshop on
Object-Oriented Web Services - OOPSLA 2001, Tampa, Florida, USA.

Curtis, B. (1979). In search of software complexity. Workshop on Qualitative Soft-
ware Models for Reliability, Complexity and Cost, IEEE Computer Society
Press.

Du, W., J. Davis, et al. (1999). Enterprise workflow resource management. Interna-
tional Workshop on Research Issues in Data Engineering, Sydney, Australia.

Ferrara, L., F. Hayden, et al., Eds. (2003). The Networked Supply Chain: Applying
Breakthrough BPM Technology to Meet Relentless Customer Demands, J.
Ross Publishing.

Garmus, D. and D. Herron (2000). Function Point Analysis: Measurement Practices
for Successful Software Projects, Addison Wesley.

Halstead, M. H. (1977). Elements of Software Science, Operating, and Programming
Systems Series. New York, NY, Elsevier.

IEEE (1992). IEEE 610, Standard Glossary of Software Engineering Terminology.
New York, Institute of Electrical and Electronic Engineers.

Jones, T. C. (1986). Programming Productivity. New York, McGraw-Hill.
Lanning, D. L. and T. M. Khoshgoftaar (1994). "Modeling the Relationship Between

Source Code Complexity and Maintenance Difficulty." Computer 27(9): 35-
41.

Leymann, F. (2001). Web Services Flow Language (WSFL 1.0), IBM Corporation.
Li, L. and A. Offutt (1996). Algorithmic analysis of the impact of changes to object-

oriented software. Int'l Conf. Software Maintenance-ICSM (1996), Los
Alamitos, USA, IEEE Computer Society Press.

McCabe, T. (1976). "A Complexity Measure." IEEE Transactions of Software Engi-
neering SE-2(4): 308-320.

McCabe, T. J. (1977). "A Complexity Measure." Transactions on Software Engineer-
ing 13(10): 308-320.

McCabe, T. J. and C. W. Butler (1989). Design Complexity Measurement and Test-
ing. Communications of the ACM. 32: 1415-1425.

McCabe, T. J. and A. H. Watson (1994). "Software Complexity." Crosstalk, Journal
of Defense Software Engineering 7(12): 5-9.

METEOR (2006). METEOR (Managing End-To-End OpeRations) Project Home
Page, LSDIS Lab.

Park, R. E. (1992). Software size measurement: A framework for counting source
statements. Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon
University.

Reijers, H. A. and I. T. P. Vanderfeesten (2004). Cohesion and Coupling Metrics for
Workflow Process Design. BPM 2004 (LNCS 3080). J. Desel, B. Pernici and
M. Weske. Berlin, Heidelberg, Springer-Verlag. LNCS 3080: 290-305.

Russell, N., W. M. P. v. d. Aalst, et al. (2005). Workflow Resource Patterns: Identifi-
cation, Representation and Tool Support. 17th International Conference on
Advanced Information Systems Engineering (CAiSE 2005), Porto, Portugal,
Springer 2005.

Accepted for Publication, Software Process: Improvement and Practice Journal,
Copyright © 2006 John Wiley & Sons, Ltd.

Russell, N., A. H. M. t. Hofstede, et al. (2005). Workflow Data Patterns: Identifica-
tion, Representation and Tool Support. 24th International Conference on
Conceptual Modeling, Klagenfurt, Austria, Springer.

Sheth, A. P., W. v. d. Aalst, et al. (1999). "Processes Driving the Networked Econ-
omy." IEEE Concurrency 7(3): 18-31.

Thatte, S. (2001). XLANG: Web Services for Business Process Design, Microsoft,
Inc.

WS-BEPL (2005). Business Process Execution Language for Web Services,
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

XMLSchema (2005). XML Schema, http://www.w3.org/XML/Schema.
Zelkowitz, M. V. and D. R. Wallace (1998). "Experimental Models for Validating

Technology." IEEE Computer 31(5): 23-31.
zur Mühlen, M. (1999). Resource Modeling in Workflow Applications. Workflow

Management Conference, Muenster, Germany.
Zuse, H. (1997). A Framework of Software Measurement. Berlin, Walter de Gruyter

Inc.

