
An Approach for QoS-aware Service Composition based
on Genetic Algorithms

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, Maria Luisa Villani
canfora@unisannio.it, dipenta@unisannio.it, r.esposito@unisannio.it, villani@unisannio.it

RCOST - Research Centre on Software Technology
University of Sannio, Department of Engineering

Palazzo ex Poste, Via Traiano 82100 Benevento, Italy

ABSTRACT
Web services are rapidly changing the landscape of software
engineering. One of the most interesting challenges intro-
duced by web services is represented by Quality Of Service
(QoS)–aware composition and late–binding. This allows to
bind, at run–time, a service–oriented system with a set of
services that, among those providing the required features,
meet some non–functional constraints, and optimize criteria
such as the overall cost or response time. In other words,
QoS–aware composition can be modeled as an optimization
problem.

We propose to adopt Genetic Algorithms to this aim. Ge-
netic Algorithms, while being slower than integer program-
ming, represent a more scalable choice, and are more suit-
able to handle generic QoS attributes. The paper describes
our approach and its applicability, advantages and weak-
nesses, discussing results of some numerical simulations.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Performance, Reliability

Keywords
Service–oriented software engineering, QoS–aware composi-
tion

1. INTRODUCTION
The rapid diffusion of web services and of service–orien-

ted systems constitutes an important step towards a rad-
ical change in the software development process. Service–
Oriented software engineering represents a natural evolu-
tion of Component-Based Software Engineering (CBSE). In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

CBSE, a component integrator searches for reusable compo-
nents and then physically integrates them into a new system
using some glue code. A web service exports a piece of
functionality on a network server. Web services are used
by (remotely) invoking service operations. Thus, there is
no need to integrate the service with the application under
development. Service interface publication, service discov-
ery and service invocation are performed using XML-based
standards, known as WSDL, UDDI and SOAP [16]. In par-
ticular, SOAP is a XML-encoded RPC protocol built over
well–known TCP/IP application protocols such as HTTP or
SMTP. A service oriented system is therefore composed of
some service invocations, orchestrated using glue code [14]
or some specific web service orchestration language (e.g.,
BPEL4WS [2] or WSCI [15]).

One of the biggest promises of service–oriented systems is
the use of late–binding mechanisms. Given a specific feature
needed in a service orchestration (this feature will be hereby
referred to as an abstract service), several services (referred
to as concrete services) realizing such a feature may be avail-
able. In Figure 1, circles represent an orchestration of ab-
stract services, while the corresponding concrete services are
represented as rectangles.

All concrete services corresponding to an abstract service
are functionally equivalent and thus are replaceable by each
other. The choice between them can be dictated by non–
functional properties, referred to as Quality of Service (QoS)
attributes. One may decide to choose the cheapest service,
the fastest, or maybe a compromise between the two. Ac-
cording to Std. ISO 8402 [11] and ITU [12], QoS may be
defined in terms of attributes such as price, response time,
availability, reputation (further details can be found in Car-
doso’s PhD thesis [3]). Moreover, it may be possible to have
some domain-specific QoS attributes (e.g., a temperature
service could have QoS attributes such as precision or re-
fresh frequency). Finally, an user may specify constraints
on the values of some attributes (e.g., the price cannot be
greater than a given value), which could influence the choice.
On the other hand, the service provider can estimate ranges
for the QoS attribute values as part of the contract with
potential users (i.e., the Service Level Agreement (SLA)).

As it will be detailed in Section 3, given an orchestration,
a relevant problem is to determine the set of concretiza-
tions (i.e., bindings between abstract and concrete services)
that satisfy the QoS constraints imposed by the SLA, and
optimize some fitness criteria chosen by the service integra-

1069

Figure 1: Example of workflow with bindings between abstract and concrete services

tor (e.g., minimize the cost). Finding the solution of such
a problem, known as QoS–aware composition, is NP–hard.
Some approaches, mostly based on linear integer program-
ming, have been proposed in literature (e.g., the approach
of Zeng et al. [17]).

It is particularly important for the QoS aware composition
to be fast. Especially for interactive systems, long delays
may be unacceptable. For example, the user of a booking
ticket system might not want to wait for a long time while
the system searches for candidate services offering flight tick-
ets with the lowest booking fare. Gaining a few cents after
several minutes of waiting may make the user disappointed.

A fast composition is also required to replan a service
composition during the execution, because the actual QoS
deviates from the estimated one and this could cause con-
straint violation, or simply because some services might not
be available. In this case the composition time influences
the overall service response time, thus it should be kept as
low as possible.

This paper proposes to tackle the QoS–aware composi-
tion problem using Genetic Algorithms (GAs). Advantages
and weaknesses of GAs will be compared with those of lin-
ear integer programming, that is the most widely adopted
approach.

The remainder of this paper is organized as follows. After
a review of the literature in Section 2, Section 3 details the
proposed approach. In particular, after the QoS composition
rules are shown, the evolutionary approach for QoS-aware
composition is described. Section 4 reports and discusses
results obtained in the simulations. Finally, Section 5 con-
cludes.

2. RELATED WORK
Dynamic service discovery and QoS–aware service com-

position offer interesting applications of constraint handling

methods and search strategies from operational research or
artificial intelligence. In fact, in service-oriented architec-
tures, constraint sets are used to express functional and
non-functional properties of the services to search for or to
monitor, and the service may be selected according to some
QoS optimum criteria ([4], [5], [13]).

More challenging is the case of composite services whose
structures are described by abstract processes, i.e, processes
containing abstract services, where the aim is to find the
best combination of concrete services, from the QoS point
of view, at run time. This combination may change dur-
ing execution due to the dynamic nature of the web services
environment, therefore one important requirement is that a
feasible, SLA-compliant solution should be found in a short
time. Integer programming (IP) solutions to this problem
have been proposed in some recent papers ([1], [17]). Both
works assume linearity of the constraints and of the objec-
tive function, whose expression is similar to that described
in Sub-section 3.4. In fact, Zeng et al. [17] essentially focus
on the cost, response time, availability and reliability at-
tributes, where logarithmic reductions are used for the mul-
tiplicative aggregation functions, and the model is claimed
to be extensible with respect to other similarly behaving
attributes. The need to deal with more general constraint
criteria, such as service dependencies or user preferences, is
strengthened in the work of Aggarwal et al. [1]. However,
they do not explain how the optimization problem could
be solved. In this paper, we advocate the use of GAs in-
stead, as any kind of constraint could be handled, and pro-
vide some empirical data to assess the performance of our
method against the (linear) integer programming solution
in the service composition setting. An alternative to GAs
could be to use nonlinear integer programming techniques,
but the maturity of the available tools is questionable, and
the application of these methods in our setting requires fur-

1070

ther investigation. A survey of some nonlinear techniques is
contained in a paper by Grossmann [9].

GAs are unconstrained procedures by their nature, and so
it is necessary to find ways to integrate constraint-handling
techniques during the search process. Usually, this is achie-
ved through penalty functions, i.e., constraints are incor-
porated in the fitness function so that their satisfaction is
guaranteed for the optimal solution. An extensive survey
of the constraint-handling techniques proposed in literature
in the context of evolutionary algorithms is contained in
a paper by Coello Coello [6]. In particular, several kinds
of penalty functions are listed in the paper, together with
an analysis of advantages/disadvantages for each of them.
To solve our problem, we have used a simple distance-based
penalty approach, that has turned successful also in schedul-
ing problems presented in a work by Fang [8]. More complex
dynamic or adaptive functions cited in the survey are not
really worth in our case where the amount of constraints
is usually small and so extra computational costs can be
avoided.

Another approach for constraint handling derives from Ar-
tificial Intelligence, namely Constraint Logic Programming
(CLP). CLP has the advantage of a richer modeling capabil-
ity, but providing a good model for the problem at hand has
implications on the performance of the approach. The pecu-
liarity of CLP is constraint propagation, i.e., constraints are
used to identify allowed subdomains for the variable values,
which is continuously applied during the search. Obviously,
this approach can lead to a more efficient search but it is
expensive itself. Again, as the priority here is optimization,
while constraints are expected to be few and rather simple,
we think that a GAs-based approach is more appropriate.
Comparative studies of all these approaches on some specific
problems are described, for example, in papers by Craenen
et al. [7], and by Helm et al. [10].

3. APPROACH DESCRIPTION
As described in the introduction, this work aims to pro-

pose an approach, based on GAs, to quickly determine a
set of concrete services to be bound to the abstract services
composing the workflow of a composite service. Such a set
needs to:

1. meet QoS constraints, established in the SLA. For ex-
ample, the service user may have a limited budget and
thus the cost is constrained, or he/she cannot accept
a response time above a given limit. Often, both local
constraints (e.g., a particular operation could not have
a cost above a given limit) and global constraints (e.g.,
the total response time is constrained) need to be met;

2. optimize a function of some other QoS parameters. For
example, the user may want to minimize the response
time while keeping the cost below a limit.

In the sequel we shall consider a composite service S of n
abstract services, S ≡ {s1, s2, . . . , sn}, whose structure is
defined through some workflow description language. Each
component si can be bound to one of the m concrete services
csi,1, . . . , csi,m, which are functionally equivalent.

Before describing the GA used to find solutions to the op-
timization problem, we need to describe how to compute the
QoS of a composite service, starting from the QoS attribute
values of the component services.

3.1 Computing the QoS of Composite Services
The approach for computing the QoS of a composite ser-

vice is similar to what proposed by Cardoso [3]. For a Switch
construct in the workflow, each Case statement is annotated
with the probability to be chosen. For example, for a work-
flow containing a Switch composed of two Cases, with costs
C1 and C2 respectively and probabilities p and 1 − p, the
overall cost is computed as follows:

p C1 + (1 − p) C2 (1)

Clearly, probabilities are initialized by the workflow de-
signer, and then eventually updated considering the infor-
mation obtained by monitoring the workflow executions.

Loops are handled differently from Cardoso [3], that ba-
sically proposes to adopt a mechanism (based on the proba-
bilities of entering/exiting the Loop) as for the Switch con-
struct. Our approach is more similar to what proposed by
Zeng et al. [17], i.e., Loops are annotated with an estimated
number of iterations k. Instead of unfolding Loops (like
Zeng et al.), here the QoS of the Loop is computed taking
into account the factor k. For example, if the Loop com-
pound has a cost Cl, then the estimated cost of the Loop
will be k Cl.

This approach for handling Loops presents two advan-
tages:

• It allows for a quick computation of the overall work-
flow QoS, without the need to unfold Loops;

• The estimated QoS accounts for the estimated number
of Loop iterations.

Given a concretization of a composite service, i.e., a com-
posite service description where each abstract service has
been bound to one of its corresponding concrete services, the
overall QoS can be computed by applying the rules described
in Table 1, which shows an aggregation function for each
pair workflow construct and QoS attribute. While for some
standard QoS attributes the aggregation function has been
explicitly specified ([3], [17]) there may be other attributes
(for example, domain-dependent attributes) for which the
aggregation function is user–specified (see the last row of
Table 1).

The table is not complete (it only contains rules to be
used in our examples) and, except that for Loops, the ag-
gregation functions correspond to those proposed by Car-
doso [3]. These functions are recursively defined on com-
pound nodes of the workflow. Namely, for a Sequence con-
struct of tasks {t1, . . . , tm}, the Time and Cost functions are
additive while Availability and Reliability are multiplicative.
The Switch construct of Cases 1, . . . , n, with probabilities

pa1, . . . , pan such that
nP

i=1

pai = 1 , and tasks {t1, . . . , tn}
respectively, is always evaluated as a sum of the attribute
value of each task, times the probability of the Case to which
it belongs. The aggregation functions for the fork (named
Flow in BPEL4WS) construct, are essentially the same as
those for the Sequence construct, except for the Time at-
tribute where this is the maximum time of the parallel tasks
{t1, . . . , tp}. Finally, a Loop construct with k iterations of
task t is equivalent to a Sequence construct of k copies of t.

1071

QoS Attr. Sequence Switch Flow Loop

Time (T)
mP

i=1
T (ti)

nP

i=1
pai ∗ T (ti) Max{T (ti)i∈{1...p}} k ∗ T (t)

Cost (C)
mP

i=1
C(ti)

nP

i=1
pai ∗ C(ti)

pP

i=1
C(ti) k ∗ C(t)

Availability (A)
mQ

i=1
A(ti)

nP

i=1
pai ∗ A(ti)

pQ

i=1
A(ti) A(t)k

Reliability (R)
mQ

i=1
R(ti)

nP

i=1
pai ∗ R(ti)

pQ

i=1
R(ti) R(t)k

Custom Attr. (F) fS(F (ti)) fB((pai, F (ti))) fF (F (ti)) fL(k, F (t))
i ∈ {1 . . . m} i ∈ {1 . . . n} i ∈ {1 . . . p}

Table 1: Aggregation functions per workflow construct and QoS attribute

3.2 Searching for a solution with Genetic
Algorithms

Differently from other approaches proposed in literature,
such as linear integer programming, GAs do not impose
constraints on the linearity of the QoS composition oper-
ators (and thus of objective function and constraints). This
permits the use of our approach for all possible (even cus-
tomized) QoS attributes, without the need for linearization.

To let the GA search for a solution of our problem, we
first need to encode the problem with a suitable genome. In
our case, the genome is represented by an integer array with
a number of items equals to the number of distinct abstract
services composing our service. Each item, in turn, contains
an index to the array of the concrete services matching that
abstract service. Figure 2 gives a better idea of how the
genome is made.

Figure 2: Genome Encoding

The crossover operator is the standard two-points crossover,
while the mutation operator randomly selects an abstract
service (i.e., a position in the genome) and randomly re-
places the corresponding concrete service with another one
among those available. Clearly, abstract services for which
only one concrete service is available are taken out from the
GA evolution.

The problem can now be modeled by means of a fitness
function and, eventually, some constraints. The fitness func-
tion needs to maximize some QoS attributes (e.g., relia-
bility), while minimizing others (e.g., cost). When user–
defined, domain–specific QoS attributes are used, the spec-
ification of the fitness function is left to the workflow de-
signer.

In addition, the fitness function must penalize individuals
that do not meet the constraints and drive the evolution
towards constraint satisfaction. Let us suppose that the

composite service QoS has a set of constraints defined as
follows:

cli(g) ≤ 0, i = 1, . . . , n (2)

We define the distance from constraint satisfaction as:

D(g) =
nX

i=1

cli(g) ∗ yi (3)

where:


yi = 0 cli(g) ≤ 0
yi = 1 cli(g) > 0

(4)

The fitness function for a genome g is then defined as follows:

F (g) =
w1 Cost(g) + w2 Response T ime(g)

w3 Availability(g) + w4 Reliability(g)
+ w5 D(g)

(5)
QoS attribute factors (i.e., Availability(g), Reliability(g),

etc.) are normalized in the interval [0, 1). w1, . . . , w5 are
real, positive weights of the different fitness factors. In par-
ticular, w1, . . . , w4 indicate the important a service integra-
tor (or user) gives to a particular QoS attribute, while w5

weights the penalty factor.
Finally, it is necessary to define a stop criterion for the

GA. One possible criterion is to fix a maximum number of
iterations. Alternatively, it is possible to:

1. Iterate (with a maximum number of generations equal
to maxgenconstr) until the constraints are met (i.e.,
D(g) = 0). If this does not happen within maxgenconstr

generations, then no solution has been found;

2. Once D(g) = 0, iterate over a further, fixed number
of generations maxgenfitness, that may be a percent-
age of maxgenconstr. Alternatively, iterate until the
best fitness individual remains unchanged for a given
number of generations.

3.3 Dynamic Fitness Function
The fitness function defined in equation (5) contains a

static penalty for individuals that violate constraints. In
other words, the penalty is the same at each generation. If,
as usual, the weight w5 for this penalty factor is high, there
is a risk that also individuals violating the constraints but
“close” to a good solution could be discarded.

The alternative is to adopt a dynamic penalty, i.e., a
penalty having a weight that increases with the number of
generations. This may allow, for the early generations, to

1072

also consider some individuals violating the constraints. Af-
ter a number of generations, the population should be able
to meet the constraints, and the evolution will try to im-
prove only the rest of the fitness function.

The dynamic fitness function (to be minimized) is defined
as follows:

F (gen, g) =
w1 Cost(g) + w2 Response T ime(g)

w3 Availability(g) + w4 Reliability(g)
+ (6)

w5 D(g) ∗ gen

maxgen

where gen is the current generation, while maxgen is the
maximum number of generations.

3.4 QoS–aware Composition using Integer
Programming

As described in the introduction and in Section 2, linear
integer programming is one of the most adopted tools to
solve a QoS–aware composition problem. An analytic de-
scription of this approach is out of the scope of this paper,
for details see Zeng et al. [17] or Cardoso [3].

However, it is necessary to highlight advantages and weak-
nesses of this solution, before performing the performance
comparison in Section 4.

Given n abstract services S1, . . . , Sn invoked in our ap-
plication (or composite service), and suppose that each ab-
stract service Si can be bound to mi concrete services, we
need to define our integer programming problem in terms ofPn

i=1 mi integer variables yi,j such that:

 Pmi
j=1 yi,j = 1

yi,j ∈ {0, 1} (7)

Variables yi,j indicates whether the abstract service Si

is bound to the concrete service CSi,j . As a consequence
of what described above, the number of required variables
tends to explode with the number of service invoked and,
above all, with the number of concretizations available. On
the contrary, for GA the genome size is bound to the number
n of abstract services. The number of possible concretiza-
tions only augments the search space.

The second weakness is represented by the need to have
linear aggregation functions for the QoS attributes. Even
for some standard attributes, such as the availability or re-
liability, this is not the case. And, while for the latter a
linearization can be adopted [17], this is quite difficult in
other cases (e.g., computing the response time for a Flow).
Finally, any user-defined attribute needs to have a linear
(or at least linearized) aggregation function. An interesting
alternative would be the use of non–linear integer program-
ming, however scalability problems would still arise.

On the other hand, integer programming is often faster
than GAs. When the workflow size and the number of con-
cretizations are limited, and there is no need to use non–
linear aggregation functions, integer programming is there-
fore preferable.

4. EMPIRICAL STUDY
In this section we analyze the performances of the pro-

posed approach:

• observing the evolution of fitness factors over the GA
generations;

• comparing different fitness functions (i.e., with static
and dynamic constraint penalty); and

• comparing GAs with integer programming.

We used an elitist GA where the best 2 individuals were
kept alive across generations, a crossover probability of 0.7,
a mutation probability of 0.01 and a population of 100 indi-
viduals. The selection mechanism adopted was the roulette
wheel selection. In our fitness function, we gave equal weights
to the different QoS attributes, eventually disabling some
attributes in some case studies.

For each experiment, GA was executed 50 times and av-
erage values are reported. Standard deviation was always
below the 5% of the mean values.

Finally, since the purpose of our experiment was to com-
pare different fitness functions and to compare integer pro-
gramming with GAs, we used as a stopping criterion:

• A number of generations (100 in our case study) after
which no fitness improvement was observed; and

• when comparing integer programming with GAs, a
number of generation the GA required to reach the
same solution as of integer programming (or a solu-
tion close to it, as explained in Section 4.2.

When integrating the GA composition approach in a ser-
vice execution tool, however, it is necessary to adopt the ap-
proach detailed in Section 3.2, that automatically calibrates
the stopping generation.

4.1 Comparing the fitness functions
To compare the different fitness functions, we present here

results obtained optimizing a workflow containing 25 invoca-
tions of 16 distinct abstract services, and having a cyclomatic
complexity equals to 17.

Figure 3 reports the evolution of different QoS parame-
ters for both fitness functions. As shown, the optimization
problem is constrained on cost and response time. The evo-
lution shows how the GA is able to find a solution that
meets the constraint and, at the same time, optimizes the
different fitness parameters (i.e., maximizing the availability
while keeping low cost and response time).

For our optimization problem, the dynamic fitness does
not outperform the static fitness. Even different calibra-
tions of the fitness weights did not help. t-tests with signifi-
cance level α = 5% showed that differences were not signif-
icant, except for the availability where the dynamic fitness
started faster, although at the end of the evolution the result
achieved was not different.

Experiments were also replicated on workflows of differ-
ent sizes and complexity, basically confirming the results
reported above.

4.2 Comparing GAs with Integer
Programming

To compare performances of GAs and Integer Program-
ming, we computed the time to optimize a static fitness
function (5) on cost and time (i.e., with Reliability and Avail-
ability constantly set to 11).

1To correctly perform the comparison, we did not consider
availability QoS factors, nor workflow containing the Flow
construct (that is non–linear when aggregating response–
times).

1073

Figure 3: Evolution of fitness parameters - Comparing static and dynamic fitness

As a case study for comparison, we considered a workflow
containing 18 invocations of 8 distinct abstract services and
having a cyclomatic complexity 5 (i.e., containing 2 nested
loops and a two–way switch). For each abstract service, we
considered a variable (average) number of available concrete
services, i.e., 5, 10, 15, 20, 25. Then, we compared the
performance of integer programming and GAs as follows:

• For Integer Programming we measured the CPU user
time to produce the solution;

• For GAs, we measured the CPU user time to reach a
solution meeting the constraint and with cost and re-
sponse time differing of no more than 1% from the Inte-
ger Programming solution. In other words, we wanted
to compare convergence times of Integer Programming
and GAs for the same (or almost the same) achieved
solution.

Both approaches were executed 50 times, and then the
average values were computed. In both cases, the standard
deviation was less than 5% of the mean value.

Our GA was implemented in Java using a freely available
library2, while LPSolve3 was used for Integer Programming.

2http://sourceforge.net/projects/java-galib
3http://www.cs.sunysb.edu/
∼algorith/implement/lpsolve/implement.shtml

Experiments were performed on a 3 GHz Intel PentiumTM ,
512 Mb of RAM, Microsoft Windows XPTM and J2SDK 1.5.

Figure 4: Comparison between Integer Program-
ming and GAs

Figure 4 shows the results of our comparison. When the
number of concrete services is small (5, 10) Integer Program-
ming outperforms GAs, substantially confirming the choice
made by other works that adopted this kind of approach [17,

1074

4]. For about 17 concrete services the performances of the
two approaches tend to be the same. Then, while the GA is
able to keep its timing performance almost constant, this is
not the case for Integer Programming, for which we see an
exponential grow due to the corresponding increment of the
number of variables needed to represent the problem (see
Section 3.4).

Then, we investigated whether the performance variation
was due to the increase of the search space, or just to the
increase of the number of variables for integer programming.
To this aim, we increased the number of concrete services
for a few abstract services only. Results obtained basically
confirmed what was described above. Also, results were also
confirmed by other experiments performed with workflows
having different size and cyclomatic complexity.

The lesson learned from our esperimentation is basically
that, when we have a large number of concrete services avail-
able for each abstract service, GAs should be preferred in-
stead of Integer Programming. This, in the authors’ opinion,
will be the case of widely used services, such as hotel book-
ing, weather services or ecommerce services. On the other
hand, whenever the number of concrete services available is
limited, Integer Programming is to be preferred. This would
be the case of very specific (e.g., scientific computation) ser-
vices. Finally, we think that a binding mechanism should be
able, time to time, to select the best approach to be adopted,
to always ensure a reasonable binding time. The latter con-
stitutes an important requirement for many scenarios, such
as interactive or (soft) real time service–oriented systems.

5. CONCLUSIONS
This paper proposed a GA–based approach for QoS–aware

service composition, i.e., to determine a set of concrete ser-
vices to be bound to abstract services contained in a or-
chestration to meet a set of constraints and to optimize a
fitness criterion on QoS attributes. Compared with linear
Integer Programming, the most widely adopted approached,
GA permits to deal with QoS attributes having non–linear
aggregation functions. Also, GA is able to scale–up when
the number of concretizations increases. Finally, to deal
with constraints, it is possible to adopt a fitness function
with both static or dynamic penalty, even if we did not ex-
perience a significant difference, at least for our case studies
and calibration mechanisms.

Future work will aim to apply the proposed approach to
some large–scale service–oriented system, and to perform
a thorough comparison of GA with other non–linear tech-
nique, such as non–linear integer programming. Multi–ob-
jective fitness functions will also be considered as an alter-
native to single–objective fitness functions where factors are
aggregated using a weighted sum.

6. ACKNOWLEDGMENTS
This work is framed within the European Commission

VI Framework IP Project SeCSE (Service Centric System
Engineering) (http://secse.eng.it), Contract No. IST-2000-
29380.

7. REFERENCES
[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor.

Constraint driven web service composition in
METEOR-S. In Proc. IEEE International Conference

on Services Computing (SCC’04), pages 23–30,
Shanghai, China, Sept. 2004.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, S. T.
D. Smith, I. Trickovic, and S. Weerawarana. Business
process execution language for web services.
http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/.

[3] J. Cardoso. Quality of Service and Semantic
Composition of Workflows. PhD thesis, Univ. of
Georgia, 2002.

[4] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and
K. Kochut. Quality of service for workflows and web
service processes. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(3):281–308,
April 2004.

[5] F. Casati and M. Shan. Dynamic and adaptive
composition of e-services. Information Systems,
26(3):143–162, May 2001.

[6] C. A. Coello Coello. Theoretical and numerical
constraint-handling tehniques used with evolutionary
algorithms: A survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering,
191(11-12), January 2002.

[7] B. Craenen, A. Eiben, and J. van Hemert. Comparing
evolutionary algorithms on binary constraint
satisfaction problems. IEEE Transactions on
Evolutionary Computation, 7(5):281–308, October
2003.

[8] H. Fang. Genetic Algorithms in Timetabling and
Scheduling. PhD thesis, Univ. of Edimburg, 1994.

[9] I. Grossmann. Review of nonlinear mixed-integer and
disjunctive programming techniques. Optimization
and Engineering, 3(3):227–252, September 2002.

[10] T. Helm, S. Painter, and W. Oakes. A comparison of
three optimization methods for scheduling
maintenance of high cost, long-lived capital assets. In
Proc. of the 2002 Winter Simulation Conference
(WSC’02), pages 1880–1884, San Diego, California,
Dec. 2002.

[11] ISO. UNI EN ISO 8402 (Part of the ISO 9000 2002):
Quality Vocabulary.

[12] ITU. Recommendation E.800 Quality of service and
dependability vocabulary.

[13] E. R. U.Greiner. Quality-oriented handling of
exceptions in web-service-based cooperative processes.
In Proc. EAI-Workshop 2004 - Enterprise Application
Integration, pages 11–18. GITO-Verlag, 2004.

[14] J. Voas, A. Ghosh, G. McGraw, and K. Miller.
Glueing together software components: How good is
your glue? In Proceedings of the Pacific Northwest
Software Quality Conference, pages 90–97, Oct 1996.

[15] W3C Working Group. Web Service Choreography
Interface.
http://www.w3.org/TR/wsci/.

[16] W3C Working Group. Web services architecture.
http://www.w3.org/.

[17] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware
for web services composition. IEEE Transactions on
Software Engineering, 30(5), May 2004.

1075

