A Model Checking Approach to Verify
BPEL4WS Workflows

Domenico Bianculli
Faculty of Informatics
University of Lugano

via G. Buffi 13 - CH-6900, Lugano, Switzerland

domenico.bianculli@lu.unisi.ch

Abstract

The increasing diffusion of service oriented computing in
critical business transactions demands reliability and cor-
rectness of the workflow logic representing web service or-
chestrations.

We present an approach for the formal verification of
workflow-based compositions of web services, described
in BPELAWS. Workflow processes can be verified in isola-
tion, assuming that the external services invoked are known
only through their interface. It is also possible to verify
that the actual composition of two or more processes be-
haves correctly. We can verify deadlock freedom, properties
expressed as data-bound assertions written in WS-CoL, a
specification language for web services, and LTL temporal
properties. Our approach is based on the software model
checker Bogor, whose language supports the modeling of
all BPELAWS constructs.

We provide an empirical evaluation of our approach and
we compare the results with other BPELAWS model check-
ing tools.

1. Introduction

In recent years, Web Services (WSs) have been proposed
as a practical approach to the development of distributed
applications supporting virtual information systems for net-
worked enterprises. Numerous technologies have been de-
veloped to support WSs and standardization efforts have
been initiated, with substantial industrial support. More
generally, there has been a growing interest in Service Ori-
ented Computing (SOC) and Service Oriented Architec-
tures. SOC can be defined as an approach to distributed
computing that views software resources as dynamically
discoverable services available on the network, supporting
interoperability of heterogeneous applications and infras-

Carlo Ghezzi Paola Spoletini
Dipartimento di Elettronica e Informazione
Politecnico di Milano
via Ponzio 34/5 - 1-20133, Milano, Italy
{ghezzi, spoleti} @elet.polimi.it

tructures.

The spreading of WSs and SOC in several application
domains and their use in increasingly critical settings ask
for a level of dependability that current approaches cannot
assure. The verification and validation techniques available
for traditional software must be adapted and extended to
deal with the new problems arising in these cases.

Considerable attention has been recently drawn by
model checking as a practical approach to software veri-
fication. Although the idea of formally verifying software
has been around for decades, it failed to become common
practice. Model checking is an automatic approach that may
indeed favor this transition. Model checking [10], born as a
practically efficient technique for automated verification of
hardware systems, can also be a good candidate for verifica-
tion and validation in the context of SOC. A model checker,
provided in input with a model of a system and a certain de-
sirable property, verifies if the system satisfies the property;
if the property does not hold, the model checker reports a
counterexample, showing an execution where the property
fails.

The application of model checking to SOC raises numer-
ous research challenges, because systems are intrinsically
distributed and the environment in which they run has to be
taken into account (i.e. modeled as well).

The work described in this paper focuses on verifying
WS compositions through a workflow (also called orches-
trations). Workflow-based compositions provide new ser-
vices by composing existing services. We need to verify
compositions because they must provide dependable ser-
vices.

This paper proposes BPEL2BIR, a tool for model check-
ing WS compositions described in the BPEL4WS [1] work-
flow language, which has become the de-facto standard for
defining WS orchestrations. Model checking is performed
by using the Bogor model checker. Our approach provides
full coverage of BPELAWS constructs and generates very

compact models. Additionally, it offers the possibility of
analyzing stand-alone BPEL4WS processes as well as com-
positions of web-based processes. These features make our
approach an improvement over previously published works
that deals with BPEL4WS verification, as we discuss in
Sect. 3.

The paper is organized as follows. Section 2 provides a
brief description of the Bogor model checker. In Section 3
we survey related work. In Section 4 we illustrate our ap-
proach for model checking BPEL4WS workflows with Bo-
gor and then in Section 5 we discuss experimental results.
Finally, in Section 6 we draw some conclusions and present
guidelines for future investigations.

2. The Bogor Model Checker

Bogor [29] is a model checking framework developed at
Kansas State University. The input language of Bogor is
called BIR, Bandera Intermediate Representation. BIR pro-
vides constructs found in modern programming languages,
such as dynamic thread and object creation, exception han-
dling, virtual functions, recursive functions and garbage
collection. Moreover, a low-level version of the interme-
diate representation, named low-level BIR, consists of a
guarded command transition system language with explicit
locations, explicit guards, sequence of statements compris-
ing a transition action, and explicit transitions.

The BIR data model contains both primitive types (such
as boolean, int) and non-primitive types (record,
array, lock). For record types, sub-type declarations and
virtual methods are also supported. The language is stati-
cally strongly typed. The memory model disallows pointer
arithmetic and supports object reclamation through garbage
collection.

To overcome the state explosion problem [10], typical
of model checking, Bogor implements some well known
optimization/reduction strategies, such as data and thread
symmetry [12], collapse compression [30] and partial order
reduction [16].

Bogor’s main feature is extensibility, both in terms of
input language and model checking algorithms. It has
an open, modular architecture that supports the develop-
ment of extensions via new algorithms and optimizations,
to improve core tasks, such as state-encoding, and state-
exploration. Several extensions have been implemented.
Besides partial-order reduction, state-encoding and differ-
ent search strategies, there are extensions to support dif-
ferent property languages (regular expressions, LTL and
CTL, JML), several domains (multi-threading and Swing
libraries, event-based Java programs, CORBA-based avion-
ics systems). In our group we also designed Bogor exten-
sions to model event-based service-oriented architectures
based on the Publish/Subscribe paradigm [6].

3. Related Work

Research on formal verification of web services is quite
recent, but has attracted considerable attention. In this sec-
tion we review the state of the art in verification, focusing
on model checking approaches.

An initial attempt has been described in [25]. Flows are
described in WSFL [24] and translated into Promela, the
input language of the SPIN model checker [20]. By fol-
lowing this approach, one can verify reachability, deadlock-
freedom and application-specific properties.

WSAT, a framework for analyzing interaction of com-
posite web services is presented in [14] and [15]. The inter-
actions of composite web services are modeled as conver-
sations, keeping track of exchanged messages. BPEL4WS
specifications of web services are translated into an inter-
mediate representation, an XPath-guarded automaton aug-
mented with unbounded queues for incoming messages.
This model is then translated into Promela and LTL proper-
ties, which can be also derived from XPath expressions, are
checked with the SPIN model checker.

The Zing model checker [2] is reported! to check for er-
rors in sets of web services, whose behavior is described in
BPELAWS.

The Verbus verification framework [4] is a modular and
extensible framework for the verification of business pro-
cesses. Thanks to an intermediate formalism, the frame-
work is not tied to specific process definition languages or
verification tools. The support for the BPEL4WS language
is partially complete: missing constructs are the compensa-
tion activity and event handlers. The current version of the
prototype performs activity reachability analysis and sup-
ports verification of such properties as invariants, goals, ac-
tivity pre- and post-conditions, as well as generic properties
defined in temporal logic.

Nakajima [26] proposes a method to extract the behav-
ioral specification from a BPEL4WS process and to ana-
lyze it by using the SPIN model checker. A finite state
automaton extended with variable annotations (definitions
and updates) is used as an intermediate representation. This
approach provides only a partial support for BPELAWS,
which does not deal with fault/event handlers and compen-
sation activities. The tool checks for deadlock freedom and
verifies user-defined LTL properties.

In [28], an operational semantics is provided for a subset
of the BPEL4WS language, which is then mapped onto a
network of Timed Automata, verified using Uppaal [8].

Other authors use different computational models for
verifying BPEL4WS processes. Petri Nets are used in [31],
where a Petri Net semantics is provided for BPEL4WS. The

'According to the presentation available at http://research.
microsoft.com/zing/zing-overview.ppt.

net resulting from the translation is then validated with the
LoLA [32] model checking tool.

Process algebras are used in [13] and [22]. In [13], web
service compositions are verified against properties cre-
ated from design specifications and implementation models.
Specifications, in the form of Message Sequence Charts,
and implementations, in the form of BPEL4WS processes,
are translated into the Finite State Process notation, which is
the input language for the LTSA (Labelled Transition Sys-
tem Analyzer) model checker. In [22], a process algebra,
the BPE-calculus, is used to abstract BPEL4WS control
flow. This calculus is used as input for a process algebra
compiler to produce a front-end for the concurrency work-
bench (CWB) [11], in which equivalence checking, pre-
order checking and model checking of processes are per-
formed.

The work described in [21] proposes model checking of
composite web services expressed with OWL-S (Web On-
tology Language for Web Services) [3], using an extended
version of Blast [19] tuned to support OWL-S concurrency.
Atomic web services are verified for predicate-bound prop-
erties.

4. Model Checking BPEL4WS with Bogor

Web services can be used as components to build highly
decentralized and evolvable system architectures [5]. Web
services live in an open world, they normally belong to dif-
ferent administrative domains, and may become available
dynamically. In such a case, the services retrieved from the
open environment and composed to build a higher-level ser-
vice must be treated as black boxes. Their internal behavior
is not visible externally. The workflow process only knows
such services through their interface specification, which
describes their expected behavior. In such a case, we can
only verify a workflow as a stand-alone process, i.e. we per-
form intra-service verification, where external services are
abstracted by their specification. There are cases, however,
where we are allowed to open the black box. This may hap-
pen, for example, in the case of services developed within
the same department or consortium, or in the case of open-
source services. In such cases, the dynamically published
services can be viewed as glass boxes, which expose their
internals. As a consequence, verification can take advan-
tage of the detail information that becomes available as an
external service is viewed as a glass box. It is thus possible
to achieve inter-services verification, by formally analyzing
properties of service compositions.

This dual-mode approach can be exploited for the veri-
fication of local and global properties. Indeed, in the first
case one may be interested only in verifying data-bound or
reachability properties within the workflow of a single pro-
cess. In the latter, verification may focus on the behavior of

Table 1. Comparison of BPEL4WS constructs

support
BPEL4WS constructs BPEL2BIR | Verbus® | Nakajima®
basic + structured activities® yes yes yes
fault handler yes yes no
event handler yes no no
compensation handler yes no no

“Data taken from [4].
bData taken from [26].
activities described in §11 and §12 of [1].

the whole composition, for example by proving that a cer-
tain temporal property on the exchange of messages among
business partners holds.

The choice of using Bogor in our approach comes from
the fact that its high-level input language allows the model-
ing of all constructs of BPEL4WS, providing a better sup-
port for the language with respect to other similar tools, as
reported in Table 1. Consider also that while our tool sup-
ports both intra-service and inter-services verification, [4]
and [26] support only the former, and [14] supports only the
latter, although it also supports all BPEL4WS constructs.
Furthermore, Bogor’s plugin-based architecture allows the
exploitation of several model checking techniques and the
customization for a particular domain. Although in this
work we report on the use of only the basic set of fea-
tures offered by Bogor, the encouraging results obtained
(discussed in Section 5) suggest that we might develop
BPEL4WS extensions for Bogor, as we outline in Section 6.

Before illustrating the translation, we summarize the
main aspects that characterize our approach with respect to
existing ones :

e it supports the analysis of both a stand-alone
BPELA4WS process and of a composition of web-based
processes;

e it supports the specification and verification of prop-
erties described in WS-CoL and in Linear Temporal
Logic (see Section 4.2);

e it covers all of BPEL4AWS constructs (except those
dealing with time);

e it uses a novel extensible model checker (Bogor);

e it offers significant efficiency gains, in term of the size
of the model, over previous verification systems.

The remaining parts of this section are structured as fol-
lows: Section 4.1 describes the translation from BPEL4WS
to a BIR model and Section 4.2 details some aspects of the
verification.

4.1. From BPEL4WS to BIR

BPEL2BIR implements a translator which accepts as in-
put a set of WSDL [33] and BPEL4WS files and outputs a
BIR model. The auto-generated BIR file can be then veri-
fied using Bogor.

A BPEL4WS process is mapped to a composition of
threads, where a thread models the main control flow of the
process and the other threads correspond to the activities
nested in the £1ow constructs of the process (more on this
later).

If we represent a service in isolation, the set of threads
are represented as a system, i. e. a Bogor verification unit,
and the thread that models the main control flow of the pro-
cess is active. Instead, if we represent a composition of
services, the whole composition is a system, hence the
threads representing the main control flow of each process
are not active. In fact, the system has only one active thread
that just launches the main thread of each process in the
composition.

In general, a system contains:

e declarations of data types, which model the message
types handled by the process;

e declarations of exception types, which model faults in
the process;

e global variables, for modeling the data flow of the pro-
cess;

e helper variables (e.g. boolean flags), functions
and threads, supporting the translation scheme from
BPEL4WS to BIR.

Simple WSDL types, such as XML Schema [34] basic
types, are mapped to corresponding BIR primitive types;
structured WSDL messages are mapped to record types.

BPEL4WS constructs that are concerned with external
partners and do not modify the state of the process are not
relevant for the translation into BIR, according to the intra-
service view. Literally, they are:

e partnerLink, which specifies the partner from/to
which a message is received/sent;

e reply activity, which models sending messages to
partners;

e correlation set, which associates the right instance of
the process with the partner that initiated it;

e compensation: compensation handlers operate on the
saved state to perform an undo operation with respect
to other partners.

Instead, when the inter-services view is considered, the

partnerLink construct plays an important role since it
defines the communication channel between two workflow
processes. Each communication channel in one direction of
a link is represented by a data variable of the same type of
the values exchanged along the channel, and a boolean vari-
able acting as a semaphore for read/write access.
Also compensation assumes an important role in this view,
since compensation actions mainly involve external ser-
vices. Compensation is translated by saving the pre-status
of the involved variables. In more detail, in a pre-processing
phase, all the elements embedded in a compensation are
listed and subsequently they are represented with variables
that remember their previous status. When a compensate
occurs, the recovery action with respect to other partners is
performed using old values.

The activities of a BPEL4WS process are mapped into
BIR as follows.

The assign activity is modeled by the BIR assignment
operator. The pick activity is translated by invoking a
function that models the occurrence of one of the events
being awaited; the function call sets a flag, which is
then evaluated in an if...then...elseif...else
statement to execute the body associated with the event
type. The blocking nature of the activity is not modeled.
Basic BPEL4WS control flow statements such as
sequence, switch, while, throw, empty,
terminate are trivially mapped to their equivalent
in BIR.

We model each wait activity in a simplified way
through a boolean flag. Since we do not model the time
passing, execution of the wait activity is modeled by set-
ting the flag to true. This abstraction limits the use of wait
in the £1low, since one cannot establish an order relation
among wait activities contained in the £1ow.

A flow activity £low; is translated into the invoca-
tion of the function launchAndWaitF low;, which cre-
ates and starts a thread for each activity in the parallel flow,
and returns to the caller only when all the launched threads
terminate. The first actions performed by each thread cor-
respond to the initial activity of each branch of £1ow;. The
other actions in the thread can depend on the value of their
incoming links, encoded in BIR by boolean variables corre-
sponding to link transition conditions. In each thread, the
activities that are target of some links wait for the com-
pletion of the activities they depend on and then evaluate
the conditions carried by the links, using the join condition.
Each thread terminates by setting the variables correspond-
ing to the transition condition of its outgoing links and call-
ing the exit function.

The receive (invoke) activity is translated in two
different ways depending on the verification viewpoint. If
we consider an intra-service view, the receive (invoke,

BPEL4WS pseudo-code

BIR translation

if (price < 10000) then
if (price < 5000) then
—--perform activity A
else
—-perform activity B
else
//perform activity C

boolean price-1less-10000;
boolean price-less-5000;
choose
when <true> do price-less-10000:=true;
. . when <true> do price-less-10000:=false;
receive (price); end

end

/

else

else do

if (price-less-10000) do
choose
when <true> do price-less-5000:=true;
when <true> do price-less-5000:=false;

if (price-less-5000) do

//translation of B

//translation of C

/translation of A
do

Figure 1. Example of variable abstraction

respectively) is translated as an assignment to its input
(respectively, output) variable, since the behavior of ex-
ternal services is not modeled. The assignment is per-
formed with a value either extracted non-deterministically
from the domain (in the case of boolean or restricted in-
teger variables) by a “generative” code block, or provided
by the users. Alternatively, depending on the properties
they want to verify, users may also specify that a vari-
able may be abstracted: i.e., each expression using a vari-
able is substituted with a boolean predicate, assigned non-
deterministically. This transformation is performed by ap-
plying a standard define-use chain analysis [27]. Figure 1
shows an example of abstraction, where the uses of variable
price generate two predicates, represented by the vari-
ables price-1ess-10000 and price-1less-5000.
When the inter-services view is considered, the details of
the communication are known. In this case, the receive
activity (invoke and reply, respectively) is translated
using a guarded reading access (assignment, respectively)
to the channel data variable, with the guard being the chan-
nel semaphore.

BIR does not support nested blocks; local variables of
nested BPEL4WS scopes are declared as local variables
of the thread in which the scope is translated. However,
a try/catch block is generated to model the local fault
handler.

Each fault handler in a scope of a BPEL4WS process
is associated with a specific fault; we model this feature
of the language by declaring a new variable —named after
the fault name— of type throwable record, and by
appending to the t ry statement in the current scope a new
catch (var) clause matching the exception variable var
corresponding to the fault.

The notification of external events is modeled

by introducing in the model a helper function, the
eventGenerator, which non-deterministically pro-

duces constants representing timer or message events.
When the first statement of a scope is entered, a new thread
is started. This thread, which runs until the last statement
of the scope is executed, retrieves a new event by invoking
the helper function. If the returned value matches one of
the messages declared in the event handler associated with
the scope, the thread executes the corresponding activity.
The translation details of non-trivial constructs are
summarized in Table 2.

4.2. Specifying and Verifying Properties

If no user-specified properties are provided, Bogor
checks the automatically generated model for deadlock
freedom. In our approach, users may also specify additional
properties using WS-CoL and Linear Temporal Logic.

WS-CoL is an assertion language defined in [7] for spec-
ifying monitoring expressions; it is based on JML [23],
with some conceptual and syntactical differences due to
the adaption to the world of web services. WS-CoL al-
lows the designer to predicate on variables containing data
originating both within and outside the process. It uses
predefined variable functions depending on the variable’s
data type, it combines basic constraints through the use of
typical boolean operators and uses universal and existential
quantifiers. As opposed to JML, WS-CoL does not support
the keywords \old and \result. They are not needed
because service invocations cannot modify input parame-
ters and because returned messages can be referred by their
names.

An example of a WS-CoL property is the following:
(Smsg/amount) > 0 && (Smsg/amount) <=4,
which predicates over the variable msg, whose type is a
structured WSDL message having amount as a field of
type integer.

In our approach WS-CoL properties can be directly em-

Table 2. Translation scheme from BPEL4WS to BIR

name BPEL4WS syntax BIR syntax
enum Pickl_T {messagel, alarml};
<pick ...> .
<onMessage ...> Pickl_T flagl;
activitya .
pick </onMessage> flagl:= pickl();
<onAlarm ...> if flagl == Pickl_T.messagel do
activityB activityA:
</onAlarm> else do
</pick> activityB;
end
tid flowl_actl_tid;
tid flowl_act2_tid;
launchAndWaitFlowl () ;
function launchAndWaitFlowl () {
boolean tempO;
loc locO: do {
<flow ...> flowl_actl_tid := start flowl_actl();
flow activityA flowl_act2_tid := start flowl_act2();
activityB } goto locl;
</flow> loc locl: do {
tempO:=threadTerminated (flowl_actl_tid)
&& threadTerminated(flowl_act2_tid);
} goto loc2;
loc loc2: when tempO do{} return;
when !tempO do{} goto locl;
}
thread flowl_actl () {activityd; exit;}
thread flowl_act2() {activityB; exit;}
<faulthandlers> throwable record A;
<catch faultName="x:a"> throwable record B;
activityA .
fault </catch> . try
<catch faultVariable="x:b"> .
activityB catch (A a)
</catch> catch (B b)
</faulthandlers> end

bedded in the XML code of the BPEL4WS process and then
translated as assert statements in the BIR model.

We also support the verification of properties speci-
fied as linear temporal logic formulas, embedded in the
XML code of the BPEL4WS process, and then translated
in the BIR model. LTL verification is performed by us-
ing two extensions of Bogor, namely property-1t1 and
property-buechi.

5. Experimental Results

We assembled a test suite of BPEL4WS processes that
we used to evaluate the effectiveness of our approach and
thus the “quality” of the automatically generated code, from
a model checking point of view.

Before defining our own test set, we checked whether
we could adopt some existing standard benchmark set of
workflows2. Since, unfortunately, such a benchmark does

2Such as a benchmark exists in other areas. For example, Generalized

not exist yet, we decided to build our own by assembling
the published experiments that were used for the verifiers
we compare to.

Our suite is composed of three packages : 1) two exam-

ples coming with the Verbus distribution?; 2) the four exam-
ples described in the BPEL4WS standard; 3) the BPEL4WS
example of service composition included in the WSAT dis-
tribution*.
The first two packages refer to intra-service verification,
while the third deals with inter-services verification. Hence,
the first two packages allow us to compare our tool with the
Verbus framework and Nakajima’s approach [26], while the
third supports a comparison with WSAT.

For the first and the third experiment, we used the nu-
merical constants and integer domains specified in the files
of Verbus and WSAT distributions, respectively; for the sec-

Railroad Crossing problem [18] is a proposal for specifying and verifying
real time systems.
3 Available at http://www.it.uc3m.es/~jaf/verbus/.
4Available at http: //www.cs.ucsb.edu/~su/WSAT/.

Table 3. Comparison of outputs

Framework Process States
Bogor SPIN
Verbus Olive 932 10508
Orders 27 324
Purchase 24 2497
. Shipping 22 216
Nakajima Loan 1625 | 3516
Auction 24 57
WSAT Loan + LTL | 200181 | 980324

ond experiment, we used variable abstraction, as in [26]. In
the third experiment, we considered the LoanApproval
example and we verified the following LTL property:
O (¢ (approvalMsg = ’yes’ \ approvalMsg = *fault’)),
which states that the loan approval process eventually will
reply either with an output message or a fault.

Experimental analysis of a prototype implementation
of BPEL2BIR has been performed on a machine with a
1.7GHz Intel Pentium M processor and 512 MB RAM, run-
ning GNU/Linux; we used Bogor ver. 1.2.20060221 and
SPIN ver. 4.2.6.

The results of the experiments summarized in Table 3
show that in all cases our translation method provides a
more compact model, in terms of number of states, with
respect to other approaches. We do not provide memory
usage statistics since the value reported at the end of the
verification by Bogor is inconsistent’, due to the lack of
good memory control/query in Java and the activity of the
garbage collector.

6. Conclusions and Future Work

In this paper we presented an approach to formal veri-
fication of business processes, described in BPEL4WS, us-
ing the Bogor model checker. Bogor’s high-level input lan-
guage allows the modeling of all constructs of BPEL4WS
relevant for model checking the workflow. Our initial ex-
periments show the validity of our approach, not only in
terms of coverage of the language, but also in terms of per-
formance of verification, because of the smaller size of the
generated models. A more thorough empirical evaluation of
the existing approaches, however, is still necessary to fully
understand the practical applicability of formal verification
via model checking. This will be one of our future research
directions.

Our future work will also address two different, orthog-
onal, directions. On the modeling side of the approach, we

5As reported in http://projects.cis.ksu.edu/forum/
forum.php?thread_id=308&forum_id=16.

will add further support for the wait activity embedded
in £1low constructs. Moreover, we will provide a reverse-
mapping from BIR to BPEL4WS, which will be useful
to show counterexample traces directly in the BPEL4AWS
source code, instead of low-level BIR, as we currently do.
Furthermore, the definition of a formal semantics of both
BPEL4WS and BIR could help in proving a bi-simulation
between the two models, to formally assess the correctness
of our approach, which so far has only been informally de-
rived from the proposed translation.

As for the model checking theory’s side, we plan to ex-
ploit Bogor’s extensibility for a further development. The
CEGAR (Counterexample Guided Abstraction Refinement)
[9] loop and predicate abstraction [17] state space reduction
techniques — which proved to be highly beneficial when
applied to software model checking — may be implemented
as Bogor plugins to improve verification efficiency.

Last, since our work is based on version 1.1 of
BPEL4WS, we plan to support the forthcoming release of
the language as soon as it will become the official standard.

7. Acknowledgments

Part of this work has been supported by the IST EU
project “PLASTIC” — contract number 026955 — and the
italian FIRB project “ART DECO”.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, Version 1.1. Technical report, OA-
SIS, 2003-05-05 2003.

[2] T. Andrews, S. Qadeer, S. K. Rajamani, and Y. Xie. Zing:
Exploiting program structure for model checking concurrent
software. In P. Gardner and N. Yoshida, editors, CONCUR
2004 - Concurrency Theory, 15th International Conference,
Proceedings, volume 3170 of Lecture Notes in Computer
Science, pages 1-15. Springer, 2004.

[3] A. Ankolekar. OWL-S Semantic Markup for Web Services,
2003. http://www.daml.org/services/owl-s/.

[4] J. Arias-Fisteus, L. S. Fernandez, and C. D. Kloos. Formal
Verification of BPEL4WS Business Collaborations. In E-
Commerce and Web Technologies, 5th International Confer-
ence, EC-Web 2004, Proceedings, volume 3182 of Lecture
Notes in Computer Science, pages 76—85. Springer, 2004.

[5] L. Baresi, E. Di Nitto, and C. Ghezzi. Towards Open-World
Software: Issues and Challenges. IEEE Computer, 39:36—
43, October 2006.

[6] L. Baresi, C. Ghezzi, and L. Mottola. Towards Fine-grained
Automated Verification of Publish-Subscribe Architectures.
In Proceedings of the 26th International Conference on
Formal Methods for Networked and Distributed Systems
(FORTEO06), Paris, September 2006.

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

L. Baresi and S. Guinea. Towards Dynamic Monitoring
of WS-BPEL Processes. In B. Benatallah, F. Casati, and
P. Traverso, editors, ICSOC, volume 3826 of Lecture Notes
in Computer Science, pages 269-282. Springer, 2005.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL — a Tool Suite for Automatic Verification
of Real-Time Systems. In Proc. of Workshop on Verifica-
tion and Control of Hybrid Systems 111, number 1066 in Lec-
ture Notes in Computer Science, pages 232-243. Springer—
Verlag, October 1995.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV’00:
Proceedings of the 12th International Conference on Com-
puter Aided Verification, pages 154-169, London, UK,
2000. Springer-Verlag.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model check-
ing. MIT Press, Cambridge, MA, USA, 1999.

R. Cleaveland, J. Parrow, and B. Steffen. The concurrency
workbench: A semantics-based tool for the verification of
concurrent systems. ACM Transactions on Programming

Languages and Systems, 15(1):36-72, January 1993.

E. A. Emerson and A. P. Sistla. Symmetry and model check-
ing. Formal Methods in System Design, 9(1-2):105-131,
1996.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
Verification of Web Service Compositions. In /8th IEEE In-
ternational Conference on Automated Software Engineering
(ASE 2003) , pages 152—-163. IEEE Computer Society, 2003.
X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
web services. In WWW °04: Proceedings of the 13th in-
ternational conference on World Wide Web, pages 621-630,
New York, NY, USA, 2004. ACM Press.

X. Fu, T. Bultan, and J. Su. WSAT: A Tool for Formal Anal-
ysis of Web Services. In Computer Aided Verification, 16th
International Conference, CAV 2004, Proceedings, volume
3114 of Lecture Notes in Computer Science, pages 510-514.
Springer, 2004.

P. Godefroid. Using partial orders to improve automatic ver-
ification methods. In CAV ’90: Proceedings of the 2nd Inter-
national Workshop on Computer Aided Verification, pages
176185, London, UK, 1991. Springer-Verlag.

S. Graf and H. Saidi. Construction of abstract state graphs
with pvs. In CAV ’97: Proceedings of the 9th International
Conference on Computer Aided Verification, pages 72-83,
London, UK, 1997. Springer-Verlag.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. A bench-
mark for comparing different approaches for specifying and
verifying real-time systems. In Proc. Tenth Intern. Work-
shop on Real-Time Operating Systems and Software. IEEE
Computer Society Press, may 1993.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Symposium on Principles of Programming
Languages, pages 58-70, 2002.

G. J. Holzmann. The model checker SPIN. Software Engi-
neering, 23(5):279-295, 1997.

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

H. Huang, W.-T. Tsai, R. Paul, and Y. Chen. Automated
Model Checking and Testing for Composite Web Services.
In 8th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2005), pages

300-307. IEEE Computer Society, 2005.
M. Koshkina and F. van Breugel. Verification of Business

Processes for Web Services. Technical Report CS-2003-11,
York University - Department of Computer Science, 4700
Keele Street, Toronto, M3J 1P3, Canada, October 2003.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A no-
tation for detailed design. In H. Kilov, B. Rumpe, and
I. Simmonds, editors, Behavioral Specifications of Busi-
nesses and Systems, pages 175-188. Kluwer Academic Pub-
lishers, Boston, 1999.

F. Leymann. Web Services Flow Language (WSFL) 1.1.,
2001.

S. Nakajima. Verification of Web Service Flows with model
checking techniques. In CW ’02: Proceedings of the First
International Symposium on Cyber Worlds (CW’02), page
0378, Washington, DC, USA, 2002. IEEE Computer Soci-
ety.

S. Nakajima. Model-Checking Behavioral Specification of
BPEL Applications. In Proceedings of the International
Workshop on Web Languages and Formal Methods, WLFM
2005, 2005.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro-
gram Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

G. Puyz, Z. Xiangpengy, W. Shulingy, and Q. ZongyanyS.
Towards the Semantics and Verification of BPELAWS. In
Proceedings of the International Workshop on Web Lan-
guages and Formal Methods, WLFM 2005, 2005.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible
and highly-modular software model checking framework. In
ESEC/FSE-11, pages 267-276, 2003.

Robby, M. B. Dwyer, J. Hatcliff, and R. losif. Space-
reduction strategies for model checking dynamic systems. In
Proceeding of the 2003 Workshop on Software Model Check-
ing, volume 89 of Electronic Notes in Theoretical Computer
Science. Elsevier, July 2003.

B.-H. Schlingloff, A. Martens, and K. Schmidt. Modeling
and Model Checking Web Services. Electronic Notes in
Theoretical Computer Science: Issue on Logic and Com-
munication in Multi-Agent Systems, 126:3-26, March 2005.
K. Schmidt. LoLA: A low level analyser. In M. Nielsen
and D. Simpson, editors, Application and Theory of Petri
Nets, 21st International Conference (ICATPN 2000), vol-
ume 1825 of Lecture Notes in Computer Science, pages 465—
474. Springer-Verlag, June 2000.

W3C. Web Services Description Language (WSDL) 1.1,
2003. http://www.w3.org/TR/wsdl.

W3C. XML Schema, 2004. http://www.w3.org/
XML/Schema.

