

Constraint Driven Web Service Composition in METEOR-S

Rohit Aggarwal, Kunal Verma, John Miller, William Milnor1

LSDIS Lab, University of Georgia, Athens, 30602
{aggarwal, verma, jam, milnor}@cs.uga.edu

1 We would like to acknowledge Dr. Amit Sheth’s important
contributions to this paper. He could not become a co-author of this
paper since he is the program co-chair of the conference.

Abstract

 Creating Web processes using Web service technology
gives us the opportunity for selecting new services which
best suit our need at the moment. Doing this
automatically would require us to quantify our criteria
for selection. In addition, there are challenging issues of
correctness and optimality. We present a Constraint
Driven Web Service Composition tool in METEOR-S,
which allows the process designers to bind Web Services
to an abstract process, based on business and process
constraints and generate an executable process. Our
approach is to reduce much of the service composition
problem to a constraint satisfaction problem. It uses a
multi-phase approach for constraint analysis. This work
was done as part of the METEOR-S framework, which
aims to support the complete lifecycle of semantic Web
processes.

1. INTRODUCTION

 Research initiatives in the areas of workflows,
information systems and databases are being directly
employed by businesses to model, design and execute
their critical processes. With the growth of the process
centric paradigms, a greater level of integration is seen
across functional boundaries, leading to higher
productivity. There is, however, a growing need for
dynamic integration with other business partners and
services. Several architectures have been postulated for
more flexible and scalable process environments. The
growth of Web services and service oriented architecture
(SOA) offer an attractive basis for realizing such
architectures.
 There can be multiple approaches for Web process
composition. We use an abstract process containing
abstract services as a starting point. An abstract service is
a placeholder for a set of services matching the abstract
service’s template. In some cases the set may have
cardinality greater than one, for example, a set of

competing services. In this way, the topology of the
service process is largely fixed; however, actual service
selection may be highly dynamic. An alternative approach
to composition is to not start with a basic abstract process,
but rather form a set of goals and build the whole process.
Several AI researches are investigating the use of
planning agents for this purpose. In the near term, we feel
that having a well-designed abstract process as a starting
(i.e. having most of choreography pre-designed), is a
useful and pragmatic initial step.
 The key to our approach is in allowing users to capture
high level specifications as abstract processes. We use
Semantic Web [6] technologies to represent the
requirements for each service in the process. We build on
earlier work on automated discovery [22, 9, 31] of
Semantic Web Services based on the users requirements.
After discovery, the candidate services must be selected
on the basis of process and business constraints. We
present a multi-phase approach for constraint
representation, cost estimation and optimization for
constraint analysis and optimal selection of Web services.
 In this paper, we present the Constraint Driven Web
Service Composition in METEOR-S, which is a
comprehensive framework for the composition of Web
services. The METEOR-S back-end allows the
manufacturers to bind services based on the given abstract
process, requirements and the process constraints.
 This work has been done as a part of the METEOR-S
project in the LSDIS Lab at the University of Georgia,
which aims to create a comprehensive framework for
composing Web processes. Section 2 discusses the
METEOR-S framework, while Section 3 explains the
architecture of the METEOR-S backend. Section 4
introduces the abstract process designer which involves
creating a representation of Web processes. Our Semantic
Web service discovery algorithm is presented in Section
5. Section 6 discusses the constraint analyser followed by
the binder module in Section 7. In Section 8, we compare
our approach to other related work and finally in Section
9, we present conclusions and future work.

2. METEOR-S

 The METEOR (Managing End-To-End OpeRations)
project in the LSDIS Lab focused on workflow
management techniques for transactional workflows [28].
Its follow-on project, which incorporates workflow
management for semantic Web services, is called
METEOR-S (METEOR for Semantic Web Services). A
key feature in this project is the usage of semantics for the
complete lifecycle of semantic Web processes, which
represent complex interactions between semantic Web
services.
 The main stages of creating semantic Web processes
have been identified as development, annotation,
discovery, composition and execution. An aspect of
METEOR-S has been exploring different kinds of
semantics, which are present in these stages. We have
identified Data, Functional and Quality of Service as
different kinds of semantics.
 From an architectural point of view, we divide
METEOR-S in two main parts – the front-end and the
back-end. The back-end, which is the focus of this paper,
covers the abstract process design, discovery, constraint
analysis binding and execution stages. The main
components of the back-end are the 1) Abstract Process
Designer, 2) Discovery Engine, 3) Constraint Analyser
and 4) Binder. The front-end of METEOR-S which
covers annotation and publication is discussed in [24]
 We provide a representational framework for
incorporating Data semantics, Functional semantics and
Quality of Service Semantics to support activities in the
complete Web process lifecycle. For background, we will
provide brief descriptions of data, functional and QoS
semantics in this section.

2.1. Data Semantics

 For Web services to communicate with each other,
they should understand the semantics of each others data.
Inputs, outputs and exceptions of Web services in a
domain can be represented using OWL [18] ontologies.
For example, ebXML Core Component Dictionary [13] or
RosettaNet Technical Dictionary [26] can be used to
represent input/output/exception data in Web services.
The RosettaNet schema language is DTD but we have
converted a portion of it into OWL for greater precision.
Figure 1, shows a snapshot of RosettaNet Ontology [4]
which we are creating using RosettaNet PIP’s in OWL.

2.2. Functional Semantics

 The functional semantics of a Web service operation is
a combination of its data semantics, and classification of

its operations functionality as well as its pre-conditions
and post-conditions.

Figure 1: Snapshot of a part of RosettaNet Ontology

Let s be a service and o be one of its operations then, we
define functional semantics of an operation of a Web
service as F(s, o) = <Fc(s,o), I(s,o), O(s,o), E(s,o), P(s,o),
Po(s,o)>, where

Fc(s,o) Functional classification of operation ‘o’ in terms of
ontological concepts

I(s,o) Inputs of operation ‘o’ in terms of ontology concepts
O(s,o) Outputs of operation ‘o’ in terms of ontology concepts
E(s,o) Exceptions throwable during execution of operation ‘o’

in terms of ontology concepts
P(s,o) Pre-conditions of operation ‘o’ in terms of ontological

concepts
Po(s,o) Post-conditions of operation ‘o’ in terms of ontological

concepts

Functional Semantics

Fc(s,o) #OrderBattery

I(s,o) #PurchaseOrderRequest
O(s,o) #PurchaseOrderConfirmation
E(s,o) InvalidContactInformation
P(s,o) ContactInformation <> null
Po(s,o) Valid PurchaseOrderNumber

 We have shown a custom sub-ontology in Figure 2
which is an extension of the of the RosettaNet ontology
shown in Figure 1. Functions of a Web service can be
defined as a set of related operations which can be
mapped to concepts in the ontology in order to get
functional semantics of a Web service.

Figure 2: Custom sub-ontology of RosettaNet

2.3. Quality of Service (QoS) Specifications

 The Quality of Service (QoS) specifications of a Web
service characterize performance and other
qualitative/quantitative aspects of Web services. In order
for the suppliers of services to understand each others
QoS terms, a common understanding must be reached on
the meaning of the terms. Ontologies can be used to
represent and explicate the semantics of these parameters.
[9, 10, 30] have described generic QoS metrics based on
time, cost, availability and reliability. We have created an
ontology to represent the generic metrics, as well as
domain specific QoS metrics. We have initially defined
the QoS of an operation j of a Web service i as follows:

QoS(si, oj) = <T(si,oj), C(si,oj), R(si,oj), A(si,oj), DS1(si,oj),
DS2(si,oj),..., DSN (si,oj)> where,

T(s,o) Execution time of Web service ‘s’ when operation ‘o’ is
invoked

C(s,o) Cost of Web service ‘s’ when operation ‘o’ is invoked
R(s,o) Reliability of Web service ‘s’ when oper ‘o’ is invoked
A(s,o) Availability of Web service ‘s’ when oper ‘o’ is invoked
DSi(s,o) Service/operation level domain specific QoS metrics

Each metric specification consists of a quadruple.
QoSq(s,o) = <name, comparisonOp, val, unit>, where
‘name’ is the parameter name, ‘comparisonOp’ is a
comparison operator, ‘val’ is a numerical value, and
‘unit’ is the metric unit. For example QoS can be
represented as follows:

Name Comparison Val Unit
Time < 60 Seconds
Cost < 100 Dollars
Reliability >= .9
Availability >= .8

The overall semantics of an operation are defined as:

OP(si,oj) = <F(si,oj), QoS(si,oj)>, where

F(si,oj) and QoS(si,oj) are functional semantics and QoS
specifications of the required operation, respectively. The
former tells what the service operation does while the
latter tells how well it does it.

Services can be represented as Service Advertisements
(SA) which is the actual services/WSDL files published
in the registry.

3. Architecture

 Figure 3 shows the architecture of the METEOR-S
which is made up of a front-end [24] and back-end.

Figure 3: Architecture of METEOR-S

 METEOR-S allows us to design and abstractly
represent the functionality of the required services using
Service Templates (ST). The Discovery Engine is an
interface over UDDI [20] registries to provide semantic
publication and discovery. The constraint analyzer
module produces approved (includes optimal, near
optimal and ranked) sets based on business and process
constraints. The execution engine binds a set of services
to the abstract process and generates an executable
process. We discuss all the modules of METEOR-S
backend in the following sections.

Back -End

Front -End

Service
Template(s) Discovery

Engine 5

Binder
7

Constraint
Analyzer 6

Abstract
Process

Service
Template (s)

Abstract
Process
Designer 4

Advertisement

Annotated Source
Code (Java)

Enhanced
UDDI

Semantic
Web
Services
Designer

Publishing Interface

Annotated
WSDL1.1

OWL-S WSDL-S

Semantic
Description
Generator

Query Ranked Response

4. Abstract Process Designer

 This stage involves creating a representation of Web
processes. We have chosen BPEL4WS [1] for creating
the abstract process as it is the de facto industry standard
and provides a rich set of constructs for modelling
workflow patterns [34]. Design of abstract processes
involves the following tasks.

1. Creating the flow of the process using the
control flow constructs provided by BPEL4WS.

2. Representing the requirements of each service in
the process by specifying service templates,
which allow the process designer to either bind
to a known Web service or specify a semantic
description of the Web service.

3. Specifying process constraints for optimization.

 Let us examine the creation of the abstract process
with the help of an example. Consider the process of a
distributor for processing customer orders. It starts by
receiving the order from a customer. Then the order is
processed and potential suppliers are selected. This
process also includes a step, where potential suppliers
may be contacted for quotes. After getting the quotes, the
best candidates are chosen on the basis of process and
business constraints and the orders are sent to them. This
process can be designed by first deciding the flow of the
different activities involved. This can be done by creating
the process flow in BPEL4WS. The abstract process flow
is shown in Figure 5.

Figure 5: Abstract Distributor Process

 The designer can then decide which services to bind
manually and which to bind through METEOR-S. The
internal distributor services for processing the order and
selecting the suppliers do not change so they may be
statically bound to the process. However, the suppliers to
be contacted depend on the order, so the supplier services
should be able to be dynamically selected and bound to
the process. This can be done by specifying service
templates for the suppliers. We have defined
specifications for augmenting BPEL4WS activities with
service templates. A service template is created by using
functional semantics as well as QoS specifications for an
abstract operation from a suitable Web service. A Service

Template is defined as <SL(ST), OP(ST,o1), …,
OP(ST,om)>, where

SL(ST) Service Level Parameters
OP(ST,oi) Operation Semantics

SL(ST) = <B(ST), L(ST), D(ST)>, where

B(ST) Business Name of the service provider
L(ST) Geographic Location of the service
D(ST) Domain of the service

 Currently, the Location of the service is specified
using the ISO 3166 Geographic Code System and the
domain is specified using the NAICS taxonomy [21].
Also, our system is compatible with any other standards
that can be used to specify the location and domain.
 Here is an example of a service template for the
service that supplies batteries in Georgia, which provides
operation for ordering batteries.

Service Template (ST)
Feature Weight Constraint

L(ST) 1 Georgia
D(ST) 1 Battery Supplier
Fc(ST,o) 1 #OrderBattery
 I(ST,o) .8 #PurchaseOrderRequest
O(ST,o) 1 #PurchaseOrderConfirmation
R(ST,o) .8 > 0.9
C(ST,o) .9 < 100 Dollars

5. Discovery Engine

 UDDI v.2 is the current standard for Web service
discovery and publication. Semantic search in UDDI was
first proposed by [22]. We have implemented our own
algorithms to support semantic querying for services
annotated using METEOR-S specifications. Service
providers can annotate their services to create service
advertisements and publish them using MWSDI [31].
Given a service template, the discovery engine will return
a set of service advertisements which match the template.
The discovery engine also searches for the
transformations required to make a service advertisement
match the template.
 WSDL is the industry standard for describing Web
services. It is, however, primarily syntactic in nature, and
does not explicate the semantics of the service provider.
DAML-S [2] (now replaced by OWL-S [3]), presented
semantic representation of Web services using an
ontology based mark-up language. In an effort to be
closely aligned to industry standards, we proposed
semantic annotation of WSDL [29, 24]. The service
advertisements which include the specifications
developed in Section 2 are annotated WSDL files and
published in our enhanced UDDI registry.

Send Order

Receive
Confirmation Process

Order

Send Order

Receive
Order

Send Order

 SA = <SLP(SA), OP(SA,o1), …, OP(SA,on)>

 To find an optimal service set, we have a three phase
selection process. The first phase is automated service
discovery, followed by constraint analysis and then
optimization based on user constraints as shown in Figure
6.

Figure 6: Three Phases of Selection Process

 A detailed description of the METEOR-S discovery
algorithm is provided in [4]. The remaining two phases
are discussed in the following section.

6. Constraint Analyzer

 The constraint analyzer dynamically selects services
from candidate services, which are returned by the
discovery engine. Dynamic selection of services raises the
issues of optimality. Our approach is to represent all
criteria that affect the selection of the services as
constraints or objectives. This converts the problem to a
constraint satisfaction/optimization problem. Any
candidate set of services for the process which satisfies
the constraints is a feasible set. The constraints analyser
has three sub-modules: the constraint representation
module, the cost estimation module and the optimization
module. We discuss these modules in detail in the next
sub sections.

6.1. Constraint Representation Module

 The constraint representation module allows us to
represent the business constraints in ontologies. A
business constraint is defined as any constraint that
affects the selection of a Web service for a process. For
example, some suppliers may be preferred suppliers for
one part, but secondary suppliers for another part. There
may exist a number of such business constraints for a
particular process. Depending on the particular instance
of the process, some constraints may be more important
than others. For example, a secondary supplier may be
chosen over a preferred supplier if it is cheaper. For
illustration purposes, let us consider an example of
representing business constraints. We have developed an
electronics part ontology [4] representing relationships
between electronic items such as network adapters, power
cords and batteries. The ontology is used to capture the
suppliers for each part, their relationships with the
manufacturer and the technology constraints in their parts.
Let us express the following facts in the electronics part

ontology derived from the RosettaNet ontology (Figure
1).

Fact OWL expression
Supplier1 is an instance of
network adaptor supplier
Supplier1 supplies #Type1
Supplier1 is a preferred
supplier.

<NetworkAdaptorSupplier
rdf:ID="Supplier1">
<supplies rdf:resource="#Type1"/>
<supplierStatus>preferred
</supplierStatus>
</NetworkAdaptorSupplier>

Type1 is an instance of
NetworkAdaptor
Type1 works with
Type1Battery

<NetworkAdaptor rdf:ID="Type1">
 <worksWith>
<Battery rdf:ID="Type1Battery">
</worksWith></ NetworkAdaptor >

 With the help of such statements the required business
and technological constraints, which will be critical in
deciding the suppliers, can be encoded in the ontology. In
the future, we will use SWRL [14] along with OWL to
provide more descriptive rules for specifying constraints.

6.2. Cost Estimation Module

 The cost estimation module queries the information
stored in the cost representation module for estimating
costs for various factors which affect the selection of the
services for the processes. The factors which affect
service selection are the following:

• Service Dependencies
• Querying and cost estimation
• Process constraints

6.2.1. Service Dependencies. It is possible for the
selection of one service to depend on another [32]. These
dependencies may be based on a number of criteria like
business constraints, technological constraints or
partnerships. One type of service captures the notion that
the selection of one service will affect choices of other
services.

6.2.2. Querying and Cost Estimation. Let us consider
the supply chain for the manufacturer we mentioned in
the introduction. Here are some of the factors which may
affect the selection of the suppliers for a particular
process.
• Cost for procurement
• Delivery time
• Compatibility with other suppliers
• Relationship with the supplier
• Reliability of the supplier’s service
• Response time of the supplier’s service

 Depending on the manufacturer’s preferences at
process execution, all the factors can be more or less
important. For example, at a certain point of time a
manufacturer may only want to deal with preferred

Service
Discovery

Constraint
Analysis

Optimization

suppliers, while at other times he may choose the lowest
cost alternative. In order to be able to set priorities
between these factors, the cost estimation module
provides a way to specify weights on each factor.
 Actual values for cost, supply time and other such
factors can be obtained either from the UDDI, or by
querying internal databases/third parties (like consumer
reports) or getting quotes from the suppliers Web
services.

6.2.3. Process Constraints. We refer to any
constraints that apply to only that particular process as
process constraints. The constraints are set on either the
actual values or the estimated values. We model process
constraints as constraints on Quality of Service
specifications which were discussed in section 2.3. The
process level QoS is calculated as the aggregation of QoS
[9, 10, 30] of all the services in the process. In this
implementation, the user has to specify the aggregation
operators for QoS parameters.

QoS(p) = <T(p), C(p), R(p), A(p), DS1(p), DS2(p),...... DSN (p)>

T(p) Execution time of the entire Web process
C(p) Cost of invoking all the services in the process
R(p) Cumulative reliability of all services in process
A(p) Cumulative availability of all services in process
DSi(p) Cumulative scores for Domain specific QoS parameters.

 QoSi (p) = {name, comparisonOp, val, unit,
aggregationOp}, where ‘name’ is the name of the QoS
parameter, ‘val’ is a numerical value, ‘comparisonOp’ is a
comparison operator, ‘unit’ is the unit of measurement
and ‘aggregationOp’ is aggregation operator. For most
metrics, the process QoS can be calculated using the
aggregation operators’ summation, multiplication,
maximum or minimum. However, in some cases, the user
may want to define a custom function for aggregation.

6.3. Constraint Optimizer

 The cost estimation module quantifies the process QoS
parameters for all candidate services in the process. The
process constraints are directly converted to constraints
for an Integer Linear Programming Solver called LINDO
[17]. The constraints specified by the user are stored in
the Service Template. The service providers can specify
an operation in the service which can be invoked to get
the QoS Metrics or constraints of the service. The
Optimizer module retrieves constraints for the services
matching the Service Template from either the UDDI or
by invoking an operation of the service specified by the
provider. The objective function for optimization, which
is a linear combination of the parameters, is extracted
from the Service Template defined by the user.

 These constraints and objective function, when fed
into the LINDO Integer Linear Programming solver, will
produce a number of feasible sets which would be ranked
from optimal to near optimal solutions. The ranking is
done on the basis of the value of the objective function.
The value of each individual constraint like time, cost,
and partner preference is also provided for feasible sets.
The process designer is given the option of selecting the
feasible set to be sent to the run-time module.

7. Binder

 After sending the service templates to the discovery
engine, discovering and optimizing, the last stage in
METEOR-S Constraint Driven composition deals with
binding the abstract process to the optimal set of services
(which match the service templates and satisfy the given
constraints) to generate an executable process. The
BPWS4J [12] engine provides a runtime environment to
execute Web processes represented in BPEL4WS. The
output of the binder is a BPEL file in which the process
flow and data dependencies are specified between the
Web services and can be deployed on the BPWS4J
engine. We are using the BPWS4J API to parse the
abstract BPEL file and make changes to it. The abstract
BPEL file contains placeholders for the actual service
details to be filled in. Assuming the user gives the
following abstract BPEL and service template:

Abstract BPEL Service Template
<invoke name="orderPart"
partner="Partsupplier" portType="?"
operation="?" inputVariable="?"
outputVariable="?"/>

Operation = #OrderBattery
Input:#PurchaseOrderRequest
Output:#PurchaseOrder
Confirmation

 A service advertisement will be returned by the system
along with the location of the WSDL corresponding to the
service. The WSDL file will be used to extract portType,
namespace, etc. and would be inserted at appropriate
locations in the BPEL. Hence using the service
advertisement and the WSDL location we can construct
the Executable BPEL:

Matching Service Executable BPEL
Operation = SendOrder
Input=
purchaseOrderRequest
Output=
purchaseOrderConfirnation
wsdl= http://order.wsdl

<invoke name="orderPart"
partner="Partsupplier"
portType="sup:BatterySupplier"
operation="SendOrder"
inputVariable="purchaseOrderRequest"
outputVariable="purchaseOrderConfirn
ation"/>

 We are using WSDL4J API [36] to extract Web
service details like portType, namespace, etc. which is
then inserted into the BPEL file. We assume that the
WSDL is complete and there is only one portType
corresponding to an operation. The final executable BPEL

file is then sent to the BPWS4J execution engine to be
executed.

8. Related Work

 Semantics has been proposed as key to increasing
automation in applying Web services and managing Web
processes that take care of interactions between Web
services to support business processes within and across
enterprises [3, 15, 8]. Academic approaches like WSMO,
OWL-S and METEOR-S have tried to approach this
solution by using ontologies to describe Web services.
This approach is consistent with the ideas of the Semantic
Web, which tries to add greater meaning to all entities on
the Web using ontologies.
 Automated discovery of Web services requires
accurate descriptions of the functionality of Web services,
as well as an approach for finding Web services based on
the functionality they provide. [35] has discussed
classification of services based on their functionality.
Another approach tries to define the functionality of a
Web service as the transformation of inputs to outputs
[22]. Creating process ontologies was discussed in [16].
Our discovery algorithm considers functional and data
semantics as well as QoS specifications.
 Highly intertwined with semantics (and considered in
this proposal as part of semantic specification) is the issue
of Quality of Service (QoS), pursued from academic
setting in [9, 10, 30], and in industry setting under the
Web Service Policy framework [7].
 Use of automation in composing Web processes is
predicated on having sufficient machine processable
information about the process requirements as well as the
available Web services. Thus, Web services need
semantic annotation and process requirements need to be
specified at a high level. These requirements may be
specified as goals [8], application logic (e.g. using
extended Golog [19]) or hierarchal planning constructs
[33]. None of the above approaches for automated
composition have considered a comprehensive framework
for composition that would optimize selection of Web
services on the basis domain specific QoS in presence of
service dependencies.
 We believe that the ability to choose services
dynamically is crucial to the success of the service
oriented architecture. OWL-S is a markup language
anchored in an OWL ontology for automatic composition
of Web services. It has not yet developed formalisms for
optimization on the basis of QoS. An effort that comes
closest to our research is Self-Serv [5], which provides an
environment for creation of processes. They have,
however, not considered issues like handling
dependencies between Web services in a process. Another
relevant work [30] proposed a linear programming
approach to optimize service selection across the process

using generic QoS parameters. While they focus solely
on optimization on generic QoS issues, we provide a
comprehensive framework, which optimizes service
selection based on multi dimensional criteria such as
domain constraints, inter-service dependencies and QoS.

9. Conclusion and Future Work

 In this paper, we have presented an approach for
achieving constraint driven Web service composition.
This work builds on the METEOR-S Web Service
Composition Framework by adding the abstract process
designer, constraint analyzer, optimizer and binder
module. We have extended the workflow QoS model in
[10] to allow for global optimization and composition of
Web processes. We believe that our cost estimation
module adds great flexibility to our system by allowing us
to quantify selection criteria. We believe this is the first
paper to comprehensively address the issue of composing
business processes from an abstract process using
business and process constraints. An online flash demo of
this work is available at [25] and the complete tool is
scheduled to be released as open source in August, 2004.

10. REFERENCES

[1] Andrews et al., Business Process Execution Language for
Web Services Version 1.1, available at http://www-
106.ibm.com/developerworks/webservices /library/ws-bpel/
(2003).
[2] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara,
H. Zeng), "DAML-S: Semantic Markup for Web Services", in
Proceedings of the International Semantic Web Working
Symposium (SWWS), July 30-August 1, 2001
[3] Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O.,
Martin, D.L., McDermott, D., McIlraith, S.A., Narayanan, S.,
Paolucci, M., Payne T.R., and Sycara, K. The DAML Services
Coalition, "DAML-S: Web Service Description for the Semantic
Web", The First International Semantic Web Conference
(ISWC), Sardinia (Italy), (2002).
[4] R. Aggarwal, METEOR-S – An Environment for creating
Semantic Web Processes, Masters Thesis, University of
Georgia, 2004
[5] Boualem Benatallah, Quan Z. Sheng, Marlon Dumas: The
Self-Serv Environment for Web Services Composition. IEEE
Internet Computing 7(1): 40-48 (2003).
[6] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
Web, Scientific American, 284(5):34--43, May 2001.
[7] Box et al., Web Services Policy Framework (WSPolicy),
availab)le at http://www-
106.ibm.com/developerworks/library/ws-polfram, (2003).
[8] Bussler, C., Fensel, D. and Maedche, A. A Conceptual
Architecture for Semantic Web Enabled Web Services
SIGMOD Record, Special Issue Semantic Web and Databases
(2001).

[9] Jorge Cardoso, Amit P. Sheth: Semantic E-Workflow
Composition. Journal of Intelligent Information Systems 21(3):
191-225 (2003).
[10] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
Quality of Service for Workflows and Web Service Processes,
Journal of Web Semantics (accepted) (2004).
[11] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S.
Weerawarana: IEEE Internet Computing: Spotlight - Unraveling
the Web Services Web: An Introduction to SOAP, WSDL, and
UDDI. IEEE Distributed Systems Online 3(4): (2002)
[12] Curbera et al., IBM Business Process Execution Language
for Web Services JavaTM Run Time, BPWS4J,
http://www.alphaworks.ibm.com/tech/bpws4j
[13] ebXML, http://www.ebxml.org
[14] Horrocks et al., SWRL, A Semantic Web Rule Language
Combining OWL and RuleML,
http://www.daml.org/2003/11/swrl/, 2003
[15] Michael Kifer and David Martin, Bring Services to the
Semantic Web and Semantics to the Web services, SWSC,
(2002).
[16] M. Klein, and A. Bernstein. “Searching for Services on the
Semantic Web using Process Ontologies”, in The First Semantic
Web Working Symposium (SWWS-1). 2001.
[17] LINDO API version 2.0, Lindo Systems Inc.
http://www.lindo.com/
[18] McGuinness et al., Web Ontology Language (OWL), Web-
Ontology (WebOnt) Working Group
http://www.w3.org/2001/sw/WebOnt/, 2002
[19]McIlraith, S. and Son, T., Adapting Golog for Composition
of Semantic Web Services, Proceedings of the Eighth
International Conference on Knowledge Representation and
Reasoning (KR2002), Toulouse, France, April, (2002).
[20] UDDI, Universal Description, Discovery and
Integration, http://www.uddi.org, 2002.
[21] North American Industry Classification System, US Census
Beureau, 2002
[22] Paolucci, M. and Kawamura, T. and Payne, T.R. and
Sycara, K. (2002) Importing the Semantic Web in UDDI.
Proceedings of Web Services, E-Business and Semantic Web
Workshop, CAiSE 2002., pages 225-236, (2002).
[23] A. Patil, S. Oundhakar, A. Sheth, K. Verma, METEOR-S
Web service Annotation Framework, To appear in the
proceedings of the 13th International World Wide Conference,
(2004).
[24] P. Rajasekaran et. al., Enhancing Web Services Description
and Discovery to Facilitate Orchestration, Submitted to
SWSWPC, 2004 (In conjunction with ICWS’2004)
[25] METEOR-S Flash Demo,
http://lsdis.cs.uga.edu/~rohit/demo/METEOR-S-6.swf,
2004
[26] RosettaNet, http://www.rosettanet.org
[27] A. Sheth, “Semantic Web Process Lifecycle: Role of
Semantics in Annotation, Discovery, Composition and
Orchestration,” Invited Talk, WWW 2003 Workshop on E-
Services and the Semantic Web, Budapest, Hungary, May 20,
(2003).
[28] A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin,
D. Palaniswami, J. Lynch, I. Shevchenko: Supporting State-
Wide Immunisation Tracking Using Multi-Paradigm Workflow
Technology. VLDB 1996: 263-273

[29] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller: Adding
Semantics to Web Services Standards, Proceedings of 1st
International Conference of Web Services, 395-401, (2003).
[30] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q.
Sheng: Quality driven Web services composition. WWW 2003:
411-421, (2003).
[31] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S.
Oundhakar and J. Miller, METEOR–S WSDI: A Scalable
Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology
and Management (to appear), (2004).
[32] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, On
Accommodating Inter Service Dependencies in Web Process
Flow Composition, AAAI Spring Symposium PP: 37-43 on
Semantic Web Services.
[33] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web services composition using SHOP2.
In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, (2003).
[34] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M.
ter Hofstede. Pattern-Based Analysis of BPEL4WS, QUT
Technical report, FIT-TR-2002-04, Queensland University of
Technology, Brisbane, 2002, available at
http://tmitwww.tm.tue.nl/staff/wvdaalst/
Publications/p175.pdf, (2002).
[35] C. Wroe, R. Stevens, C. Goble, A. Roberts, M. Greenwood,
A suite of DAML+OIL Ontologies to Describe Bioinformatics
Web Services and Data. in International Journal of Cooperative
Information Systems special issue on Bioinformatics, March
2003 .ISSN:0218-8430, (2003).
[36] WSDL4J, Web Services Description Language for Java
Toolkit , 2003,
http://www-124.ibm.com/developerworks/projects/wsdl4j/

