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Placement within S-Cube

Work within the realm of workpackage:

JRA-2.2: Adaptable Coordinated Service Compositions

and more speci�cally in deliverable CD-JRA-2.2.5: Derivation of QoS and

SLA speci�cations: it derives a continuous-time model speci�cation of
orchestrations and uses it in a simulation.

Also related to workpackage

JRA-1.3: End-to-End Quality Provision and SLA Conformance

and is described in deliverable CD-JRA-1.3.5: Integrated set of concepts for

specifying end-to-end quality and negotiating SLAs.



SOA Context

Service Orchestrations describe centralized control �ow combining
services in order to achieve more complex tasks.

Exposed as services to the outside world � composability.
Cross organizational boundaries � loose coupling.
Usually designed around the notion of business processes.
Events, asynchronous exchanges, stateful conversations.
Often expressed in a specialized language: BPEL, YAWL, etc.

Service-Level Agreements (SLAs): constraints on values of QoS
attributes that provider and client are expected to comply with.

From the client perspective, attributing perceived QoS to logic,
components, and/or infrastructure resources is di�cult.

Providers often implement some type of elasticity of provision
resources to ensure SLA and meet demand in di�erent scenarios for
load/request rates.



Motivation

Actual QoS o�ered/provided depends on both:

logic of the orchestration provided, and
load/capacity of the provision resources.

Determining reasonable SLA o�ering: providers need to study
expected behavior of provision system under di�erent input scenarios,
and select appropriate resource scaling policies.

Goal of this work

Develop dynamic (time-dependent) simulation models of service provision
with QoS attributes, taking into account characteristics of the particular
composition being served.

Step 1: Develop model specifying dynamic behavior of orchestration.

Step 2: Combine with resource model into simulation model.

Step 3: Simulate behavior under di�erent scenarios.
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Orchestration Modeling

We use Petri Nets � well understood
and widely used in work�ow modeling.

Intermediate representation, can be used
with several front-end languages.
We impose some constraints w.r.t. the
shape of the net.

Places (circles) stand for conditions in
work�ow execution (including start and
�nish).

Tokens (dots) denote running instances
and mark places.

Petri Nets
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Transitions (squares) stand for work�ow activities and �re when all
input places (preconditions) are marked (stochastic choice).

A step through a Petri net �res all transitions that can �re and moves
tokens to new places.



Places, Transitions as Flows, Stocks

The basic PT-nets oversimplify behavior because transition times are
not taken into account (only discrete steps).

In reality, transitions (activities) take de�nite time, while tokens
(orchestration instances) do not stay in places for signi�cant periods
of time.

To recover that dynamics, we use continuous-time models.

Stock (S)
In�ow (fi ) Out�ow (fo)

Initial Stock (S0)

S |t=0 = S0,
d

dtS = fi − fo ⇔ S = S0 +
∫ t

0
(fi − fo)dt

Transitions 7→ stocks [number of instances of the activity]

Places 7→ �ows [number of instances transiting per second]



Automatic Continuous-time (CT) Model Derivation

CT scheme for a place:
non-input places aggregate
outputs from one or more
activities.

· · ·

m

om

mp(t): a new stock ∀p ∈ •m

qt = argminp∈•m{mp(t)}
m(t) = mqt (t)
d
dt mp(t) = p(t)wpm −om(t) , ∀p ∈ •m

om(t) =

�
m(t)/Tm Tm > 0
qt(t)wqt m Tm = 0

Fig. 7. ODE scheme for a transition.

· · ·

p p(t) = ∑m∈•p{om(t)}

Fig. 8. ODE scheme for a place.

Figure 7 shows a general ODE scheme for a transition m ∈ M with one or more
input places. With single input place, the transition continuously accumulates tokens
from the input place, and discharges them either instantaneously (Tm = 0) or gradually
(Tm > 0) through om(t).

When a transition has more than one input place, its execution is driven by the
smallest number of accumulated tokens. At time t, qt ∈ •m denotes the the place from
which the smallest number of tokens has been accumulated. Because a transition needs
to collect a token from all of its input places to fire, the smallest token accumulation
mqt (t) dictates m(t).

When the average execution time Tm > 0, the outflow om(t) = m(t)/Tm corresponds
to exponential decay. When Tm = 0, the transition is instantaneous, i.e. m(t) = 0, which
means that outflow has to balance inflow qt(t)wqt m from qt , therefore keeping mqt (t) at
zero.

Figure 8 shows a general ODE scheme for a place p ∈ P, which is simply a sum
of outflows from incoming transitions, assuming that •p is non-empty. Places with an
empty set of incoming transitions must be treated as exogenous factors.

4.3 An Example ODE Model

To illustrate the approach to construction of the ODE model, we look at the PT-net
representation of our working example, shown in Figure 2. The PT-net model has the
starting place pin and the final place pout. Transitions that correspond to invocations of
partner services are marked with letters A..H, and we assume that the corresponding
average execution times TA..TH are non-zero. Other transitions are assumed to be in-
stantaneous, and with the exception of the AND-join transition (marked J), they simply
propagate their inflow. Places p4 and p5 are decision nodes, and their outgoing links are
annotated with weight factors corresponding to branch probabilities. With reference to

A bit more
complex for
transitions with
several input
places.
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The model derivation process can be fully automated.



Composability

Modeling asynchronous
message exchange between
services is easy.
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Fig. 10. Asynchronous messaging scheme.
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Fig. 11. Failure accounting scheme.

tions. Both can be built into the model automatically, when translating from a concrete
orchestration language with known formal semantics. Here we discuss a way to deal
with asynchronicity and faults in a general case.

Figure 10 shows a usual pattern of asynchronous communication with a partner
service A. Transition As sends a message to A via a dedicated place sA, and transition Ar
receives the reply through a synchronizing place rA. The same representation applies to
synchronous messaging as well, with Ar directly following As, and rA as its single input
place.

In Figure 2, we have combined As, sA, Ae, rA, and Ar into a single transition A
characterized with an overall average execution time TA. The rate sA(t) is the send rate,
to be connected with the input rate parameter of the sub-model of Ae, while rA(t) is the
reply rate from the sub-model, to be connected with the receive rate in the main OCT
model. Examples of “wrapper” sub-models for Ae are: {rA(t) = sA(t)} (short circuiting,
zero time), and {rA(t) = Ae(t)/TAe ; d

dt Ae(t) = sA(t)− rA(t)} (black box, definite time).
Failures can be accounted for by introducing failure probabilities φm for each tran-

sition in the PT-net model, and decorating the transitions as shown in Figure 11. Fault
handling is represented by Φ . In the simplest case of unrecoverable faults, Φ is an
instantaneous transition to a terminal fault place pfail.

4.5 A Sample Resource Model

For a sample resource model, we model threads that execute orchestration activities on
the provider’s infrastructure. In the sample, shown on Figure 12, we assume that ser-
vices A, B, G and H from Figure 2 (corresponding to the Formatting, Logging, Adding
and Storage services) are “back-end” services hosted by the orchestration provider, so
that their each execution occupies a (logical) thread. The number of occupied threads in
the resource model is shown as X . The current capacity (available number of threads)
is shown as X̂ , and γ is the degree of utilization. The blocking factor β is 1 if some
capacity is free, 0 otherwise.

We �open� the transition boxes that represent component or partner
services and connect their CT-models.

Accounting for failyre:
introduce failure
probabilities, and a
common failure sink.
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Example: Data Cleansing Service
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Fig. 1. Overview of data cleansing process

pin

A

Formatter service

p1

AND-split

p2 p3

C Search Service

p4 E

Check Service
w4mh p5

F

Calibration Service

w5p

w5nhp6
w4nhw4h

G Add Service

w5h

p7

AND-join (J)

BLog Service

p8

p9

H

Storage Service

pout

Fig. 2. A PT-net representation of workflow
from Fig. 1

result is not satisfying (e.g., low precision of the search result), a re-calibration of the
search service is done manually and the re-calibrated Service Service is invoked again.
In parallel, a Logging Service is executed to log service invocations (execution times
and service precision).

Figure 2 shows a representation of the cleansing process workflow from Figure 1 in
the shape of a PT-net. Services from the workflow are marked as transitions (A . . .H),
and additional transitions are introduced for the AND-split/join. Places represent the
arrival of an input message (pin), end of the process (pout), and activity starting/ending.
The places that represent branches to mutually exclusive activities (p4 and p5) have
outgoing branches annotated with non-negative weight factors that add up to 1; e.g.,
the branches w4h, w4nh and w4mh of p4, which correspond to the single hit, no hits and
multiple hits outcomes of the search service (C), respectively.

As indicated by the example, the actual execution time of the service composition
depends on various factors, like the execution time of the human-provided services.
Based on these observations, we can summarize the challenges of the working example
as follows:

– Unpredictable content. The content of the customer data varies in terms of data
structure, data size, and quality. For instance, there might be missing and/or wrong
parts of addresses or wrong names and misplaced column content which can cause
extra efforts.

– Unpredictable manual intervention. Depending on the data size and the data quality
the precision of the search result differs. This requires manual calibration of search
profiles during the execution of the task.
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d
dt

A(t) = pin(t)− p1(t) oF (t) = F(t)/TF

p1(t) = A(t)/TA p6(t) = p4(t)w4nh + p5(t)w5nh

p2(t) = p1(t)
d
dt

G(t) = p6(t)−oG(t)

d
dt

B(t) = p2(t)− p8(t) oG(t) = G(t)/TG

p8(t) = B(t)/TB p7(t) = p4(t)w4h +oG(t)+ p5(t)w5h

p3(t) = p1(t)+oF (t)
d
dt

Jp8(t) = p8(t)− p9(t)

d
dt

C(t) = p3(t)− p4(t)
d
dt

Jp7(t) = p7(t)− p9(t)

p4(t) = C(t)/TC

d
dt

E(t) = p4(t)w4mh − p5(t) p9(t) =

�
p8(t) Jp8(t) ≤ Jp7(t)
p7(t) Jp7(t) < Jp8(t)

p5(t) = E(t)/TE
d
dt

H(t) = p9(t)− pout(t)

d
dt

F(t) = p5(t)w5p −oF (t) pout(t) = H(t)/TH

Fig. 9. ODE model for PT-net from Fig. 2

Figure 1, index “h” stands for “hit”, “nh” for “no hit”, “mh” for “multiple hits”, and
“p” for “precision not ok.” Weights for other (single) place-transition links are implic-
itly set to 1. For simplicity, the PT-model does not represent auxiliary computations that
in reality take some definite, if small, time to execute.

Figure 9 shows the corresponding ODE model. Some obvious simplifications were
applied. For instance, when for a p ∈ P, •p = {m} it is not necessary to represent om(t)
and p(t) separately, so we use the latter. Also, for a place m ∈ M where •m = {p} and
Tm = 0, we omit the equation for d

dt m(t) (which is always 0), and directly propagate
p(t)wpm as om(t).

The AND-join transition J has two input places, and thus two auxiliary token stocks
Jp7(t) and Jp8(t). Since the join is instantaneous, at least one of these two stocks is
always zero, and the outflow p9(t) copies the inflow of the smaller stock.

We assume that the initial marking of the PT-model contains only pin. Consequently,
we implicitly assume that the initial condition for all transitions (A(0), B(0), etc.) is
zero. Since that place has no input transitions in the model, we assume that pin(t) is
exogenous. Conversely, pout has no output transitions, and we assume that it is the
terminal place of the model. The function pout(t) thus gives the finishing rate of the
orchestrations in the ODE model, relative to the start rate pin(t).

4.4 Asynchronous Composition And Failures

The example PT-net in Figure 2 is simplified as it does not involve asynchronous mes-
saging with partner services, nor accounts for potential failures during service invoca-



CT Model Running Times Comparison

CT models can be used to produce distribution of expected running
times by feeding it with single unit spike (a Dirac pulse).

Assessed by comparing discrete simulations with predictions by CT
models in a range of simple work�ow patterns.

Good �tting between median times.

Data cleansing service
orchestration simulated and
compared with CT model
prediction: good correspondence
between model output and
empiric data.

Calibration of the model with
empirical data crucial.

Service Min. 1st Qu. Median Mean 3rd Qu. Max.
Formatter 15.00 55.50 60.00 63.00 73.00 107.00
Searcher 4.00 4.00 5.00 4.89 6.00 6.00
Checker 0.00 0.00 1.00 0.53 1.00 1.00
Calibrator 59.00 74.00 78.00 81.73 85.50 133.00
Logger 1.00 1.00 1.00 1.00 1.00 1.00
Adder 0.00 0.00 0.50 0.50 1.00 1.00
Storage 1.00 1.00 1.00 1.40 2.00 2.00

Table 1. Statistical parameters of service substitutes.

Fig. 13. Distribution of execution times.

The smooth bold curve in Figure 13 shows pout in comparison to the histogram
that shows experimental execution times. The median value of the predicted execution
time was 142.82 and the average 197.55 (seconds). Although slightly more optimistic
than the experimental runs, on the overall the prediction qualitatively fits well with the
measured data, especially considering that the prediction does not take into account
message passing latencies, and that the experimental setting has used a mix of different
statistical distributions for execution times of individual services.

6 Conclusions and Future Work

The approach proposed in this paper can be used for developing dynamic models of
service composition provision, based on an automatically derived continuous-time or-
dinary differential equation model of the target orchestration. The orchestration model
is calibrated using empirical estimates of average activity execution times and branch-
ing probabilities, obtained from log analysis, event signaling, or other monitoring tools
at the infrastructure level. Several dynamic models of orchestrations provided together
can be composed in a modular way.

The resulting dynamic model of composition provision can be used for exploring
how the provision system reacts to different input rates (requests per unit of time), test-
ing and choosing different resource management strategies and their parameters, in the



Framework Simulation Model for Several Orchestrations

How to deal with several orchestrations which interact through
resource usage?

Plug CT model(s) of orchestration(s) into simulation framework.
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Resource model aggregates values from orchestration CT model to
model provision infrastructure capacity and load.

Blocking factor (β) quenches request in�ow when capacities
exceeded.



Framework Simulation Model (2)
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Basic accounting for rejects (E ), successes (S) and failures (F ).

Provides for separation of concerns � separated development of:
Orchestration model (resource independent).
Resource model (orchestration independent).



Interactive Simulation

Simulation model fed to existing standard dynamic simulation tool:

Simulating concurrently served orchestrations under di�erent input
regimes.

Running time and reliability QoS �for free�.

Others (like cost) easily derivable.

Typical simulations: what-if, goal-seek, sensitivity.

Currently working on custom simulation tool better tailored for services.



Conclusions

Automatically derived dynamic models of service orchestrations with
provision resources can be used as handy tool for testing scenarios and
assessing expected QoS and infrastructure management policies.

Working on integration with tools for automatic derivation of PT-net
models from executable orchestration specs.

Aiming at modeling elasticity in cloud infrastructures.

Challenge: cover other, more advanced and data-dependent service
composition descriptions e.g.:

Concrete abstract and executable process speci�cations (e.g., BPEL),
Colored Petri-nets,
Other formalisms. . .
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